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Abstract. Question type (or answer type) classification is the task of 
determining the correct type of the answer expected to a given query. This is 
often done by defining or discovering syntactic patterns that represent the 
structure of typical queries of each type, and classify a given query according to 
which pattern they satisfy. In this paper, we combine the idea of using informer 
spans as patterns with our own part-of-speech hierarchy in order to propose 
both a new approach to pattern-based question type classification and a new 
way of discovering the informers to be used as patterns. We show 
experimentally that using our part-of-speech hierarchy greatly improves type 
classification results, and allows our system to learn valid new informers.  
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1   Introduction 

Question type (or answer type) classification is the Natural Language Processing 
(NLP) task of determining the correct type of the answer expected to a given query, 
such as whether the answer should be a person, a place, a date, and so on. This 
classification task is of crucial importance in question-answering (QA) systems. 
Indeed, correctly pinpointing the expected answer type of a question allows a QA 
system to use type-specific answer retrieval algorithms and to reject possible answers 
of the wrong type [1]. In fact, it has been shown that questions that have been 
classified into the correct type are answered correctly twice as often as misclassified 
questions [1]. Over the years, many varied approaches to question type classification 
have been proposed. A large proportion of systems, including many of those entered 
in the TREC QA competition, simply try to accomplish this task in one of two ways, 
either by detecting keywords in the query [1] or by relying on the wh-term (who, 
what, where, when, why, which, whom, whose, how) at the beginning of the query for 
disambiguation. However, both approaches are too simplistic and can be easily 
misled. Keywords alone are not enough to differentiate between question types: for 
example, the query “who was the French emperor defeated at Waterloo” and “when 
was a French emperor defeated at Waterloo” will have the same keywords after 
stopword removal, but belong to different types. And wh-terms can take different 
meanings based on the context. For example, “who was Napoleon” and “who 
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defeated Napoleon” both begin with who but only the second is asking for a person 
while the first is asking for a historical definition, and “what French emperor was 
defeated at Waterloo” is a who query phrased as a what query. In fact, research has 
shown that rephrasing a question to use a different wh-term is the single most 
common way that humans use to paraphrase queries [2]. In light of this, syntactic-
pattern-based methods have become popular in question type classification systems 
[3]. These methods use or discover syntactic patterns that represent the structure of 
typical queries of each type, and classify a given query according to which pattern 
they satisfy. For example, a system could discover, by comparing example queries, 
that those featuring the pattern “...in which year...” should be classified in the time 
type [3].  

In this paper, we combine an idea from Krishnan et al. of using informer spans as 
question type classification patterns [4] with our own part-of-speech hierarchy [5] in 
order to propose both a new approach to pattern-based question type classification 
and a new way of discovering the informers to be used as patterns. We show 
experimentally that using our part-of-speech hierarchy together with a few simple 
informer spans greatly improves type classification results, and moreover that the 
hierarchy can be used to learn new valid informers from example queries.  

The rest of this paper is organized as follows. In Section 2, we review a 
representative sample of work done on the task of question type classification in order 
to clearly illustrate the nature of our contribution. The theoretical frameworks of our 
classification system, of our learning algorithm and of our part-of-speech hierarchy 
are all presented in Section 3. Our ideas have all been implemented and tested, and 
experimental results are presented and discussed in Section 4. Finally, we offer some 
concluding remarks in Section 5. 

2   Background 

Question type classification is an integral task in most QA systems developed today. 
Consequently, there are considerable variations in the nature of the classification 
systems, in the set of question types recognized, and in the nature and size of the 
knowledge base underlying the classification systems. 

A purely Bayesian solution to the type classification problem was proposed in [6]. 
The authors used a straightforward Naïve Bayes classifier, and computed the 
probability of a query belonging to a question type given the prior probability of that 
question type multiplied by the conditional probability of the query’s features (i.e. the 
words left after stemming and stopword removal) given that type. They used six 
question types for their classification, namely time, location, human, number, object, 
and description. Their system achieves an average precision of 59% over these six 
types; however the authors do not discuss how large the table of conditional 
probabilities has to be to account for a reasonable number of features in six 
categories. 

A team from the University of Concordia developed a simple keyword-based 
question type classification system as part of their QA system for the TREC-2007 
competition [1]. Their system classifies queries into seven types, namely date, 
location, person, organization, number, website, and other, by recognizing keywords 
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in the query. The authors do not give the size of the lexicon they manually built over 
the years for that purpose, but in [1] they report adding 50 new words into it. Their 
research does show that a keyword-matching approach can work quite well given a 
large and detailed enough lexicon: they report that their system achieves 93% 
accuracy. However, a smaller and coarser lexicon is not necessarily useful, and can 
even confuse a system, as indicated by Tomuro in his study on the impact of semantic 
information in question type classification [7]. Tomuro built two question type 
classifiers, one using a decision tree and one using a k-nearest-neighbour algorithm, 
and trained two instances of each classifier. The first instance used only a closed 
lexicon of about 100 words frequently found in queries. This lexicon is thus 
composed mostly of domain-independent, non-content, closed-class words and 
includes wh-terms. The second instance of both classifiers uses the same lexicon and 
also adds in the categorization (i.e. WordNet hypernym) of query words that are not 
part of the lexicon. The classifiers were trained to recognize 12 question types, 
namely time, location, entity, definition, reference, reason, procedure, manner, 
degree, atrans, interval, and yes-no questions. His results show that taking the extra 
keywords into account and adding the categorization information does not affect the 
results in a statistically significant way. Moreover, he found that the extra knowledge 
added can mislead the classifier when a query’s syntax affects its semantic meaning. 
For example, the query “what does Hanukah mean?” is clearly a definition-type 
question, but the keyword “Hanukah” is a hyponym of “time period” in WordNet, and 
thus misleads his system into classifying it as a time-type question [7]. Another 
WordNet-based question type classifier proposed in [8] faced the same difficulties, 
and overcame them by creating a two-step classification scheme. It begins by defining 
a set of simple question type syntactic patterns, such as “what {is|are} <phrase>?” for 
definition-type queries. Their system attempts to match queries to these patterns, and 
then goes to WordNet hypernym searches for queries that are not recognized by them. 
The results in [7] and [8] illustrate how syntactic patterns can be more powerful than 
simple keyword recognition for question type classification, as they offer a more 
complete picture of the query. 

Zhang and Nunamaker [9] built a pattern-based question type classifier for their 
video indexing and retrieval system. They defined nine question types in their system, 
namely time, location, person, organization, number, object, reason, definition, and 
undefined. Their system classifies each user’s query according to a set of simple 
patterns that combine both wh-term and the categories of keywords found in the 
query. To illustrate, a sample pattern given in [9] is “if (question starts with ‘what’ + 
person) then (answer type is person)”. Unfortunately, the authors do not give a 
complete list of patterns nor the total number of patterns in their system. The authors 
of [4] take the idea of type classification patterns one step in a different direction and 
propose that the patterns could consist simply of a short string of contiguous words 
found in the query, which may or may not include wh-terms, and which they called 
the informer span (or simply informer) of the query. Their work shows clearly that a 
support vector machine classifier using hand-made informers yields better results than 
question bigrams, and that informers discovered automatically work almost as well as 
hand-made ones. 

We can point out a common thread in these methods, namely their reliance on 
large knowledge bases. The keyword-based system of [1] requires a massive lexicon 
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of keywords likely to be observed in queries of each type, and the Bayesian system of 
[6] further needs to define the conditional probability of each type given each 
keyword, while the categorization systems of [7] and [8] use the WordNet lexicon to 
recognize classes of keywords. However, keyword-based question type classification 
is inherently limited and misleading, since the syntactic structure of the query can 
change the semantic importance and meaning of its keywords [2], [7]. The systems 
proposed in [9] and [4] compensate for this problem by developing syntactic patterns 
instead of keyword lists, but they still suffer from the need to develop massive lists of 
patterns from which to find the one that exactly matches the query. In fact, Krishman 
et al. point out in their review that such systems are built on hundreds of unpublished 
patterns [4]. 

3   Methodology 

In this paper, we develop a new system for question type classification based on a 
part-of-speech hierarchy that we present below. As will become evident, using the 
part-of-speech hierarchy makes it possible to get good classification results using only 
a handful of simple informers. This stands in stark contrast to the other systems 
reviewed in Section 2, which need large sets of patterns, lexicons, or probability 
tables to work well. 

The question types we use are “person” (who), “date” (when), “physical object” 
(what), “location” (where), “numeric value” (how many/how much), and 
“description” (how/why). We manually define a set of 14 simple informers to 
represent these question types; a simple enough task given that they each have clear 
wh-terms. We design these informers to be two words long each so that none would 
have a length advantage over the others. There are two informers per question type, 
except for the description type which has two different wh-terms and therefore four 
informers. The informers are listed in Figure 1. 

 
Who is 
Who was 
When is 
When was 
What is 

What was 
Where is 
Where was 
How many 
How much 

How did 
How does 
Why did 
Why does 

Fig. 1. 14 basic informer spans 

3.1   Part-of-Speech Hierarchy  

A part-of-speech (POS) is commonly defined as a linguistic category of lexical items 
that share some common syntactic or morphological characteristics. However, it is 
telling that, despite the concept of a POS being thousands of years old, grammarians 
and linguists still cannot agree on what exactly the shared characteristics are. This 
question has very real practical consequences: depending on where the line is drawn 
between common characteristics and distinguishing differences, one can end up with 
anywhere from the eight parts-of-speech defined in English textbooks to the 198 
parts-of-speech of the London-Lund Corpus of Spoken English [10].  
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Our solution to this problem is to organize lexical items not into a single set of 
parts-of-speech but into a part-of-speech hierarchy. The lower levels of this hierarchy 
feature a greater number of finely-differentiated parts-of-speech, starting with the 
Penn Treebank POS tags at the lowest level, while the higher levels contain fewer and 
more general parts-of-speech, and the topmost level is a single all-language-
encompassing “universe” part-of-speech. Another innovation has been the inclusion 
in our hierarchy of several “blank” parts-of-speech, to represent and distinguish 
between the absences of different types of words. In total, our hierarchy contains 165 
parts of speech organized in six levels. We originally developed it in the context of a 
keyword-extraction project; a detailed description of the hierarchy can be found in the 
paper describing that project [5]. 

We can define the semantic importance of different lexical items by assigning 
weights on the connections between POS in the hierarchy. This allows us to specialize 
the hierarchy for use in different NLP tasks. In our earlier work on keyword 
extraction [5], weight was given to verbs and nouns – the typical parts-of-speech of 
the keywords we were looking for. For question type classification, however, verbs 
and nouns are not the most semantically important words to take into account. Indeed, 
Tomuro [7] has shown that question type classification relies mostly on closed-class 
non-content words. The semantic weight in our hierarchy was thus shifted to the 
subtrees corresponding to popular query adverbs and pronouns, including wh-terms, 
and calibrated using queries from the 2007 TREC QA track [11] as examples. The 
value of each POS in our hierarchy is then computed on the basis of its semantic 
weight and of the number of descendents it has. The resulting hierarchy, with the 
value of each POS, is presented in Figure 2. 

We showed in [5] how using a part-of-speech hierarchy makes it possible to 
mathematically define several linguistic comparison operations. It is possible to 
compute the similarity between two words or POS simply as a function of their 
distance in the hierarchy. This computation takes several factors into account, 
including the number of levels in the hierarchy that need to be traversed on the path 
from one POS to the other and the value of each intermediate POS visited. Likewise, 
we can find a general place-holder POS to represent two words simply by finding the 
lowest common ancestor of both words in the hierarchy, and the similarity of the 
place-holder compared to the original two words it represents is again a function of 
the distance in the hierarchy between each word and the place-holder POS. By 
extension, we can measure the similarity between two sentences by pairing their 
words together by similarity; the fact that our hierarchy includes “blank” parts-of-
speech means that the two sentences do not need to be of the same length to be 
compared. And finally, we can merge two sentences by pairing their words together 
by similarity and replacing each pair by its lowest common ancestor in the hierarchy. 

It is now straightforward to see how our part-of-speech hierarchy can be used for 
the task of question type classification. Given a list of informers representing different 
question types, we can use the hierarchy to compute the similarity between a user-
specified query and each informer. The query is then classified to the same type as the 
informer it is most similar to. 
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Fig. 2. The POS hierarchy (POS values are in brackets) 

3.2   Informer-Learning Algorithm  

In addition to being used to compare queries and informers together, our part-of-
speech hierarchy can be used as the core of an informer-learning algorithm. The 
intuition behind the learning algorithm is that, when merging two queries together, 
irrelevant words will be replaced by high-level POS while informer words common to 
both queries (if there are any) will remain words or low-level POS in the merged 
query. We can then extract the informer from the merged query by deleting POS of a 
level higher than a set threshold and keeping only contiguous words and POS below 
that threshold. 

The informer-learning algorithm we use is summarized in Figure 3. It begins with a 
set of training queries classified in their correct types and a list of informers 
representing each type such as the list already proposed in Figure 1. It then divides the 
set of training queries into two subsets, one containing queries that can be correctly 
classified by the current informers and the other containing queries that cannot. In 
Figure 3, we call these sets C-queries and I-queries, for Correctly-classified queries 
and Incorrectly-classified queries respectively. The learning algorithm then merges 
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together pairs of incorrectly-classified queries of the same type to generate new 
informers. Good informers, that can be used to correctly classify some of the 
incorrectly-classified queries without leading to misclassification of the already 
correctly-classified queries, are added to the list of informers, and the queries they 
correctly classify are moved to C-queries, the set of correctly-classified queries. The 
enriched list of informers is the final result of the learning algorithm. 

 
1. Input: list of informers, training queries 
2. For each training query 

3. Classify using informers 
4. If classified correctly, add to C-queries 
5. Else, add to I-queries 

6. For each pair of misclassified queries of same 
type 

7. Merge and generate informer 
8. If informer correctly classifies some of I-
queries and does not misclassify any of C-queries, 
add to the list of informers   
9. Move newly-correctly-classified I-queries to C-
queries 

10. Return the list of informers 

Fig. 3. Structure of the learning algorithm 

4   Experimental Results 

For our experiments, we built a test corpus of queries using the 459 queries from the 
2006 TREC QA track [12]. We tagged the words of the queries with their parts-of-
speech using the standard Brill tagger, and we manually classified the queries into 
their correct question types.  

Our first experiment is meant to study the classification results obtained by using 
our 14 basic informers with and without our part-of-speech hierarchy, to show the 
impact of the hierarchy. Classification using the hierarchy and the basic informers is 
done as described in Section 3.1. The results without using the hierarchy are meant to 
be a benchmark. They will show how well a system can perform the classification 
task by only recognizing the informers in the queries. An initial check shows that the 
14 informers are a resource of limited usefulness: they only appear in 43% of our test 
queries, and in about 12% of these cases they are used in the wrong question type 
because of the paraphrasing phenomenon studied in [2]. The informers give no useful 
information to help classify the remaining 57% of queries they do not appear in. This 
gives insight into the reason why other systems must rely on hundreds of patterns [4]. 

Next, we used the learning algorithm to expand the list of informers. The set of 
training queries we used is the query list from the 2007 TREC QA track [11], which 
we tagged and classified into correct types in the same way as we did for the 2006 
TREC queries. The algorithm learned four new informers, which we present in Table 
1. In the informers in that table, actual words are written plainly while POS from our 
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hierarchy are written in square brackets. The words corresponding to the informers in 
the sample queries are marked in bold. 

In each case, we computed the precision and recall of the classification of queries 
into each of our six question types, using the standard equations given in (1) and (2). 
We then computed the average precision and recall over all six types, and the average 
F-measure using equation (3). The results of these three experiments are given in 
Table 2. 

PositiveFalsePositiveTrue
Positive True

Precision
+

=  (1) 

Negative FalsePositive True

Positive True
Recall

+
=  (2) 

RecallPrecision
RecallPrecision2

MeasureF
+

××=−  (3) 

Table 1. New informers learned 

Informer Question type Sample query 
[nn] [common-noun] person (who) Name members of the group. 
[wh-personal] [present-tense] location (where) Which college did she go to? 
what does description (how/why) What does LPGA stand for? 
[nn] is [dt] [nn] ? description (how/why) What kind of animal is an agouti? 

Table 2. Question Type Classification Results 

# Experiment Precision Recall F-Measure 
1 Without hierarchy 43% 41% 42% 
2 With hierarchy 85% 56% 68% 
3 With learning 74% 65% 69% 

4.1   Discussion 

From the results presented in Table 2, it can clearly be seen that our system (line #2) 
does much better than the benchmark (line #1). It achieves nearly twice the precision 
and yields a 26% increase in F-measure. The reason for this improvement, and the 
only difference between our system and the benchmark, is the use of the part-of-
speech hierarchy in addition to the 14 basic informers. The benchmark system can 
only exactly match queries to the informers; if there is no such match or if several 
informers appear in a query, the system is clueless. On the other hand, our system 
compares queries and informers together using the POS hierarchy as described in 
Section 3.1, and computes the similarity of each pair. In other words, it associates a 
query to its most similar informer, rather than look for an exact match. This ability to 
handle similar but inexact matches is clearly an important advantage. 

In our third experiment, the learning algorithm discovers four new informers. They 
represent different syntaxes of queries that were not accounted for in our initial 14 



220 R. Khoury 

 

informers, as illustrated in Table 1. In particular, the first informer is learned to handle 
an error in the tagging: the Brill tagger mistakenly identified the word “name” in 
these queries as a noun instead of a verb. The next two informers in Table 1 are 
learned to handle the wh-term parts of varying styles of queries; the second one in 
particular is a general inexact match in queries made possible by our hierarchy. The 
fourth informer represents a longer sentence structure often found in description-type 
queries.  

The classification results using our hierarchy and the informer list including the 
four learned informers (line #3) show an important improvement compared to the 
benchmark (line #1). However, the advantage is less clear when compared to the 14 
basic informers alone (line #2). The new classification shows a worse precision but a 
better recall, leaving the F-measure nearly unchanged. It is worth noting that using the 
basic informers alone leads to an important 30% difference between precision and 
recall, while that gap is reduced to 10% when the extra four informers are added in, 
giving our system a more balanced classification performance.  

Although both experiments using the POS hierarchy outperform the benchmark, 
there is still clearly room for improvement. Errors in our system are misclassifications 
caused by an informer from a wrong question type being more similar to a query than 
any of the informers from its own type. The main bad informer is “what was”, one of 
our 14 basic informers, which is alone responsible for 75% of misclassifications in 
each of the two experiments with our system. However, that informer cannot be 
simply eliminated, as it is also responsible for a lot of correct classifications; indeed, 
more than a third of the queries it classifies are done so correctly. Rather, the solution 
is for the system to learn new informers that will be more similar to the misclassified 
queries than “what was” and will classify them correctly. The fact that our current 
learning algorithm does not discover these informers might be due to our strict 
learning criterion of only saving informers that do not misclassify any queries from 
the C-queries subset. A more permissive criterion, for example of accepting informers 
that correctly classify more of the I-queries subset than they misclassify the C-queries 
subset, could lead to learning a better informer list. Changes to the learning algorithm 
in order to discover better informers will be studied in future research. 

5   Conclusion 

In this paper, we present a new method to learn and apply informers for the task of 
syntactic-pattern-based question type classification. What sets our method apart is the 
use of our part-of-speech hierarchy, which makes it possible to compute 
mathematically the distance between the informers and the queries, and to associate 
queries with their most similar informers rather than look for exact keyword matches. 
In fact, experimental results show that using the hierarchy for this task yielded an 
average 26% improvement in the F-measure of type classification. Another advantage 
of our method is that it obtains good results using only 14 simple informers, while 
traditional methods use hundreds of keywords, patterns or probabilities. Future work 
will focus on further improving the classification by refining the informer-learning 
algorithm to discover new and better informers, which will account for and rectify 
some of the mistakes the informers in the current system cause. 
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