Time-Table-Extended-Edge-

Finding for the Cumulative

Constraint
Pierre Ouellet and Claude-Guy Quimper

Universite Laval
Quebec, Canada

http://www.ift.ulaval.ca/~quimper/
http://www.ift.ulaval.ca/~quimper/

Introduction

® We present new filtering algorithms for the Cumulative
constraint.

® An Extended-Edge-Finder.
® A Time-Table algorithm.

® A Time-Table-Extended-Edge-Finder.

2 Claude-Guy Quimper

The Task

esta Icta

3 Claude-Guy Quimper

The Task

esta Icta

&/ earliest starting time

3 Claude-Guy Quimper

The Task

esta Icta

&/ earliest starting time

latest completion time

3 Claude-Guy Quimper

The Task

processing time "\
%

—N

A

esta Icta

&/ earliest starting time

latest completion time

3 Claude-Guy Quimper

The Task

processing time TN height
p

—N

h

esta Icta

&/ earliest starting time)

latest completion time

3 Claude-Guy Quimper

The Task

processing time TN height
p

—N

h

esta ¢ = ph Icta
energy .
&/ earliest starting time)

latest completion time

3 Claude-Guy Quimper

The Task

%

—N

s

esta ecta Icta

\

earliest completion
time

3 Claude-Guy Quimper

The Resource

C

:

Capacity

4 Claude-Guy Quimper

Energetic Relaxation

C

:

Capacity

Claude-Guy Quimper

Edge Finder

6 Claude-Guy Quimper

Edge Finder

est; Ict;

6 Claude-Guy Quimper

Edge Finder

est; Ict;

6 Claude-Guy Quimper

Edge Finder

eSt;

Ict;

- B

Icto

Q) precedes 1

Claude-Guy Quimper

Extended-Edge Finder

%

7 Claude-Guy Quimper

Extended-Edge Finder

est; Ict;

%

esto [cto

7 Claude-Guy Quimper

Extended-Edge Finder

%

7 Claude-Guy Quimper

Extended-Edge

est; Ict;

Finder

esto lcto

Q) precedes 1

Claude-Guy Quimper

Envelop

[Vilim CP 2009]
ETLU(Z) — CeSth; -+ €;

8 Claude-Guy Quimper

Envelop

[Vilim CP 2009]
E??fU(Z) — C’estz- -+ €;

}C

0 est;

8 Claude-Guy Quimper

Envelop

[Vilim CP 2009]
E??fU(Z) — C’estz- -+ €;

}C

0 est;

Env(Q) = Cest
nv(§2) max esto + eg

8 Claude-Guy Quimper

Envelop

[Vilim CP 2009]
E??fU(Z) — C’estz- -+ €;

}C

0 est;
eC(
q }C

esto L ect Env (Q)
C

Env() = max Cestg + eg

8 Claude-Guy Quimper

Cumulative Tree

[Vilim CP 2009]

9 Claude-Guy Quimper

Cumulative Tree

[Vilim CP 2009]

U N
One leaf

per task

9 Claude-Guy Quimper

Cumulative Tree

[Vilim CP 2009]

U N
e(leaf): €; = pihi One Ieaf
Env(leaf) = Env(i) = Cest; + e; per task

9 Claude-Guy Quimper

Cumulative Tree

[Vilim CP 2009]

e(node) = ejoft + right
Env(node) = max (Env(left) + €right Env(right))

U N
e(leaf): €; = pihi One Ieaf
Env(leaf) = Env(i) = Cest; + e; per task

9 Claude-Guy Quimper

Cumulative Tree

[Vilim CP 2009]

Env(root) = Env(S2)
e(node) = ejoft + right
Env(node) = max (Env(left) + €right Env(right))

U N
e(leaf): €; = pihi One Ieaf
Env(leaf) = Env(i) = Cest; + e; per task

9 Claude-Guy Quimper

Lambda Envelope

[Vilim CP 2009]
® () is the set of tasks whose Ict is before t.

® A is the set of tasks whose Ict is after t.

® This envelope computes the earliest completion time of all tasks
in () with one task in A.

Env™(Q) =max max Cestg +eo + e,
OCO icA
esto <est;

c

0 esto ect(QU {i}) = [Envé(ﬂ)_‘ J

® The cumulative tree can also compute that envelope.
I

10 Claude-Guy Quimper

(half) Extended-Edge-Finder

® () is the set of tasks whose Ict is before t.

® A is the set of tasks whose Ict is after t and ect is before t.

Envz™(Q) = ma a C' — h;)est h; ect,;
(€2) max max (i) este +ee + h; ect;
est; <esto

0 o { ect(QU {i}) = {Emﬁ(gw

o [fect(QQU {1}) >t then (2 precedes i.

® This new envelope can be computed with a cumulative tree.
I

| Claude-Guy Quimper

(other half) Extended-Edge-Finder

® () is the set of tasks whose Ict is before t.

® Y is the set of tasks whose Ict is after t and ect is after t.

Envz” (Q) = — h;) est hiH
nvx - () max t%a\ﬁct (C) este +eo + or
est; <esto

Lo

® This new envelope can be computed with a cumulative tree.
I

0 este Ho

o If Envx” > Ct+ h(Hor - t) then Q) precedes i.

12 Claude-Guy Quimper

Extended-Edge-Finder

® For every distinct task height h

® |nitialize the cumulative tree with all tasks in Q2
and empty sets /A and ‘Y.

® For latest completion times t in decreasing order

® Move from (2 to A the tasks with height h
whose latest completion time is later then t.

® Move from A to VY the tasks whose earliest
completion time is later than t.

e Update the cumulative tree.

® |f an envelope detects a precedence, proceed
to the adjustment and remove from A or 'Y
the filtered task.

13 Claude-Guy Quimper

Extended-Edge-Finder

® For every distinct task height h } We suppose k

o , , , distinct heights.
® |nitialize the cumulative tree with all tasks in Q2 5

and empty sets /A and ‘Y.

® For latest completion times t in decreasing order

® Move from (2 to A the tasks with height h
whose latest completion time is later then t.

® Move from A to VY the tasks whose earliest
completion time is later than t.

e Update the cumulative tree.

® |f an envelope detects a precedence, proceed
to the adjustment and remove from A or 'Y
the filtered task.

13 Claude-Guy Quimper

Extended-Edge-Finder

® For every distinct task height h } We suppose k

o , , , distinct heights.
® |nitialize the cumulative tree with all tasks in Q2 5

and empty sets /A and ‘Y.

® For latest completion times t in decreasing order

® Move from Q) to A the tasks with height h Each of these 2n
whose latest completion time is later then t. moves require a
O(log n) update

® Move from A to 'V the tasks whose earliest of the tree.

completion time is later than t.
e Update the cumulative tree.

® |f an envelope detects a precedence, proceed
to the adjustment and remove from A or 'Y
the filtered task.

13 Claude-Guy Quimper

Extended-Edge-Finder

® For every distinct task height h

® |nitialize the cumulative tree with all tasks in Q2
and empty sets /A and ‘Y.

® For latest completion times t in decreasing order

® Move from (2 to A the tasks with height h
whose latest completion time is later then t. O(k n log n)

® Move from A to VY the tasks whose earliest
completion time is later than t.

e Update the cumulative tree.

® |f an envelope detects a precedence, proceed
to the adjustment and remove from A or 'Y
the filtered task.

13 Claude-Guy Quimper

Time-Table

® We present an algorithm that runs in O(n log n).
® [t decomposes the tasks into fixed and depleted parts.

® |t aggregates the fixed parts into at most n fixed tasks whose
domains are disjoint.

| 4 Claude-Guy Quimper

Time-Table

est;

® The algorithm also prunes the earliest starting times in

O(n log n).

Claude-Guy Quimper

Time-Table

est;

® The algorithm also prunes the earliest starting times in

O(n log n).

Claude-Guy Quimper

Time-Table Extended-Edge-Finding

est; Ict;

€q
. fe

|6 Claude-Guy Quimper

Time-Table Extended-Edge-Finding

est; Ict;

Time-Table Extended-Edge-Finding

%

|6 Claude-Guy Quimper

Algorithm

< P > <«p—>
est ect
Ist |ct =
S
>) =

® Decompose the problem into fixed and depleted tasks.

® Run the Extended-Edge Finder on the decomposition.
® Analyze the filtering and apply the filtering to the original tasks.

® Complexity: O(k n log n)
I

|7 Claude-Guy Quimper

Experiments

® We used Choco 2.1.5 on the PspLib benchmark.

Benchmark Choco EEF+TT TTEEF
n|#1nstances|time out|{solved| bt| time|lsolved| bt|time||solved| bt|time
30 480 10| 364|8757| 223 3778757 50| 377(8379| 54
60 480 20| 332|3074|1527 340(3074| 269 341(2861]| 291
90 480 50| 321({5024|5522 32715024| 857 32914635| 913

® Using Extended-Edge-Finding and Time-Tabling produce the same
number of backtracks for the 3 x 480 instances.

e Computation times are cut in 6.
® TTEEF did not perform significantly better than EEF+TT.
/]

|18 Claude-Guy Quimper

Conclusion

® We proposed:
® an Extended-Edge-Finder that runs in O(k n log n).
® a Time-Tabling algorithm that runs in O(n log n).

® A Time-Table-Extended-Edge-Finding that runs in O(k n log n).

19 Claude-Guy Quimper

