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Abstract. We study the complexity of counting the number of solutions
to a system of equations over a fixed finite semigroup. We show that
this problem is always either in FP or #P-complete and describe the
borderline precisely. We use these results to convey some intuition about
the conjectured dichotomy for the complexity of counting the number of
solutions in constraint satisfaction problems.

1 Introduction

Constraint satisfaction problems (or CSPs) are a natural way to formalize a
number of computational problems arising from combinatorial optimization, ar-
tificial intelligence and database theory. Informally, an instance of CSP consists
of a domain, a list of variables and a set of constraints relating the values of
the different variables. One then has to decide if the constraints can be simul-
taneously satisfied. Considerable attention has been given to the case where the
constraints are constructed using a finite set of relations I" and it has been conjec-
tured that for any such I" the problem CSP(I") is either in P or NP-complete [11].
Over the boolean domain Schaefer’s classical result [20] states that CSP(I) is
indeed always in P or NP-complete. More recently, deep results of Bulatov have
established a similar dichotomy over the three-element domain [2].

It is similarly believed that the corresponding counting problem #CSP(I)
is always either tractable (in FP) or #P-complete [3]. This dichotomy is known
to hold over the boolean domain [9]. The dichotomy conjectures for CSP and
#CSP have been the subject of intense research over the last fifteen years and the
algebraic approach uncovered in [14,13] and extended to the counting problem
in [3] has underlied the considerable progress made towards these classification
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results. It was shown that the tractability of both CSP(I") and #CSP(I") de-
pends on the algebraic properties of the set of operations which preserve the
relations of I'. There are now very broad classes of I's for which the tractability
or NP /#P-completeness of CSP(I") or #CSP(I") can be guaranteed through this
algebraic approach. Most notably, Dalmau’s recent result on the tractability of
CSP(I") for any I" closed under a generalized majority-minority operation pro-
vides one of the largest class of tractable CSP and, on the hardness side, any I’
which is not closed under a Taylor term is such that CSP(I") is NP-complete [8].
This approach also underlies the dichotomy results of Bulatov for CSP over the
three-element domain and for the list-homomorphism problem.

Despite this remarkable progress, the resolution of the dichotomy conjecture
for CSP still seems a few years away. For #CSP on the other hand, there are
good reasons to be more optimistic: the deep results of [3, 7] provide an algebraic
criterion for the tractability of #CSP(I") which is known to be necessary and
is very close to being shown as sufficient [1]. In their seminal paper, Bulatov
and Dalmau proved that #CSP(I") is #P-complete if I" is not preserved by any
Mal’tsev operation and conjectured that the problem is tractable otherwise [3].
That hypothesis was later refuted by Bulatov and Grohe who completely classi-
fied the complexity of #CSP(I") when I" consists of two equivalence relations [7].

In order to illuminate the current status of this conjecture, we build on the
work of Nordh and Jonsson [19] and study the problem #EQNY of counting the
number of solutions to a system of equations over a fixed finite semigroup S. We
show that for any S, the problem #EQNY is either in FP or #P-complete and
precisely describe the class of semigroups involved in the result. Such a result is
to be expected if one believes that a #CSP dichotomy holds and we show how
our classification precisely matches the conjectured criterion for tractability of
#CSP. Our results also provide simple examples illustrating the very delicate
nature of the dividing line between hard and easy cases of #CSP.

Systems of equations over finite semigroups have already been used as inter-
esting case studies for the complexity of constraint satisfaction problems. In [15]
it is shown that for any set of relations I', there exists a finite semigroup S such
that CSP(I") is polynomial time equivalent to the problem EQNY,. of testing if
a system over Sp has a solution and so proving a dichotomy for this class of
problems is equivalent to proving the CSP dichotomy conjecture. If we consider
only the problem of solving systems of equations over finite monoids, then the
problem is either in P or NP-complete and this result led to the identification of
a new class of tractable CSPs [10]. Nordh also considered the problem of testing
if two systems are equivalent or isomorphic [18§].

We review in Section 2 the basics of the algebraic approach to CSPs and
discuss the current conjectures about the #CSP dichotomy. In Section 3, we
give the relevant semigroup theoretic notions and rely on the deep results of |7,
3] to show our dichotomy result. Finally, we consider in Section 4 a more ele-
mentary point of view on the same results and thus provide some intuition on
the conjectured classification of #CSP. Due to space restrictions, a number of
proofs have been moved to the Appendix.



2 Universal Algebra and Constraint Satisfaction
Problems

Let D be a finite domain and I" be a finite set of relations over D. The con-
straint satisfaction problem over I', denoted CSP(I") is the following decision
problem. The input consists of a list of variables x4, ..., x, and constraints that
are pairs (S;, R;) where R; is a k;-ary relation in I" and S;, the scope of the
constraint, is an ordered list of k; variables. We ask whether there exists an as-
signment of values in D to the variables such that every constraint is satisfied.
The related counting problem #CSP(I") consists of counting the number of such
assignments. Throughout the paper, I" denotes a constraint language, i.e. a finite
set of relations over some domain D.

The algebraic approach mentioned in our introduction considers the closure
properties of I'. An operation f on D is simply a function f : D! — D. We
naturally extend f so that it takes as inputs ¢ k-tuples ag, ..., a; of values in D
by defining f(at,...,a;) = (f(a11,...,a1),.-., f(aig,...,a)). We say that a
k-ary relation R over D is closed under f, or that f is a polymorphism of R if for
any t k-tuples of R, say ay,...,a, we also have f(ag,...,a;) € R. Pictorially,

( aii, ey alk )ER
( 5 : ) ER
( a1, ey agk )ER
— ( f(a11,...,at1)7 ey f(alk,...,atk) ) €R

In other words, if each of the ¢t rows represents a tuple in R then we can apply
f on each of the k columns and again obtain a tuple in R.

By extension we say that I is closed under f or that f is a polymorphism
of I' if every relation of I' is closed under f, and denote as Pol(I") the set of all
such finitary operations f. The fundamental link to the complexity of counting
CSPs is the following theorem whose counterpart for the decision problem was
proved in [13].

Theorem 1 ([3]). If I, I are sets of relations over D such that Pol(I7) C
Pol(Iy) then #CSP(I3) is polynomial-time Turing reducible to #CSP(I7).

A ternary operation m over D is a Mal’tsev term if it satisfies the identities
m(x,y,y) = m(y,y,z) = z. Bulatov and Dalmau showed that if Pol(I") contains
a Mal’tsev term then CSP(I) is tractable [5]. A very broad criterion for #P-
completeness of #CSP(I") can also be given in terms of these operations.

Theorem 2 ([3]). If I is a constraint language such that Pol(I") contains no
Mal’tsev term, then #CSP(I") is # P-complete.

In their original conference paper [3]|, Bulatov and Dalmau conjectured that
the presence of a Mal’tsev term in Pol(I") was in fact sufficient for the tractabil-
ity of #CSP(I"). That conjecture was disproved by later work of Bulatov and



Grohe [7,5]: the algorithm that guarantees the tractability of CSP(I") when
Pol(I") contains a Mal’tsev term cannot quite be adapted to solve #CSP(I)
efficiently. It can be salvaged in one important special case discussed below.

An algebra D over a domain D is a pair (D; F') where F is a set of operations
over D, called the fundamental operations of . For an algebra D, we denote as
Inv(D) the set of relations over D which are preserved by all its fundamental
operations. Let (I') denote the set of relations’ Inv(Pol(I")). We say that the
constraint language I is #-tractable (resp. #P-complete) if #CSP(I") is in FP
(resp. #P-complete). By extension we say that the algebra D is #-tractable if
every finite A C Inv(DD) is #-tractable and say that D is #P-complete if there
exists a finite subset A C Inv(D) such that A is #P-complete. It follows from
Theorem 1 that I is #-tractable (resp. #P-complete) iff its associated algebra
(D;Pol(I")) is #-tractable (resp. #P-complete).

It will also be convenient to consider standard algebraic constructions: given
an algebra D, we fix some indexing of its fundamental operations, and can then
consider subalgebras, homomorphic images and products of algebras (see [17] or
[5]). Bulatov and Dalmau have shown that if an algebra is #-tractable then so
is every finite algebra obtained from it by these constructions; and conversely, if
a power or subalgebra or homomorphic image of an algebra D is #P-complete
then so is D. A congruence of an algebra is an equivalence relation on its universe
which is invariant under the fundamental operations.

T is said to be uniform if the following holds: for every binary relation 6 € (I")
such that there exists a subset E of D such that 6 is an equivalence relation on F,
the blocks of # all have the same size. Equivalently, I' is uniform if its associated
algebra D is uniform, i.e. if € is a congruence of a subalgebra of D then its blocks
all have the same size.

Theorem 3 ([3]). A uniform algebra containing a Mal’tsev term is #-tractable.

We will give in the next section examples of uniform and non-uniform con-
straint languages related to systems of equations over Abelian groups. The suf-
ficient condition for tractability provided by this theorem is not necessary. An
algebra is #P-complete if it contains no Mal'tsev term and #-tractable if it is
uniform and contains a Mal’tsev term but the dividing line between easy and
hard cases of #CSP lies in the small gap between these two criteria.

Bulatov and Grohe considered the complexity of the #CSP(I") problem for
the special case in which I' consists of two equivalence relations «a, 3. For any
such o, 3, we can construct an integer matrix M, g with rows labeled by the
a-classes, columns labeled by [(-classes and integer entries given by the size of
the intersection of the corresponding « and ( classes. Although their result is
more general, we cite a weaker theorem that is sufficient for our purposes and
really represents the core of their arguments.

Theorem 4 ([3]). If M.p is positive and has rank strictly larger than 1, then
#CSP(a,B) is #P complete.

L Alternatively, (I') is the set of relations expressible through primitive positive for-
mulas over I" and the equality relation [5].



Corollary 5. If I' is a set of relations and a, B are equivalence relations in (I")
with M, g positive of rank strictly larger than 1, then #CSP(I) is # P-complete.

It is conjectured that the above corollary provides the frontier between the
tractable and #P-complete cases of #CSP. More precisely, #CSP(I") should be
tractable if, for every homomorphic image B of a subalgebra of a finite power
of the algebra associated to I, and every pair of congruences o and 3 of B, the
matrix M, g has rank 1 if it is positive [1]. Note that by the last result and the
remarks preceding Theorem 3 the condition is necessary.

3 Systems of Equations and Dual Algebras

To study the complexity of #EQNY, we reuse some of the simple but useful
observations of [19, 16, 15]. The first concerns the complexity of solving systems
over the direct product of two semigroups.

Lemma 6. Let S and T be finite semigroups such that #EQNY. is in FP. Then
#EQNG, 1, #EQNG, g and #EQNYG are polynomial time Turing equivalent.

A proof of this simple fact is given in the appendix. Given a system over .S, we
can introduce for each s € S a new variable x, and the equation x5 = s without
affecting the number of solutions to the system. Moreover an equation y;y2y3 =
2129 can be replaced by the set of equations y1y2 = ¥/, ¥'ys = 2’ and 2129 = 2/
where 9 and 2’ new dummy variables, again without affecting the number of
solutions. We thus assume that our systems consist only of equations of the
form xy = z, x = y or * = ¢ where x,y, z are variables and ¢ € S is a constant.
Therefore, the problem #EQNY§ can be viewed as a #CSP with domain S and
constraint language I's consisting of |S| + 2 relations: the |S| singleton unary
relations, the equality relation and the ternary relation ¢ = {(z,y, 2) : 2y = z}.
As we explained in the previous section, the complexity #EQNYE is completely
determined by Pol(I's) and we wish to analyze the structure of that set.

We say that an operation f : S¥ — ¢ commutes with f if for any s, ..., sk,
t1,...,tx € S it holds that f(sit1,...,sktx) = f(s1,...,86)f(t1,... ,tr). We
further say that f is idempotent if f(x,...,z) = x. For a semigroup S, we denote

as D(S) the dual algebra of S, i.e. the algebra over S containing all operations
that commute with -g.

Lemma 7 ([16,19]). Let I's be the constraint language defined by equations
over the semigroup S, then an operation f : S* — S is a polymorphism of I's iff
f is idempotent and commutes with f.

A proof is in the appendix. Combined with Theorems 2 and 3 we get:

Lemma 8. If D(S) does not contain a Malt’sev term then #EQNYg is #P-
complete.

If D(S) is uniform and contains a Malt’sev term then #EQNY is solvable in
polynomial time.



As we will see there are semigroups fitting neither of these criteria but, as a
first step, we want to identify the classes of semigroups corresponding to these
two cases and this requires the introduction of some notions of semigroup theory.
Recall that an element e of a semigroup S is idempotent if ¢ = e: in a finite
semigroup, there exists an integer w (which will have this meaning throughout
the paper) such that z* is idempotent for all z € S.

We say that S is a left-zero (resp. right-zero) semigroup if it satisfies ab =b
(resp. ab = a). In particular, all elements of such semigroups are idempotent. We
further say that S is a rectangular band if it is the direct product of a right-zero
and a left-zero semigroup or, equivalently, if it satisfies xyz = zz and 22 = z.

For a semigroup S, let S* denote the monoid obtained from S by adjoining an
identity element if no such element exists in .S. A semigroup is called simple if for
any two elements a,b € S, we have S'aS! = S'bS!. An equivalent requirement
is that for any a, b there exist z,y € S* such that zay = b. In particular, groups
and rectangular bands are simple semigroups. It can be easily shown that a
semigroup is simple iff for any two idempotents e, f € S we have (efe) = e.

A semigroup is said to be orthodozx if the product of two idempotents of S
is itself an idempotent and a simple semigroup is orthodox iff it is the direct
product of a group and a rectangular band [12].

We will say that a semigroup S is an inflated simple semigroup if it consists
of a simple subsemigroup T and elements ¢, ..., g, such that for all g; there
exists not necessarily distinct elements t¢1,...,t, € T satisfying ¢;s = g;s and
st; = sg; for all s € S. We say that g; is a ghost of t;. The terminology of course
stresses the fact that the actions defined by left and right multiplication of ¢;
and g; are indistinguishable. For an element ¢ € T', we denote as g(t) the set of
ghosts of ¢ (including ¢ itself) and call w(t) = |g(t)| the weight of ¢ in S. We say
that S is a uniform inflation of T if each t € T has the same weight.

Lemma 9. A finite semigroup S is an inflated simple orthodox semigroup with
only Abelian subgroups if and only if it satisfies wryz = wyxrz and xy“z = 2.

We prove this lemma in the appendix. In the sequel, we denote as V the
class of semigroups which, as in the statement of the lemma, are the inflation of
a direct product of an Abelian group and a rectangular band and for S € V we
will denote as ¢(.S) the maximal simple subsemigroup of S. In this case, ¢(S) is
always the direct product A X L X R of an Abelian group, a left-zero band and
a right-zero band. The class V is tightly connected with dual Malt’sev terms.

Theorem 10.

(a) Let S be a finite semigroup: the dual algebra D(S) contains a Malt’sev term
iff S isin V.

(b) Furthermore, if S € V then D(S) is uniform and contains a Malt’sev term
if and only if S is a uniform inflation of c(S).

Proof. Ttem (a) was established in [19] for simple semigroups in V. For S € V|
we thus know that there exists a Mal’tsev term in the dual algebra of ¢(S) and
our proof, given in the appendix works by extending that operation so S.

The proof of (b) is more technical and is given in the appendix.
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Theorem 11. Let S be a semigroup obtained as the inflation of an abelian group
A. Let D denote the dual algebra of S. If S is not a uniform inflation of A then
there exist congruences o and 3 of the algebra D such that the matriz Mag is
positive of rank strictly greater than 1.

Corollary 12. If S is the direct product of a uniformly inflated Abelian group,
an inflated left-zero semigroup and an inflated right-zero semigroup then #EQNY
is tractable. Otherwise, #EQNY is # P-complete.

Proof. We will explicitly prove the upper bound in the next section. The hardness
result for non-uniformly inflated Abelian groups is provided by Theorem 11 and
results of Section 2. Finally, we will show in the next section that #EQNY% is
#P-complete if S is not the direct product of an inflated Abelian group, an
inflated right-zero semigroup and an inflated left-zero semigroup.

O

4 Elementary Arguments for the Complexity of #EQN7%

Suppose that we want to count the number of solutions to a system over an
inflated simple semigroup. As noted earlier, we can assume that every equation
is of the form x = y, xy = z or z = ¢ where ¢ is a constant. We can remove all
equations of the form z = ¢ by replacing every occurrence of z by the constant
c. In the resulting system, if any solution exists, there exists one in which every
variable is set to a value in ¢(S) because any variable x set to a ghost value s
can just as well be set to s“*1. It is tempting to think that in fact = can be set
to any ghost of s but this is not quite the case: if x occurs in an equation of the
form yz = x then z can only take values in ¢(S). We will say that such variables
are regular. Any solution to the system in which every variable is set to a value
in ¢(S) thus corresponds to a whole set of solutions in which every non-regular
variable can be set to any corresponding ghost value. We can formalize these
ideas as follows. We say that a solution a = (a1, ...,a,) is regular if all a; lie in
¢(S) and define the weight of a as w(a) = 11 w(a;) and it is easy to
z; non regular
see that the number of solutions to the system is the sum of all w(a) where a is
a regular solution.

By Theorem 10 a semigroup S has a dual Mal’tsev term and I's is uniform
if and only if S is a product of cyclic groups, right-zero semigroups and left-zero
semigroups, the whole of which is uniformly inflated. In this case, tractability of
#EQNY is guaranteed by Theorem 8. Let us briefly sketch a polynomial-time
algorithm in this case. Since ¢(S) is uniformly inflated, every regular solution
a has weight k' where k is the number of ghosts of any element and ¢ is the
number of non-regular variables in the system. It therefore suffices to exhibit a
polynomial-time algorithm to count the number of solutions to a system over the



direct product of an Abelian group and a rectangular band. By Lemma 6, we can
argue separately for the two cases. For completeness, we sketch in the Appendix
a proof of the next lemma which can also be obtained through Theorem 3.

Lemma 13. Let S be an Abelian group. Then #EQNY is in FP.

One can also count in polynomial time the number of solutions to a system
of equations over a rectangular band and a stronger result in fact holds.

Lemma 14. Let S be an inflation of a right-zero band or of a left-zero band.
Then #EQNY is in FP.

Proof. We are only interested in summing up the weights of regular solutions. We
first identify the regular variables and replace any constant by its representative
in ¢(S) (note that we can do this without harm once the equations of the form
x = ¢ have been removed). The resulting system can be viewed as a system
over the right-zero semigroup ¢(S) and we want to understand the structure of
the set of solutions. Every equation of the form zy = z is in fact equivalent to
y = z. Thus if the system has a solution, it is simply defining an equivalence
relation on the set of variables and constants. Formally, the system partitions
the set of variables and constants into classes Y, , ... Yo o)) X155 X where
the constant ¢; lies in Y.,. We have a a solution, iff all variables in Y., are set
to ¢; and all variables in X; have the same value a;. We will abuse notation and
denote as | X;| the number of non-regular variables in the set X;. Now the weight

of a is simply
=[Tlg(e:

The sum of all these weights is thus

[Listel™IT X ot

1=1s€c(S)

)||Xi\_
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Note that if S is a non-uniform inflation of a right-zero band then, by The-

orem 10, the dual algebra D(S) is non-uniform. Thus, the above lemma pro-

vides examples of constraint languages I" such that Pol(I") is non-uniform but
#CSP(I) is nonetheless tractable.

Corollary 15. If S is the direct product of a uniformly inflated Abelian group,
an inflated right-zero semigroup and an inflated left-zero semigroup then #FEQNTE
1s in FP.

We now want to show that if S is not in this class then #EQNYg is #P-
complete and we provide one explicit proofs of hardness by reducing from the
#P-complete problem Permanent. Recall that for an n x n matrix A, the per-
manent of A is Perm(A) = 3 g [[; @io(:)- Valiant proved that the problem
of computing the permanent of a matrix over Fy is #P-complete [21].



Let us start with the simple example of the three-element semigroup C which
consists of the two-element group Cs (with the operation written additively)
to which we add a ghost for the element 1. In other words, C} has elements
{0,1,1’} and the operation is specified by 0+1=140=041=1+4+0=1
and1+1'=174+1=141=141=04+0=0.

Theorem 16. #EQNCQ is # P-complete under Turing reductions.

Proof. We first prove that the computation of the permanent reduces to the
following problem. Given a system & of equations over the group Cy with m
variables and an integer 0 < i < m, determine the number of solutions to £ that
contain % 1’s and m — ¢ 0’s. We call this problem N¢,.

Let A = (aij)i1<i,j<n be the matrix over Fy whose permanent we wish to
compute. We construct a system & of equations over Cy with n? variables y;;
for 1 < 4,7 < n. There are 2n equations in £ corresponding to the n rows and n
columns of A.

Specifically, we have for each i an equation Z;L:l ai;yi; = 1 and for each j
an equation Y . a;;y;; = 1. We claim that Perm(A) is exactly the number of
solutions of £ that contain n 1’s. Indeed, for each permutation o € S,, such that
I1; @ic(s) = 1, the assignment to the y;;’s that sets y;; = 1 if j = o(i) and y;; = 0
otherwise is an assignment with n 1’s. Moreover it is a solution of the system
because a;;y;; = 1 iff j = o(¢) and in particular the sum of these products over
one row or one column is exactly one. Conversely, every solution to £ with n of
the y;; set to 1 must be such that there exists a permutation ¢ with the property
that y;; = 1 iff j = o(4) for otherwise at least one row or one column has all
its y;;’s set to 0 and an equation is left unsatisfied. Furthermore it must be that
a;s(;) = 1 for otherwise, again, one of the sums Z;lzl Q;§Yij OT Z?:l a;yi; s 0.

Hence there is a one-to-one correspondence between solutions of £ with n 1’s
and permutations o € S, such that []; a;,(; = 1 and so Perm reduces to Ng,.

To complete the proof we show a reduction from the problem N¢, to the
problem #EQNCQ.

Let £ be a system of equations over Cy and suppose for convenience that
the n variables in & are z11,...,7,1. We construct a system &’ of equations
over the super-semigroup C from the system & as follows. For each 2 < i <n
we introduce n — 1 new variables x;; for 1 < j < n and add the equations
Ti1 = Tz = ... = Tj,. Furthermore we replace any occurrence of a variable y by
3y.

Note that any solution to £ containing i 1’s and (n — i) 0’s gives rise to 2™
solutions in &£’. Indeed if x;; = 1 in the solution to £, then x;; can be either
1 or the ghost of 1. The same happens for each copy z;;. Thus if IV; denotes
the number of solutions of weight 7 in £ then the number of solutions in &’ is
ST 2™ N;. Since N; < (?) < 2™ we know that the ith block of n bits in the sum
S 2" N; is precisely N;.

O
This example shows the subtlety of the dividing line between tractable and
intractable cases of #CSP. Here, the constraint language I'c; is closed under a



Mal’tsev operation but I'c; is not uniform. Indeed, one can easily verify that
the function m(z,y, z) which is z if y = 2, z if x = y and « + y + 2z otherwise
is a Mal’tsev polymorphism but the equivalence relation 0 + x = 0 + y has two
equivalence classes {0} and {1, 1’} of different sizes. In the extended abstract [3]
and the accompanying technical report [4], Bulatov and Dalmau claim that a
constraint language over a domain of size three is tractable iff it admits a Mal’tsev
polymorphism. Their argument was in fact flawed and the claim was retracted
in the full version of the paper [6].

As we mentioned in Section 2, equivalence relations in (I") play a crucial role
in the complexity of #CSP(I"). For a semigroup S € V, there are a number of
very natural equivalence relations defined through equations over S. We know
that the simple subsemigroup ¢(S) can be decomposed as the direct product
of an Abelian group A, a right-zero semigroup R and a left-zero semigroup L.
Correspondingly, we write an element of this subgroup as (a,r,!). Note that
since R and L are right and left-zero, the multiplication in ¢(S) is given by
(al, T, ll)(a27 ro, ZQ) = (alag, T2, ll) Let e denote the element (1A, To, lo) where
14 denotes the identity element the group A and 7g,ly are arbitrarily chosen
elements of respectively R and L. Note that e is idempotent. Consider the binary
relations a4, ar, and ag defined as

{(,9) : exe = eye);
2. ap ={(z,y) : ex” = ey}
3. ap ={(x,y) : x¥e = y“e};

1. ay =

Clearly, all three are equivalence relations. Furthermore ghosts of a same ele-
ment are equivalent under all three relations. Thus, in each case, an equivalence
class is completely determined by its elements in the simple semigroup ¢(S). For
an element z = (a,r,1) of ¢(S5), we have z¥e = (14,7,1)(14,70,l0) = (1a,7,lo)
and so z,y € ¢(5) are ag equivalent iff their L coordinate is the same. Similarly,
x,y are ag equivalent if their R coordinate is the same and are a4 equivalent if
they agree on their group coordinate. The intersection of these three equivalence
relations is the equivalence relation {(z,y) : 2T = y**1} which equates two
elements which are ghosts of a common element of ¢(S).

Consider the two equivalence relations « = ag and 8 = a4 N ay and the
corresponding matrix M, (as described before Theorem 4). The entries of this
matrix correspond to the cardinality of the intersection of an o and a [ class.
Each such intersection contains precisely a unique element of ¢(S) and all its
ghosts. If the matrix thus formed has rank greater than 1, we know that #EQN7
is #P-complete by Corollary 5. Otherwise, a folklore fact about positive integer
matrices of rank 1 guarantees that M, g is the product of a row vector p and a
column vector k which are both positive integer. This allows us to show:

Lemma 17. Let S be an inflation of A x L x R. If M3 = pk has rank 1, then
S is isomorphic to the direct product of an inflation of R and an inflation of
Ax L.



Proof. Let T = A x L. Note that two semigroups S1,S2 € V are isomorphic iff
there is an isomorphism ¢ between the simple semigroups ¢(S7) and ¢(S2) such
that for all x, the ghost classes of z and ¢(z) have the same size.

The matrix M, g has dimension |R| x |T'| and we view rows and columns as
being labeled with elements r of R and elements ¢ of T respectively. In S, the
number of ghosts of the regular element (r,t) is given by the (r,t) entry of the
matrix which is p[r]&[t].

Consider the inflation R’ of R in which the element r has p[r] ghosts and
similarly let 77 be the inflation of T specified by the column vector . It is easy
to verify that R’ xT” is indeed isomorphic to S since the number of ghosts of the
regular element (r,t) in R’ x T” is the product p[r]x[t] of the number of ghosts
of r in R’ and the number of ghosts of ¢ in T".

O
One can interpret the result as follows: if M, g has rank 1, then we can “peel
oft” the inflated right-zero band out of S. Since the problem #EQNTZ, is tractable
for any inflation of a right-zero band (Lemma 14), we get by Lemma 6 that the
complexity of #EQNT is exactly that of #EQN7., where T” is the inflation of the
product of L x A given in the previous lemma. We can of course repeat the above
argument and now consider over T” the two equivalence relations o = ay and
B = a4 and build the matrix M, g. This matrix is positive and if its rank is not 1
then #EQNY, is #P-complete by Theorem 4. Otherwise 7" is the direct product
of an inflation L’ of L and an inflation A’ of A. Since #EQN7, is tractable, the
problem #EQNYg reduces to the problem #EQNY,. This argument completes
the proof of Corollary 12.
We argued that #EQN?, is #P-complete if it is not a uniform inflation of
A by using the sophisticated machinery of [5,7]. An alternative route can also
be pursued: it is possible to generalize the argument of Theorem 16 to show
that any non-uniform inflation of an Abelian group of prime-power order leads
to a #P-complete problem. The proof is a tedious case analysis and involves
tricks reminiscent of the thickening of [7]. With this result in hand, one can
continue to apply the above reasoning to successively peel off from A’ uniform
inflations of Abelian groups of a given prime power order and thus progressively
factor out the tractable components of the #EQN% problem. One of three things
must happen: in the first case, this process decomposes S as the direct product
of semigroups for which the counting problem is tractable and so #EQNY is
tractable. In the second case, we hit a positive matrix M, s of rank at least 2,
in which case the problem is #P-complete by Theorem 4. In the last case we
isolate in .S a non-uniform inflation of an Abelian group of prime power order
and the problem is #P-complete. This approach seems more transparent but,
because of the technicality of the arguments, we chose the presentation given in
Section 3.
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Appendix

We provide proofs for a number of technical results which were omitted due to
space constraints.

Lemma 9. A finite semigroup S is an inflated simple orthodor semigroup that
contains only Abelian subgroups if and only if it satisfies wxyz = wyxrz and
Yz = x2.

Proof. To show left to right implication, note that it suffices to show that these
identities hold for the maximal simple subsemigroup of S because any ghost
element can be replaced by its representative in this subsemigroup without af-
fecting the product. Since this simple subsemigroup is orthodox, it is in fact the
direct product of an Abelian group with a rectangular band and both terms of
the product clearly satisfy the two identities.

For the right to left implication, since S satisfies wxyz = wyzz, all its sub-
groups are Abelian. Consider the subsemigroup of ¢(S) consisting of elements
which can be written as es for some e, s € S and e idempotent. One can easily
verify that ¢(S) is the maximal simple subsemigroup of S. For any two idem-
potents u,v € ¢(S) we have uvuv = uv by the second identity so ¢(S) is an
orthodox simple subsemigroup. For any element z in S — ¢(S) we have z**1 in
c(S) and 2tz = 2z as well as za“t! = zx by this same identity. Thus, z is a
ghost of the element 2T of the simple subsemigroup.

O

Lemma 6. Let S and T be finite semigroups such that #EQNY. is in FP. Then
#EQNG, 1, #EQN%, ¢ and #EQNG are polynomial time Turing equivalent.

Proof. For a system of equations &£, let #& denote the number of solutions of
E. A system Egxr over the direct product S x T can be viewed as a pair of
independent systems g and Ep over S and T respectively and #(Egx ) is simply
the product of #(€s) and #(Er). So if #(Er) is computable in polynomial time
we have #EQNG, r <7 #EQN§ and #EQN%, ¢ <7 #EQN¥%.

Suppose now that £g is a system over S. We obtain a system Egxg over
S x S by replacing any constant s € S by (s,s). Clearly #(Esxs) = #(Es)?
so #EQNS <r #EQN%, . A similar argument shows that if #EQNY is in FP
then #EQNS <7 #EQN%, 1.

O
Lemma 7. Let I's be the constraint language defined by equations over the semi-

group S, then an operation f : S* — S is a polymorphism of I's iff f is idempo-
tent and commutes with f.



Proof. We give a brief sketch, a detailed proof appears in [16]. If an opera-
tion f preserves all the singleton relations Ry = {s} for s € S then it must
be idempotent since f(s,...,s) has to belong to R and is thus s. Conversely,
any idempotent operation clearly preserves all singleton relations. Similarly, f
preserves the relation defined by xy = z iff for any z1y1 = 21, ..., Tpyr = 2k

we have f(x1,...,zk)f(y1,-..,uyk) = f(z1,.--y2k) = f(z1y1, ..., TEyk). So f
preserves xy = z iff it commutes with the operation of S.

O

Theorem 10.

(a) Let S be a finite semigroup: the dual algebra D(S) contains a Malt’sev term
iff S isin V.

(b) Furthermore, if S € V then D(S) is uniform and contains a Malt’sev term
if and only if S is a uniform inflation of ¢(S).

Proof. Part (a)

Let S be an arbitrary semigroup of V. The simple semigroup ¢(S) is a direct
product A x R x L of an Abelian group, a right-zero band and a left-zero band.
We first show that the dual algebra of ¢(S) contains a Mal’tsev term [19]. In fact,
it is sufficient to show that the duals of A, R and L all contain Mal’tsev terms
and obtain a Mal’tsev term for A x R x L as the product of these individual func-
tions. For A, let ma(z,y,2) = xy~'z. This operation is clearly Mal'tsev since
ma(z,y,y) = vy~ ty = z and similarly ma(y,y,r) = z. Furthermore m 4 com-
mutes with a since m 4 (za’, yy', z2') = z2’(yy') "1 22’ which by commutativity is
wy~tzaly' "l = malz,y, 2)ma(@,y, ).

To show that R also has a dual Mal’tsev term, we first arbitrarily choose
a group structure over the set R and denote its multiplication as o. Now, let
mpr(x,y,2z) = v oy~ ! oz where the inverse is taken with respect to o. Again,
the operation is clearly Mal’tsev. To show that it commutes with the right-zero
band R, we have mg(z2’',yy’, 22') = mg(2’,y’, 2') since the band is right-zero.
Similarly mg(z,y, z)mg(z’,y’,2") = mgr(z’,y’,2’) and so mr commutes with
the band R. The case of L is handled symmetrically.

Let m be the Malt’sev term in the dual algebra of ¢(S) = A x R x L which
is defined by applying m 4, mg, my, separately to the A, R, L coordinates. We
define m’ : §3 — S by extending m to the larger domain. We set

x ify==z
m'(x,y,2) = 2 ifx =y

m(xvtt y@ T 2oty otherwise.

By definition, m' is a Malt’sev term and coincides with m on elements of ¢(S)
since x*t1 = 1 for € ¢(S). Finally, we want to show that m/ (2172, Y192, 2122) =
m'(z1,y1,21)m’ (X2, Y2, 22). We already know that this holds if all x;, y;, z; lie in
¢(S) and the key is to observe that for all s € S we have m/(z1,y1,21)s =

m! (T yw T 29 s, This follows directly if 23 # y1 and y; # 2z;. If however



x1 = y1 then m/(x1,y1,21) = 21 but since z; is a ghost of the element z‘f“ we

have

w—i—lS:

/ o _ w—+1 w—+1 w1
m'(z1,y1,21)s = 215 = 27 x5 L2100 )s

m'( » Y1

as required. Thus,

m/ (z1,y1, 21)m/ (T2, ya, 22) = m (2T T 20 m/ (a5 gy T 25T

_ 1 ow+1l_ w+1 w+1 w+1 w+1_w+1
=m/ (a7 sy YT T )

=m/(x122, Y192, 2122).

Conversely, we want to show that no Malt’sev operation commutes with the
operation of a semigroup outside of V. This fact is in fact proved implicitly by
[19], which show that if S commutes with a Malt’sev operation then it must
satisfy the two identities wxyz = wyrz and zy“z = xz.

Part (b) For the left to right implication of (b), let D = D(S) and let
¢(S) = L x R x A. The operations of D must preserve the relation p = {(z,y) :
Tl = ¢« +11 Tt is also immediate that p is a congruence of : each of its blocks
corresponds to the ‘ghosts’ of a single element in L x R x A. So all ghost-classes
have the same size.

For the converse, let T'= ¢(S) = L x R x A. For every z in S, let 2’ denote
its p-representative in T, i.e. ' = x**!.

Claim 0. The dual algebra D(T) is uniform.

Proof of Claim 0. We must prove that for any subalgebra X of D(T), every
congruence of X has blocks of equal size. Since we know this result holds for
groups, it will suffice to find an Abelian group structure on 7T such that the
operation M (z,y,z) = x —y + 2z is a term of D(T). In fact, choose any Abelian
group structures on L and R and use the group structure of A, and take as your
group structure on 7" the product of these. It is a simple exercise to verify that
M(x,y,z) = x — y + z actually commutes with the product on 7.

Claim 1. An idempotent operation ¢ is a term of D if and only if it preserves
T, and if f denotes its restriction to 71" then f commutes with the product in T’
and ¢(z1,...,%y,) is in the p-block of f(xf,...,z)) for all x; € D.

Proof of Claim 1. Clearly every term of D preserves T' = {x € D : 2T =z}
and is idempotent. Since ¢ commutes with the product of S so does its restriction
f. Now

flxy,. .. ,x;l)‘”'l = ¢(z], ... ,x;)‘”"'l
= (b(.TLi'H_l, s axz+1)w+1
= ¢(z1,. .. ,:En)‘”+1

hence f and ¢ satisfy the desired condition. Conversely

$1y1)l, sy (mnyn)/)

¢($1y1, ce 7xnyn) =9 (
(xlyl)/v ey (xnyn)l)

v ) f (W)



this last equality holding because f commutes with the product in T'; finally
notice that this last element must equal

d)(mla s 7xn)¢(y17 e ;yn)

because T contains only one element in each p block and products always lie in
T.

By Claims 0 and 1, we may construct a term ¢ of D starting from a term
operation f of D(T) by defining ¢(x,...,x) = z for all z and for each x; € S not
all equal, defining ¢(z1, ..., x,) to be any element in the p block of f(z},..., ).

Claim 2. A subset X of S is a subalgebra of D if and only if there exists a
subalgebra Y of D(T) such that (i) X =Y or (ii) X = {r € S:2*T1 € Y}.

Proof of Claim 2. If X is a subalgebra of D then Y = X NT is a subalgebra
of D contained in T, and hence is a subalgebra of D(T'); we must show that
every x p-equivalent to a y in Y is in X, (unless Y = X, which we’ll assume is
not the case.) Indeed, let f = id on T and define ¢ to be, on each p-block, any
permutation of the elements of the block (other than the element in T'). This
shows that if one ghost is in X then all the others in its p block are there as
well. Now suppose that the p block of y; is in X, and that ys is in Y. Take
f = M a Mal’tsev operation on T (as in Claim 0), and define ¢ with it such
that ¢(y1,21,y2) = 22 where z; is any ghost of y;. This shows that z5 is in X
and we're done.

By Claim 2, if D has equal sized blocks, then the same holds for any of its
subalgebras. One may show, using arguments similar to those in Claim 0, to see
that every subalgebra of D(T') is isomorphic of the form D(L' x R’ x A’) where
L' is a left-zero band, R’ is a right-zero band and A’ is an Abelian group.

Hence the next claim will be sufficient to prove our result:

Claim 3. An equivalence relation 6 is a congruence of D if and only if there
exists a congruence « of D(T') such that (z,y) is in @ if and only if (z/,y’) € a.

Proof of Claim 3. Let 0 be a congruence of D. Obviously the restriction 8|7
is a congruence of the subalgebra D(T): call it @. Now let u be a ghost of 2 and
let v a ghost of y (where z and y are in T.) We show that uwfv if and only if
zay. Pick ANY element z of S outside T'. Let f be the first binary projection
f(s,t) = s on T, and extend it to a term ¢ of D such that ¢(u,z) = = and
¢(v,z) = y. Then if u is p related to v it forces x to be p related to y. For
the converse the construction is identical, this time choosing ¢(x,z) = u and

¢(y7 Z) ="v.

O

Theorem 11. Let S be a semigroup obtained as the inflation of an Abelian
group A. Let D denote the dual algebra of S. If S is not a uniform inflation of
A then there exist congruences o and 3 of the algebra D? such that the matriz
Mg is positive of rank strictly greater than 1.



Proof. Let p denote the partition of the semigroup S into blocks of ghosts; we
know this is a congruence of the algebra D. Recall that D admits a Malt’sev
operation, and hence so does D?; it follows that any reflexive binary relation
on D3 which is invariant under the terms of D3 is a congruence. Define the
relations a and (3 as follows: « consists of all pairs ((a,b,c),(a’,V',c')) such
that a +b+c = a' + bV + ¢ (here the + denotes the operation of S.) This is
clearly reflexive and invariant so it is a congruence. Define 3 as the set of all
pairs ((a,b,c),(a’,b',c)) such that bpb' and cpc’. Again it is clear this is a
congruence of D3,

Let ¢1,...,9, denote the elements of A and let a; denote the number of
ghosts of g;.

Consider a block U of a and a block V of 3: there exists a unique g; € A
such that (a,b,¢) € U if and only if a + b+ ¢ = g; and there exists a unique
pair (g;,q1) € A? such that (a,b,c) € V if and only if bpg; and c¢pg;. Hence a
triple (a,b,c¢) lies in U NV if and only if bpg; and cpg; and ap(g; — g; — 91);
hence the number of elements of S'in U NV is a;a;a; where gy = g; —g; —g1. In
particular, the matrix M,g is positive.

If the number of ghosts is unbalanced, then there exists a member of A that
has a number of ghosts different from the number of ghosts of 0; suppose without
loss of generality that gy = 0 and a; # az. Then we consider the rows of the
matrix that correspond to the -block associated to (g1, g1) and to (g1, g2): these
are

alay  alay ... alay
alagatl alagat2 e alagatk

where g;, = g; — g1 — g2 = ¢g; — g2 for all 4.
If the matrix had rank 1 then both these rows would be integer multiples of a

vector (c1,...,¢p), i.e. we’d have equality of the ratios of all entries, and hence:
aq a2 ag
Aty Oty Ay,

Since gt, = g2 — g2 = 0 = g1 we have a;, = aj, so the common ratio as/a; is
not equal to 1. Let a; be the maximum value of ay,...,ax; then we must have
that a;/a;, > 1; but there exists some j such that a;; = a; and thus a;/a;; <1,
a contradiction.

O

Lemma 13. Let S be an Abelian group. Then #EQNY is in FP.

Proof. By the remarks preceding the statement of the lemma, it is sufficient to
show that #EQNY is in FP if S is an Abelian group. Moreover, we can assume
that S is a cyclic group of prime power order since any Abelian group is a direct
product of such groups.

If S is a cyclic group of prime order p, then #EQNY is the problem of counting
the number of solutions to a system of linear equations over the field Z,. We can



in polynomial time diagonalize such a system to obtain the dimension d of the
solution space and the number of solutions is then p?.

For m > 1 we diagonalize such a system in a similar way. If there is a variable
2 which has in some equation a coefficient relatively prime to p, then the value
of the variable x is fully determined by other variables from this equation. So,
we can put this equation aside and eliminate x from the other equations. We
continue this process and obtain one of two cases. First, if we reduce the system
to the empty system with d free variables then the original system has (p™)?
solutions. Second, if all coefficients of the system with d variables are divisible
by p, then we can divide all equalities by p and obtain a system in the cyclic
group of order p™~!. If the resulting system has N solutions (which we can
efficiently compute by our induction hypothesis) then the original system has
N - p? solutions.

O



