
An Algebraic Point of View on the Crane-Beach
Conjecture

Clemens Lautemann, Pascal Tesson?1, and Denis Thérien??2

1 Département d’Informatique et de Génie Logiciel, Université Laval
pascal.tesson@ift.ulaval.ca

2 School of Computer Science, McGill University
denis@cs.mcgill.ca

Abstract. A letter e ∈ Σ is said to be neutral for a language L if it
can be inserted and deleted at will in a word without affecting member-
ship in L. The Crane-Beach Conjecture, which was recently disproved,
stated that any language containing a neutral letter and definable in
FO is in fact FO[<] definable and is thus a regular, star-free language.
More generally, we say that a logic or a computational model has the
Crane Beach property if the only languages with neutral letter that it
can define/compute are regular.
We develop an algebraic point of view on the Crane Beach properties us-
ing the program over monoid formalism which has proved of importance
in circuit complexity. Using recent communication complexity results we
establish a number of Crane Beach results for programs over specific
classes of monoids. These can be viewed as Crane Beach theorems for
classes of bounded-width branching programs. We also apply this to a
standard extension of FO using modular-counting quantifiers and show
that the boolean closure of this logic’s Σ1 fragment has the CBP.

1 Introduction

A number of results of the last ten years indicate that weak models of compu-
tation are considerably handicapped when they are used to recognize languages
with a so-called neutral letter. A letter e ∈ Σ is said to be neutral for the lan-
guage L ⊆ Σ∗ if it can be inserted and deleted at will in a word without affecting
membership in L, i.e. if for all u, v ∈ Σ∗ it holds that uv ∈ L ⇔ uev ∈ L. It is
natural to think that languages with neutral letters pose particular problems for
models of computation that rely heavily on the precise location of certain input
bits or are too weak to preprocess their input by removing the blank symbols.

To the best of our knowledge, the first result along those lines appears in work
of Barrington and Straubing on short bounded-width branching programs: any
language recognized by a width k branching program of length o(n log log n) is
in fact regular and belongs to some well defined class Lk of regular languages [4].

? Research supported in part by NSERC and FQRNT.
?? Research supported in part by NSERC and FQRNT.

In light of this result, Lautemann and Thérien conjectured that any language
with a neutral letter in the circuit class AC0 is in fact regular and star-free (i.e.
it can be defined by a regular expression built from the letters of the alpha-
bet, the empty set symbol, union and complementation but no Kleene star).
This statement, which came to be known as the Crane Beach conjecture, has
a nice logical formulation. A language is known to belong to AC0 iff it can
be defined in FO[Arb], i.e. by a first-order sentence using arbitrary numerical
predicates [12]. Restrictions on the set of numerical predicates available can be
interpreted as uniformity restrictions on circuits [3, 13, 22] (see Section 2). When
order is the only available numerical predicate (FO[<]), the class of definable
languages corresponds exactly to the star-free regular languages (cf. [22, 33]).
Thus if Le denotes the class of languages with a neutral letter, the Crane Beach
conjectured that FO[Arb]∩Le = FO[<]∩Le. The underlying intuition was the
apparent inability to take advantage of complicated numerical predicates in the
presence of a neutral letter. But the Crane Beach conjecture was refuted in [2].

On the other hand [2] show that the boolean closure of the Σ1 fragment of
FO[Arb] does have the Crane Beach property in the sense that BΣ1[Arb]∩Le =
BΣ1[<] ∩ Le. Such Crane Beach results for fragments of FO are related to so-
called collapse results in database theory [8].

We also consider in this paper the logic FO+ MOD which is a standard
extension of first-order logic on words in which modular counting quantifiers are
introduced. The expressive power of FO+ MOD[<] is limited to a specific class
of regular languages [25] whereas FO+ MOD[Arb] captures the circuit class
ACC0.

We will say that a logic or a computation model has the Crane Beach property
if all languages with a neutral letter that it can define or compute is regular. We
present an algebraic point of view on the Crane Beach property by considering
finite monoids as language recognizers. Two methods of recognition by finite
monoids have been introduced in the literature: recognition via homomorphism
and recognition via programs over monoids. The first is more classical and is a
key ingredient in a number of major results concerning regular languages and
in particular those about the expressive power of fragments of FO+ MOD[<].
Programs are more powerful and yield algebraic characterizations of AC0, ACC0

and NC1 [1, 6].

In many ways, the extra expressive power afforded by programs over mor-
phisms is similar to the extra power afforded to FO or FO+ MOD when we
go from sentences that use only < as a numerical predicate to sentences using
arbitrary numerical predicates. We show that there are classes of monoids for
which the presence of a neutral letter nullifies this advantage in the sense that
any language with a neutral letter recognized by a program over a monoid in the
class can in fact be recognized by a morphism over a monoid in the same class.

These results allow us to show that the boolean closure of the Σ1 fragment of
FO+ MOD, which we formally denote as BΣ(s,p)

1 has the Crane Beach property,
i.e. BΣ(s,p)

1 [Arb] ∩ Le = BΣ(s,p)
1 [<] ∩ Le. They also provide some additional

insight into a possible dividing line between classes of monoids or fragments of
FO+ MOD which exhibit the Crane Beach property from those who do not.

We begin by reviewing in section 2 the necessary background in circuit com-
plexity, descriptive complexity and the study of finite monoids as language rec-
ognizers. In section 3 we obtain our results on the Crane Beach property for
programs over monoids and study their application to logic in section 4. We
conclude with a discussion on how our results fit with other results concerning
languages with a neutral letter.

2 Logic, Circuits, Programs over Monoids and Automata

2.1 Circuits

An n-input boolean circuit Cn is a directed acyclic graph with a single node of
out-degree 0 called the output gate. The input gates have in-degree 0 and are
labeled either with an input variable xi, its complement xi or one of the boolean
constants 0, 1. When the inputs are not boolean but take values in some finite
alphabet Σ, input nodes are labeled by xi = a for some a ∈ Σ. Finally, any
non-input gate g is labeled by some symmetric boolean function fg taken from
some predetermined set. Our focus will be on the case where these functions are
either the And or the Or function, or the function Modq which outputs 1 if
the sum of its entries is divisible by q. The depth and size of a circuit Cn are,
respectively, the longest path from an input node to the output node and the
number of gates. A circuit naturally computes a function fCn : Σn → {0, 1} and
we define the language accepted by Cn as LCn = {x : fCn = 1}. This language is
a subset of Σn: in order to recognize subsets of Σ∗ we use families of circuits
C = {Cn}n≥0 where each Cn is an n-input circuit which is used to process inputs
of that particular length. We can then consider the depth and size of C as a
function of n and study its asymptotics.

The class ACC0 consists of languages which can be accepted by a family of
circuits having polynomial-size and bounded-depth and constructed with And
gates, Or gates and Modq gates for some q ≥ 2. We further define AC0 as the
restriction of ACC0 where only And and Or gates are allowed and CC0 as the
restriction of ACC0 where only Modq gates (for some q ≥ 2) are used. All of
these classes lie in the class NC1 of languages recognized by circuits of depth
O(log n) constructed with And and Or gates of bounded fan-in.

We have not imposed any sort of restriction on the effective constructibility
of the circuit families and the circuit classes are correspondingly dubbed ‘non-
uniform’. It makes sense to require that the nth circuit of a family C be con-
structible efficiently and such requirements are called uniformity conditions. For
any complexity class D, we say that a family of circuits C = {Cn} is D-uniform
if there is an algorithm in D which on input n computes a representation of Cn

(see e.g. [3] for a formal discussion). Dlogtime-uniformity is widely accepted as
the desired ‘correct’ notion of uniformity for subclasses of NC1: roughly speak-
ing it requires that there exists an algorithm which on input 〈t, a, b, n〉 can check

in time O(log n) whether the ath gate of Cn is of type t (i.e. which function it
computes) and feeds into the bth gate [3].

2.2 Logic over Words

We are interested in considering first-order logical sentences defining sets of finite
words over an alphabet Σ. We only briefly overview this logical apparatus and
refer the reader to [22, 15] for a more thorough and formal discussion.

Let us start with an example. Over the alphabet {a, b} we view the sentence

∃x∃y Qax ∧Qby ∧ (y = x+ x)

as defining the sets of words in which there exists a position x holding an a such
that the position 2x holds a b. The variables in the sentence stand for positions
in a finite word and the access to the content of these positions is provided by
the unary predicates Qa and Qb.

More generally, for any alphabet Σ we construct sentences using two types of
atomic formulas. First, for each a ∈ Σ, we include a content predicate Qax which
is interpreted as true of a finite word w if the position x in w holds the letter a.
The second atomic formulas are numerical predicates P (x1, . . . xk). The truth of
P (x1, . . . , xk) depends only on the values x1, . . . , xk and on the length of w but
not on the actual letters in w. For a set P of numerical predicates, we denote as
FO[P] the class of sentences which can be constructed from the atomic formulas
Qax and P (x1, . . . , xk) with P ∈ P using existential and universal quantifiers
and boolean connectives. For φ ∈ FO[P] we further denote as Lφ the language
in Σ∗ defined by φ i.e. the set of finite words such that w |= φ.

We also consider the case where first-order is extended by the introduction of
modular-counting quantifiers. The formula ∃i (mod p)x ψ(x) is true if the number
of positions x such that ψ(x) is equal to i modulo p. We denote as FO+ MOD[P]
the class of sentences constructed from the atomic formulas, boolean connectives
and both modular and existential/universal quantifiers.

The case where P contains only the order relation < has been thoroughly
investigated [22, 33, 32]. A corollary of Büchi’s theorem about monadic second-
order logic over words establishes that FO+ MOD[<] contains only regular lan-
guages. In fact these can be characterized as languages whose syntactic monoid
is solvable (see next subsection). The expressive power of various fragments of
FO+ MOD[<] can also be characterized using algebraic automata theory and
in particular FO[<] captures exactly the star-free languages which in turn cor-
respond to languages with aperiodic syntactic monoids.

On the other end of the spectrum, let Arb be the set of all numerical pred-
icates. The classes FO[Arb] and FO+ MOD[Arb] correspond exactly to non-
uniform AC0 and ACC0 respectively. Restrictions on the set of allowed numeri-
cal predicates translate in many natural cases into uniformity restrictions on the
circuits [3, 7]. Most notably, FO[+, ∗] and FO+ MOD[+, ∗] correspond to the
dlogtime-uniform versions of AC0 and ACC0.

The class Reg of regular numerical predicates has also been the focus of some
attention. A numerical predicate is said to be regular if it can be defined by an

FO+ MOD[<] formula. By definition FO+ MOD[Reg] has the same expressive
power as FO+ MOD[<] and thus contains only regular languages. It is also
known that a language L is definable in FO[Reg] iff it is regular and can be
recognized by an AC0 circuit. In other words FO[Arb]∩REG = FO[Reg], where
REG denotes the class of regular languages. For a number of other fragments of
FO+ MOD it has been shown that when defining regular languages arbitrary
numerical predicates hold no expressive advantage over regular predicates.

For technical reasons it is convenient to have a quantifier-free description of
regular numerical predicates. For integers t ≥ 0 and q ≥ 2 and any n < t + q
we define a binary relation δn,t,q by setting xδn,t,qy if either x− y = n or x ≡ y
mod q. We further define for any n < t + q a unary relation κn,t,q by setting
κn,t,q(x) ⇔ xδn,t,q0. A numerical predicate is regular iff it can be defined as a
boolean combination of δn,t,q, κn,t,q and < [17].

2.3 Programs over Monoids

We now turn to an algebraic characterization of the circuit classes presented
earlier. We refer the reader to [31] for a more thorough discussion of the links
between complexity and the algebraic theory of regular languages.

A monoid is a set M equipped with a binary associative operation ·M and a
distinguished identity element 1M . A class of finite monoids forms a variety (or
more precisely a pseudovariety) if it is closed under direct product, formation of
submonoids and morphic images.

The free monoid Σ∗ over the alphabet Σ is the set of finite words over Σ with
concatenation as the monoid operation. The empty word ε acts as the identity
element in this case. With the exception Σ∗, all monoids considered in this paper
are finite and we view these algebraic objects as language recognizers.

We say that a language L ⊆ Σ∗ is recognized via morphism or simply rec-
ognized by the finite monoid M if there exists a morphism φ : Σ∗ → M and a
set F ⊆M such that L = φ−1(M). This definition simply restates algebraically
the notion of acceptance by a finite automaton and a simple variant of Kleene’s
theorem shows that a language is regular if and only if it can be recognized by
some finite monoid. For every regular language L, the syntactic monoid M(L)
of L is the smallest monoid recognizing L and M(L) is in fact isomorphic to
the transition monoid of L’s minimal automaton. For a variety V we denote as
L(V) the class of regular languages with syntactic monoids in V. These classes
(which form language varieties) are a natural unit of classification for regular
languages and are at the heart of the algebraic theory of regular languages [18].

We give a list of varieties that bear importance in this paper but also in other
applications of algebraic automata theory [18, 31].

– The variety A consists of aperiodic or group-free monoids, i.e. monoids having
no non-trivial subgroup.

– The variety Gnil consists of nilpotent groups, i.e. groups which are direct
products of p-groups. An alternate and in our case more useful definition of
nilpotency can be given as follows. For a finite group G and any g, h ∈ G, the

commutator [g, h] of g and h is the element g−1h−1gh. For any subgroups
H1,H2 ⊆ G we denote as [H1,H2] the subgroup generated by the commu-
tators [h1, h2] with h1 ∈ H1 and h2 ∈ H2. Now define inductively the chain
of subgroups of G by G0 = G and Gi = [G,Gi]. We say that a group is
nilpotent of class k if Gk is the trivial group and denote as Gnil,k the variety
of such groups. A group is nilpotent if it is nilpotent of class k for some k.
Note that a group is nilpotent of class 1 iff it is Abelian.

– The variety Gsol of solvable groups and the variety Msol of solvable monoids,
i.e. monoids whose subgroups are solvable.

– For any variety of groups H, we denote as H the variety of monoids whose
subgroups all belong to H.

– The variety DO consists of monoids which for some n ≥ 1 satisfy the identity
(xy)n(yx)n(xy)n = (xy)n.

– The variety DA consists of monoids which satisfy (xy)ny(xy)n = (xy)n for
some n. In fact DA is the intersection of DO and A.

– The variety J of J -trivial monoids consists of aperiodic monoids which sat-
isfy (xy)n = (yx)n for some n.

For any variety V in the above list, the corresponding class of regular lan-
guages L(V) admits nice descriptions [18, 31] and the varieties DA,DO and
Gnil are often central in investigations in the complexity of regular languages
and their logical descriptions [29, 30, 32].

The program over monoid formalism introduced by Barrington and Thérien
provides a slight extension of a finite monoid’s computing power. An n-input pro-
gram φn over M of length ` is a sequence of instructions φn : (i1, f1) . . . (i`, f`)
with 1 ≤ ij ≤ n and where each fi is a function from the input alphabet Σ to
M . Given an input w ∈ Σn a program produces a string of ` monoid elements
φn(w) = f1(wi1) . . . f`(wi`

) which are then multiplied in M . We abuse notation
and also denote as φn(w) the product f1(wi1) ·M · · · ·M f`(wi`

). By specifying a
set of accepting elements F ⊆M we can use such a program to recognize a sub-
set of Σn and subsets of Σ∗ can be recognized through families of programs. As
is the case for circuits, one can consider uniformity restrictions on these families.

A result of Barrington [1] shows that a language L can be recognized by a
polynomial-length family of programs over a finite monoid iff L belongs to NC1.
We denote as P(V) the class of languages which can be recognized by a program
of polynomial length over a monoid in V. Further refinements of Barrington’s
theorem appear in [6]: L belongs to AC0 iff L lies in P(A), L belongs to CC0

iff it lies in P(Gsol) and L belongs to ACC0 iff it lies in P(Msol). These results
are robust with respect to many standard uniformity restrictions [3].

A variety V of finite monoids forms a program-variety if every regular lan-
guage with a neutral letter in P(V) is in L(V). Alternatively, we can introduce
the notion as follows: say that the multiplication of a monoid M can be program-
simulated by a monoid N if for every element m ∈ M the language Lm ⊆ M∗

defined as Lm = {m1m2 . . .mn : m1 ·m2 · · · · ·mn = m} can be recognized by
a polynomial-length program over N . Now V forms a program-variety if any M
which can be simulated by some N ∈ V is in fact in V itself [16, 23].

The lower bounds for AC0 circuits computing the Modp function [21] can be
rephrased as showing that the aperiodic monoids form a program-variety. Many
of the important questions in circuit complexity can similarly be rephrased in
algebraic terms: for instance ACC0 is strictly contained in NC1 iff the solvable
monoids form a program-variety.

Programs over finite monoids are closely related to bounded-width branch-
ing programs (BWBP). An n-input BWBP of width k and length ` over input
alphabet Σ is a leveled directed graph with the following structure. Each level
1 ≤ i < ` is associated with an input variable xji

and contains k nodes that each
have |Σ| outgoing edges (to level i+1) labeled by the possible values of the input
variable xji

. Moreover, the first level contains a distinguished start node while
the last level contains an accepting and a rejecting node. Any word w ∈ Σn

naturally traces out a unique path in this graph and the language accepted by
the BWBP is the set of w leading to the accepting node.

Note that in a BWBP a letter a ∈ Σ induces a function fi,a from the k nodes
of level i to the k nodes of level (i+ 1). It is not hard to see that the difference
between BWBP is essentially cosmetic since a program over M can immediately
be rewritten as a BWBP of width |M | while, conversely, a BWBP of width k
can be rewritten as a program over the finite monoid generated by the functions
fi,a. The algebraic point of view provides a finer analysis of the BWBP model
by parameterizing its power in terms of the algebraic structure of the fi,a.

3 The Crane Beach Property

We say that a class L of languages has the Crane Beach property (or CBP) if
every language with a neutral letter in L is regular. As we mentioned in the
introduction, it was conjectured but later disproved that FO[Arb] has the CBP
and one can infer from [4] that BWBP of length o(n log log n) have the CBP.

For a class of languages having the Crane Beach property, it is also interesting
to understand exactly what regular languages with a neutral letter belong to the
class. In the case of a logical fragment of FO+ MOD using numerical predicates
in some class P we are often most interested in cases where the presence of
the neutral letter reduces the expressive power to that obtained with the same
fragment but using < as the sole numerical predicate. For instance, BΣ1[Arb]
has the CBP [2] and the regular languages with a neutral letter definable in this
fragment are exactly those definable in BΣ1[<]. We will usually refer to such
theorems as strong Crane Beach results.

3.1 A Communication Complexity Crane Beach Theorem

The “input on the forehead” model of communication complexity, first introduced
in [9] has found a wide variety of applications in numerous areas of complexity
theory [14]. It involves k parties wishing to compute a function f of k variables
x1, . . . , xk: the ith player receives access to all the inputs except xi so that one can
conveniently picture this player as having xi written on his forehead. The players

want to minimize the number of bits that need to be exchanged when computing
f on the worst-case input. When the function to be computed is not explicitly
given as a k variable function, we further assume that input bits are partitioned
in a way that is known to the different parties but chosen adversarially. The k-
party communication complexity of a language L is the function Dk(L) : N → N
giving for each n the minimum number of bits that k parties need to exchange
to compute membership in L of the worst-case input w of length n under the
worst-case partition of the letters in w. The following theorem which combines
two results of [10] establishes a Crane Beach property for the k-party model.

Theorem 1.
a) If L is a language with a neutral letter such that Dk(L) = O(1) for some

fixed k ≥ 2 then L is regular.
b) If L is a regular language with a neutral letter then M(L) lies in DO∩Gnil

iff there exists some k such that Dk(L) = O(1).

We define the k-party communication complexity of a finite monoid M (de-
noted Dk(M)) as the complexity for k parties to evaluate the product in M of n
elements m1, . . . ,mn distributed on their foreheads (note that up to a constant
factor, the worst partition in this case gives to player i access to all elements
except those with an index congruent to i modulo k). Underlying the previous
theorem is the result of [26] that a monoid lies in DO ∩Gnil iff there exists a k
s.t. Dk(M) = O(1).

Suppose that k players want to test if a word w of length n belongs to a lan-
guage L which is recognized by a program φ of length `(n) over a finite monoid
M . The output of an instruction querying bit xi can be computed privately by
any of the k − 1 players having access to xi and the output of the program
φ(w) can then be evaluated using a protocol which evaluates the product of
the monoid elements resulting from individual instructions. Hence, the k-party
communication complexity of L on inputs of length n is at most the communi-
cation complexity of M on strings of length `(n). These observations lead to the
following lemma [19, 26]:

Lemma 2. Let k ≥ 2 be some integer and let f : N → N be such that f =
O(logc n) for some c ≥ 0. The class V of monoids M such that Dk(M) = O(f)
is a program-variety.

We give a proof in the appendix for completeness. This lemma provides a
way to use recent results on the communication complexity of finite monoids [19,
29, 10, 26] to identify program-varieties.

Corollary 3. The following are program-varieties: DA,Gnil,DO ∩ Gnil and
Gnil,k for each k ≥ 1.

Proof (Sketch). It is not hard to see that the intersection of two program-varieties
also forms a program-variety. We know that aperiodic monoids form a program-
variety. Moreover, by Lemma 2, the class of monoids with 2-party communication

complexity O(log n) also forms a program-variety. By results of [29], an aperiodic
monoid has 2-party communication complexity O(log n) if it belongs to DA and
so DA is a program-variety.

The statement for DO ∩Gnil follows directly from lemma 2 and theorem 1.
The statement for Gnil is a consequence of the work of [5]. Once we have

that Gnil is a program-variety however, we can again use lemma 2 to obtain that
each Gnil,k is a program-variety because [19] shows that a group has bounded
k + 1-party communication complexity iff it is nilpotent of class k. ut

3.2 The Crane Beach Property for Programs over Monoids

Definition 4. A variety of monoids V is said to have the weak Crane-Beach
property if P(V) ∩ Le ⊆ REG, the class of regular languages. Furthermore, V
has the strong Crane-Beach property (CBP) if P(V) ∩ Le ⊆ L(V), that is if
polynomial length programs over V are no more powerful than morphisms over
V in the presence of a neutral letter.

Note that if V has the weak CBP then any subvariety of V also has this
property. However, the same statement does not hold for the strong CBP.

Lemma 5. If V has the weak CBP and W ⊆ V is a program-variety then W
has the strong CBP.

Proof. Because V has the weak CBP and W ⊆ V we have that if L is a language
with a neutral letter accepted by a program φ over M ∈ W ⊆ V, then L is
regular. By definition of program-varieties we can now guarantee that L ∈ L(W)
and so W has the strong CBP. ut

We can use the communication complexity results cited earlier to obtain:

Theorem 6. The variety DO ∩Gnil has the strong CBP.

Proof. The result for DO∩Gnil stems from Theorem 1. Indeed, we need to show
that any language L with a neutral letter which is recognized by a program φ
over some M ∈ DO∩Gnil is regular and has its syntactic monoid in DO∩Gnil.

Since L can be recognized by a program over a monoid that has bounded
k-party communication complexity for some k, it follows from our comments
preceding Lemma 2 that Dk(L) = O(1). Since L has a neutral letter part a)
of theorem 1 guarantees that L is regular. Now, using part b), L is a regular
language with a neutral letter and has bounded k-party complexity so we must
have M(L) ∈ DO ∩Gnil. ut

In fact, this theorem is not the first indication that programs over DO ∩
Gnil are weak. It was shown in [26], building on work of [27] that this variety
has the polynomial-length property in the sense that any program φ over M ∈
DO∩Gnil is equivalent to a program ψ over M that has polynomial length. In
contrast, a monoid M is said to be universal if any language can be recognized
by some program over M of possibly exponential length. A simple counting

argument shows that any monoid having the polynomial length property cannot
be universal and there are indications that the two notions are in fact dual [27].

A direct application of Corollary 3 and Lemma 5, the following subvarieties
of DO ∩Gnil also have the strong CBP.

Corollary 7. The following varieties have the strong CBP: Gnil,J,DA and
Gnil,k for any k ≥ 1.

It is possible to exhibit varieties that do not have even the weak CBP. In
particular, a main result of [2] can be rephrased algebraically as stating that
the variety of aperiodic monoids does not have the weak CBP. Furthermore,
Barrington showed that polynomial length programs over any non-solvable group
are as powerful as NC1 which in particular contains languages with a neutral
letter which are not regular. We thus obtain:

Theorem 8. If V is a variety containing a non-solvable group or containing
the variety A of aperiodic finite monoids, then V does not have the weak CBP.

We conjecture that in fact any variety containing a universal monoid fails
to have the CBP. In particular, we believe that there are non-regular languages
with a neutral letter definable in Σ2[Arb].

4 An Application to Logic

The study of Crane Beach properties was foremost motivated by logical consid-
erations and we use the results of the preceding section to describe fragments of
FO+ MOD which have the CBP.

For any s ≥ 0 and p ≥ 2 we denote as Σ(s,p)
1 the fragment of FO+ MOD

which consists of sentences of the form ∃t,i (mod p)(x1, . . . , xk) φ(x1, . . . , xk)
where φ is quantifier-free and where the quantifier ∃t,i (mod p), which ranges
over k-tuples of variables, is true if the number of k-tuples satisfying φ is either
equal to t < s or congruent to i modulo p. Note that if s = 0, this fragment
does not have the ability to simulate an existential quantifier. For a sentence
φ ∈ BΣ1 (s, p), we define the maximum arity of φ to be the maximum arity of
any of the quantifiers in φ.

The expressive power of the Σ(s,p)
1 fragment was studied in depth in [24].

In particular, it is recalled that a language L is definable in Σ(s,p)
1 [<] iff it is

regular and the syntactic monoid of L lies in J ∨Gnil, the variety generated by
J and Gnil. This is not surprising given the existing combinatorial descriptions
of languages in L(J ∨Gnil) which we describe next.

We say that a word u = u1 . . . uk is a subword of w if w can be factorized as
w = Σ∗u1Σ

∗ . . . Σ∗ukΣ
∗ and we denote as

(
w
u

)
the number of such factorizations.

A language L is piecewise-testable if there exists a k such that membership of
w ∈ L depends only on the set of subwords of length at most k that occur in
w. It is not hard to see that L is piecewise testable language iff it is definable in

BΣ1[<]. A theorem of Simon moreover shows that L is piecewise testable iff its
syntactic monoid lies in J.

Similarly, we say that a language L counts subwords of length k modulo p if
membership of a word w in L only depends on the values

(
w
u1

)
, . . . ,

(
w
un

)
modulo

p for some words u1, . . . , un of length at most k. Again, it is not hard to see that
L is of that form iff it can be defined in Σ(0,p)

1 [<]. It can also be shown that this
class corresponds to languages with syntactic monoids in Gnil,k.

We say that two words v and w have the same number of subwords of length
k up to threshold s and modulo p and write v ∼k,s,p w if for any u of length at
most k we have either

(
v
u

)
≤ s and

(
v
u

)
=

(
w
u

)
or

(
v
u

)
> t and

(
v
u

)
=

(
w
u

)
modulo

p. It can be shown that this relation is a congruence on Σ∗ and that a regular
language L has a syntactic monoid in J ∨Gnil iff L is a union of ∼k,s,p-classes
for some k, s, p (see e.g. [24]). Straubing also establishes the following [24]:

Lemma 9 ([24]). If L is a regular language definable in BΣ(s,p)
1 [Arb] then L

is in fact definable in BΣ(s,p)
1 [Reg].

Note that the above statement does not assume that the language has a
neutral letter. A stronger result can be proved under that hypothesis.

Lemma 10. If L is a regular language with a neutral letter and is definable in
BΣ(s,p)

1 [Arb] then it is in fact definable in BΣ(s,p)
1 [<].

Proof (Sketch). By lemma 9 we already know that L is definable in BΣ(s,p)
1 [Reg]

and we will furthermore show that it lies in BΣ(s,p)
1 [<] by proving that its

syntactic monoid M(L) belongs to J∨Gnil. Let φ be the BΣ(s,p)
1 [Reg] defining

L and let k be the maximum arity of any quantifier in φ. Further let r be
the maximum of s, p and any t or q occurring in any δn,t,q and any κn,t,q (see
section 2.2) needed to express the regular numerical predicates occurring in φ.

Let e ∈ Σ be the neutral letter for L and let v and w be two words in
(Σ − {e})∗ such that v ∼k,s,p w. In particular, the length of v and w are equal
up to treshold s and modulo p. We claim that v is in L iff w is in L. This suffices
to establish the result because L is then a union of ∼ classes and thus M(L) lies
in J ∨Gnil.

To establish the claim, we construct words V = er!−1v1e
r!−1 . . . er!−1v|v|e

r!−1

and W = er!−1w1e
r!−1 . . . er!−1w|w|e

r!−1. Since e is neutral v (resp. w) is in L
iff V (resp. W) is in L. Let ψ(x1, . . . , xk) be any quantifier-free formula con-
structed from the content predicates, the order predicate < and δn,t,q or κn,t,q

predicates with t, q ≤ r. We claim that the number of tuples (x1, . . . , xk) such
that ψ(x1, . . . , xk) is true on V is equal up to threshold s and modulo q to the
number of tuples such that ψ is true on W . This is sufficient to show that V and
W satisfy the same sentences in BΣ(s,p)

1 sentences and are thus either both in
L or both not in L.

We can rewrite ψ(x1, . . . , xk) as a boolean combination of formulas∧
i

(Qai
xi ∧ κni,ti,qi

xi ∧
∧
i 6=j

((xi ∗ xj) ∧ xiδnij ,tij ,qij
xj)

with ai ∈ Σ; ti, tij , qi, qij ≤ r and ∗ is one of {<,>,=}.
Suppose for simplicity that for i < j the above formula requires xi < xj .

To evaluate the number of tuples satisfying ψ over V , we first choose values for
the non-neutral positions xi, i.e. the xi such that i ∈ I, such that position xi

in V holds the desired non-neutral letter ai. We denote as u the word of length
|I| ≤ k formed by these letters. Note that each non-neutral xi is congruent to
0 modulo r! because non-neutral letters only occur at such positions. Hence, we
can discard any δn,t,q predicates involving two such xi and any κn,t,q involving
one such xi.

Any tuple of non-neutral positions D in V corresponds naturally to a tuple of
positions d = (d1, . . . , d|I|) in the original word v which specifies a subword of v of
length at most |I| ≤ k. Note that if |I| = k then the number of tuples satisfying
ψ(x1, . . . , xk) is simply the number of occurrences of the subword u = a1 . . . ak

in v which is equal up to threshold s and modulo p to
(
w
u

)
.

We define the mod p signature of d as the vector (d1, d2, . . . , d|I|) mod p.
The sum of the number of d of any possible signature is again

(
v
u

)
.

The possibilities for choosing the neutral positions xj , i.e. those such that
xj ∈ I, are constrained in a number of ways. First, these positions must be
chosen such that they hold the neutral letter e. Secondly, each xj must satisfy
some predicates κnj ,tj ,qij and δnij ,tij ,qij . But it is easy to see that for any fixed
set D of non-neutral positions, the number of choices (threshold s and modulo
p) for the neutral positions depends only on the signature of d because we are
only concerned with the number modulo p of blocks of neutral letters occur-
ring between two non-neutral positions and this information is provided by the
signature.

Hence, the total number of tuples (treshold s, modulo p) (x1, . . . , xk) satisfy-
ing ψ(x1, . . . , xk) over V is some function of the number of occurrences threshold
t modulo p of u in v. Since the same holds for W and v ∼k,s,p w we have that
V and W and thus v and w either both lie in L or lie both outside L. ut

In fact, this lemma resolves an open problem of [24].

Lemma 11. If L is definable by a boolean combination of sentences of the form
φ : ∃(t,i (mod p))(x1, . . . , xk). ψ(x1, . . . , xk) in which the quantifier has arity at
most k then the k + 1-party communication complexity of L is O(1).

Proof. Suppose k+1 parties want to verify if an input w belongs to L, i.e. check
that w |= φ. They simply need to count the number of k-tuples (x1, . . . , xk)
that satisfy ψ(x1, . . . , xk) over w up to threshold t and modulo p. For any fixed
tuple, the truth value of ψ(x1, . . . , xk) depends only on the letters of w in these
k positions. In the k + 1-party game, each k-tuple of input positions is fully
accessible to at least one player so we can construct a simple protocol of cost
(k + 1) · (dlog pe + dlog te) in which each player sends up to threshold t and
modulo p the number of tuples that he sees satisfying ψ (although they must
agree on some scheme that avoids counting twice a tuple seen by more than one
of them). ut

Combining this result with theorem 1 and lemma 10 we obtain:

Theorem 12. The boolean closure of Σ(s,p)
1 has the CBP.

Proof. Let L be a language with a neutral letter definable in BΣ(s,p)
1 [Arb]. By

lemma 11, L has bounded k-party communication complexity for some k and
thus, by theorem 1, L is regular. Finally, by lemma 10 any regular language with
a neutral letter definable in BΣ(s,p)

1 [Arb] is in fact definable in BΣ(s,p)
1 [<]. ut

As a corollary, we get an alternative proof of the following theorem of [2].

Corollary 13. The boolean closure of Σ1 has the CBP.

Proof. Let L be a language with a neutral letter definable in BΣ1[Arb]. By The-
orem 12, L is regular and its syntactic monoid M(L) lies in J∨Gnil. Moreover,
the only regular languages with a neutral letter definable in FO[Arb] are those
whose syntactic monoid is aperiodic and so M(L) ∈ A. A simple semigroup-
theory argument shows that the intersection of J ∨Gnil and A is J. ut

Readers familiar with the Ehrenfeucht-Fraïssé approach of [2] might find it
surprising that our alternative proof seems to avoid the use of Ramsey-theoretic
arguments. In fact, the communication complexity result of [10] which is so
crucial in our method relies on the Ramsey-like theorem of Hales-Jewett.

Of course our main theorem also specializes to the other extreme case of
Σ(s,p) sentences in which existential and universal quantifiers do not appear:
BΣ(0,p)

1 . Moreover, the maximum arity of the quantifiers can be preserved.

Corollary 14. For each k ≥ 1, B(Σ(0,p)
1) of maximum arity k has the CBP.

Proof. One can show that programs over Gnil,k have exactly the same expres-
sive power as BΣ(0,p)[Arb] of maximum arity k while morphisms over Gnil,k

have exactly the same expressive power as BΣ(0,p)[<] of maximum arity k (see
lemma 15 in the appendix). The statement of the corollary then follows simply
by the fact that each Gnil,k has the strong CBP. ut

5 Conclusion

The algebraic perspective on the Crane Beach Conjecture allows for a more de-
tailed study of the fine line separating computational models or logical fragments
which possess a Crane Beach-like property. Moreover it enables a systematic use
of the powerful communication complexity results of [10]. Theorem 12 about the
Crane Beach property of Σ(s,p)

1 can be obtained by an ad hoc argument using
Ramsey theory and Ehrenfeucht-Fraïssé games reminiscent of the techniques for
the Σ1 case [2]. The proof given here is considerably simpler if less transparent.

Our results about varieties of monoids exhibiting the Crane Beach property
also provide a nice complement to previously existing work comparing the power

of programs and morphisms over finite monoids in the presence of a neutral
letter. Programs over monoids are generally much more epressive than morphism.
This extra power of programs stems from (or is limited by) three sources: the
algebraic structure of their underlying monoid, their length and their degree of
non-uniformity. However, in the presence of a neutral letter the advantages of
programs over monoids can disappear:

– results of [4] show that length Ω(n log log n) is necessary to recognize non-
regular languages with a neutral letter, regardless of the underlying monoid
or the degree of non-uniformity;

– results of [2, 20] show that polynomial length programs which are too uniform
cannot break the regular barrier, as long as the monoid is solvable.

– Our results complete the picture: programs over monoids whose structure
is unsophisticated cannot recognize non-regular languages with a neutral
letter, regardless of their length or their degree of non-uniformity.

We have used the algebraic point of view on the CBP to extend the result
of [2] on the CBP for Σ1 to Σ(s,p)

1 . Some of the more general results of Section 3,
however, do not seem to have such simple logical applications. In particular, we
have shown that a number of important subvarieties of DO ∩ Gnil have the
CBP but these do not capture any significant logical fragment of FO+ MOD.
The case of the variety DA is particularly intriguing, given its importance in
applications of semigroup theory to complexity [28]. Programs over DA have
the same expressive power as decision trees of bounded-rank [11] and so this
model also has the CBP. The languages recognized via morphism by monoids in
DA are exactly those definable by both a Σ2[<] and a Π2[<] sentence and also
those definable in the restriction of FO[<] to sentences using only two variables
(FO2[<]) but programs over DA are not known to correspond to the intersection
of Σ2[Arb] and Π2[Arb] or to FO2[Arb]. The latter two classes are important
candidates for logical fragments of FO that may possess the CBP.

References

1. D. A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

2. D. A. M. Barrington, N. Immerman, C. Lautemann, N. Schweikardt, and
D. Thérien. First-order expressibility of languages with neutral letters or: The
Crane Beach conjecture. J. Comput. Syst. Sci., 70(2):101–127, 2005.

3. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
J. Comput. Syst. Sci., 41(3):274–306, 1990.

4. D. A. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-
width branching programs. J. Comput. Syst. Sci., 50(3):374–381, 1995.

5. D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform automata over
groups. Information and Computation, 89(2):109–132, 1990.

6. D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of
NC1. Journal of the ACM, 35(4):941–952, 1988.

7. C. Behle and K.-J. Lange. FO-uniformity. In Proc. 21st Conf. on Computational
Complexity (CCC’06), 2006.

8. M. Benedikt and L. Libkin. Expressive power: The finite case. In Constraint
Databases, pages 55–87, 2000.

9. A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proc. 15th
ACM Symp. on Theory of Computing (STOC’83), pages 94–99, 1983.

10. A. Chattopadhyay, A. Krebs, M. Koucký, M. Szegedy, P. Tesson, and D. Thérien.
Functions with bounded multiparty communication complexity. Submitted, 2006.

11. R. Gavaldà and D. Thérien. Algebraic characterizations of small classes of boolean
functions. In Proc. of Symp. on Theoretical Aspects of Comp. Sci. (STACS’03),
2003.

12. Y. Gurevich and H. Lewis. A logic for constant-depth circuits. Information and
Control, 61(1):65–74, 1984.

13. N. Immerman. Languages that capture complexity classes. SIAM J. Comput.,
16(4):760–778, 1987.

14. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

15. L. Libkin. Elements of Finite Model Theory. Springer Verlag, 2004.
16. P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata theoretic view-

point. Computational Complexity, 1:330–359, 1991.
17. P. Péladeau. Formulas, regular languages and boolean circuits. Theor. Comput.

Sci., 101(1):133–141, 1992.
18. J.-E. Pin. Syntactic semigroups. In Handbook of language theory, volume 1, chap-

ter 10, pages 679–746. Springer Verlag, 1997.
19. J.-F. Raymond, P. Tesson, and D. Thérien. An algebraic approach to communi-

cation complexity. Lecture Notes in Computer Science (ICALP’98), 1443:29–40,
1998.

20. A. Roy and H. Straubing. Definability of languages by generalized first-order formu-
las over (N, +). In 23rd Symp. on Theoretical Aspects of Comp. Sci. (STACS’06),
pages 489–499, 2006.

21. R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proc. 19th ACM STOC, pages 77–82, 1986.

22. H. Straubing. Finite Automata, Formal Logic and Circuit Complexity. Boston:
Birkhauser, 1994.

23. H. Straubing. When can one monoid simulate another? In Algorithmic Problems
in Groups and Semigroups, pages 267–288. Birkhäuser, 2000.

24. H. Straubing. Languages defined by modular quantifiers. Information and Com-
putation, 166:112–132, 2001.

25. H. Straubing, D. Thérien, and W. Thomas. Regular languages defined by general-
ized quantifiers. Information and Computation, 118:289–301, 1995.

26. P. Tesson. Computational Complexity Questions Related to Finite Monoids and
Semigroups. PhD thesis, McGill University, 2003.

27. P. Tesson and D. Thérien. The computing power of programs over finite monoids.
Journal of Automata, Languages and Combinatorics, 7(2):247–258, 2002.

28. P. Tesson and D. Thérien. Diamonds are forever: the variety DA. In Semigroups,
Algorithms, Automata and Languages. WSP, 2002.

29. P. Tesson and D. Thérien. Complete classifications for the communication com-
plexity of regular languages. Theory of Computing Systems, 38(2):135–159, 2005.

30. P. Tesson and D. Thérien. Restricted two-variable sentences, circuits and com-
munication complexity. In Proc. 32nd Int. Conf. on Automata, Languages and
Programming (ICALP’05), pages 526–538, 2005.

31. P. Tesson and D. Thérien. Bridges between algebraic automata theory and com-
plexity theory. The Computational Complexity Column, Bull. EATCS, 88:37–64,
2006.

32. P. Tesson and D. Thérien. Logic meets algebra: the case of regular languages. 2006.
Submitted.

33. W. Thomas. Languages, Automata and Logic, volume III, chapter 7, pages 389–455.
Springer, 1997.

Appendix

Lemma 2. Let k ≥ 2 be some integer and let f : N → N be such that f =
O(logc n) for some c ≥ 0. The class V of monoids M such that Dk(M) = O(f)
is a program-variety.

Proof. First, note that V forms a variety because the communication complexity
of the direct product M × N is at most the sum of the complexities of M and
N and so Dk(M) = O(f) and Dk(N) = O(f) implies Dk(M × N) = O(f).
Similarly, the communication complexity of a submonoid N of M or a morphic
image N of M is at most the comunication complexity of M .

We further need to show that any monoid M whose multiplication can be
simulated by a program of length O(nd) over a monoid N ∈ V is in fact in
V and so it suffices to show that the communication complexity of M is O(f).
As we noted previously, the communication complexity of evaluating a program
of length ` over N is at most the complexity of evaluating the product of `
elements of N and thus Dk(M) = O(f(O(nd)) which is simply O(f) because f
is polylogarithmic.

Lemma 15. A language L is definable in BΣ(0,p)
1 [Arb] of maximum arity k iff

L can be recognized by a program over a nilpotent group of class k.
A language L is definable in BΣ(0,p)

1 [<] of maximum arity k iff L can be
recognized by a morphism over a nilpotent group of class k.

Proof (Sketch). We first want to argue that a language L is definable in B(Σ(0,p)
1)

with maximum arity k iff it can be recognized by a program over a nilpotent
group of class k. Let us first show that the language accepted by a program φ
over a nilpotent group G of class k can be defined in BΣ(0,p)[Arb] of maximum
arity k.

By the combinatorial description of languages recognized by nilpotent groups
of class k, the output of φ over G on an input w can be determined by counting
modulo some p the number of occurrences of each subword of length at most k
in the string of G-elements φ(w). Note that each element of this string is in fact
the output of some instruction which depends on the value of exactly one input
position. Thus, this counting can be realized with a Σ(0,p)-sentence of arity at
most k.

For the converse, we use the following result from [27].

Lemma 16. Let G be a finite group and inductively define G1 = G and Gi+1 =
[G,Gi]. Any function from Σc → Gc can be computed by a program over G.

Moreover, we will need the simple fact that for any p ≥ 2 there exists a
nilpotent group G of class k such that Gk is non-trivial and contains an element
g of order p.

We want to show that any language definable in BΣ(0,p)
1 [Arb] can also be

recognized by a program over this G. It is sufficient to show that there is a

program which on input w counts modulo p the number of tuples (x1, . . . , xk)
that satisfy a quantifier free formula ψ(x1, . . . , xk) over w. For each such k-tuple,
the truth value of ψ(x1, . . . , xk) is a function of the indices x1, . . . , xk and the
content of these positions in w. The latter defines a function from Σk into {0, 1}
and so by the above lemma, there exists a program which outputs the element g
of order p when ψ is true and the identity element 1G otherwise. Concatenating
these programs for the nk possible values of the tuple results in a program whose
output is the identity element iff the number of tuples satisfying ψ(x1, . . . , xk)
is divisible by p.

