
The Smart Workflow Foundation
MSR-TR-2006-114

Youssef Hamadi∗ Claude-Guy Quimper†

November 13, 2006

Abstract

This report presents the Smart Workflow Foundation (SWF), a new
architecture which adds constraint solving capabilities to workflow en-
gines. Thanks to that extension, workflow definitions are freed from low
level implementation details and can benefit from smart and robust re-
source allocation. This architecture represents a radical change over clas-
sical engines where the execution of each task or procedural step is either
pre-assigned to some entity, e.g.,employee, either computed by a former
task. The proposed system uses abstract workflow definitions combined
with a characterizing of the resources to efficiently match tasks require-
ments to resources abilities and availabilities. During this process, the
possible future steps of a workflow are considered. This mimics the ca-
pabilities of human beings, able to infer the consequences of a decision
against some foreseeable future. The system is built on top of Windows
Workflow Foundation and evaluated through several simulations. Various
extensions are also presented in order to improve the scope of the reason-
ing, automatically drive the execution flow from the result of high level
optimization problems, and use the newly proposed abstraction to solve
capacity planning scenarios.

1 Introduction

Business workflows organize the activity of an enterprise through the controlled
execution of well defined dynamic processes. They combine low level activities
through some partial order and control the execution of these activities through
high level decisions and constraints. A workflow can be seen as a data-flow
and is therefore very similar to a program [ACW06]. For example, a company
could use an interview-process to ensure that a candidate is handled consistently
through a pre-defined interview process. The workflow engine would ensure that
each interviewer used the correct online form and successfully gave their personal

∗Microsoft Research Ltd., 7 J J Thomson Avenue Cambridge CB3 0FB, United Kingdom,

youssefh@microsoft.com
†School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L

3G1, cquimper@math.uwaterloo.ca

1

feed-back before allowing the process to proceed to the next step and decide to
make an offer to the candidate.

More precisely, a business workflow describes the tasks, procedural steps,
organizations or people involved, required input/output information, and tools
needed for each step of a business process.

Business workflows are executed and controlled by workflow engines or work-

flow schedulers. These software components take as input workflow definitions
and controls their execution through the respect of the specified steps and rules.
Their main role is to determine whether the process is ready to move to the next
step.

This report presents the Smart Workflow Foundation (SWF), a new archi-
tecture which adds constraint solving capabilities to workflow engines. Thanks
to that extension, workflow definitions are freed from low level implementation
details and can automatically benefit from smart and robust resource allocation.
This architecture represents a radical change over classical engines where the
execution of each task or procedural step is either pre-assigned to some entity,
e.g.,employee, either computed by a former task. At contrary, SWF uses ab-
stract workflow definitions combined with a characterizing of the resources to
efficiently match tasks requirements to resources abilities and availabilities.

In the following, section two presents background material related to Con-
straint Programming (CP) and to the Windows Workflow Foundation. Section
three, describes the general architecture of the SWF. Section four, presents the
modeling of tasks and resources. Section five presents the CSP modeling for
the resource allocation problem. Section six describes the solving process, and
section seven presents the results of our experimental evaluation. Section eight
presents possible extensions of the architecture. Finally, before the general con-
clusion presented in section ten, section 9 describes related works.

2 Background

2.1 Constraint Programming

In the Constraint Programming (CP) or Constraint Satisfaction Problem (CSP)
formalism, a combinatorial problem is expressed by a set of constraints applied
to its decision variables. More precisely, decision variables are defined with their
possible range of values and constraints are applied to these variables to restrict
their ranges. The space where variables take their values distinguishes between
different flavor of CP (Boolean, Integer, Sets, etc.). A solution is made by a
consistent assignment of the variables i.e.,a state where each variable gets a
value from its range without violating any constraint. Practically, constraint
solvers are used to compute solutions (often against some optimality criterion,
a.k.a.soft-constraints).

2

2.2 The Windows Workflow Foundation

The Windows Workflow Foundation (WWF) is a Microsoft technology for defin-
ing, executing, and managing business processes or workflows [ACW06]. This
technology is part of the .NET framework and can be hosted in any CLR ap-
plication. It has been natively embedded in Windows Vista and back-ported to
previous versions of the OS.

In the WWF, a workflow is a collection of tasks structured with connec-
tors allowing their sequential, parallel, conditional, or repetitive execution. The
Windows Workflow Foundation scheduler manages the state of each active work-
flow and launches the tasks according to the structure of the process. A task
can either be a computer program or an action executed by an external agent,
e.g.,employee. Tasks can take seconds or days to be executed depending on
their nature.

3 General Architecture

The architecture that we are proposing (see Figure 1) extends the initial work
presented in [Ham03a]. It has four main components: the windows workflow
foundations, the constraint solver, the resource database, and the policy man-
ager.

Windows Workflow Foundation The WWF allows the efficient design of
business processes with workflows (see [ACW06]). In this system, each workflow
can be represented as a task which has the possibility to store dedicated infor-
mation through programmatically defined properties. For example, if a task is
assigned to a specific person, a property of the workflow can store the name
of that person. Our SWF architecture heavily uses this possibility to integrate
decision variables related to the smart allocation process.

Resource Database The resource database contains the information about
the resources. This includes the skills of each resource, the tasks that are as-
signed to the resource, the agenda, and the geographic location.

Constraint Solver See section 2.

Policy Manager The policy manager looks after preferences on the resource
allocations. It allows, for instance, to favor resource allocations involving some
skill refreshing, leading to a fair distribution of the workload over the employees,
or simply optimizing the use of the resources to minimize the make-span of each
workflows. The policy manager gives priorities to some preferences based on a
weighting system.

We propose to create a CSP whose solution space is equivalent to every
possible execution of the workflows. Additional soft-constraints ensure that the
resource allocation satisfy the policies. The CSP is created from three sources

3

of information: the workflow properties, the resource database, and the policies
selected by the policy manager.

Disolver

Smart Workflow Foundation™

Resource Database

Policy Manager

WorkflowWorkflowWorkflow

Properties

Planning

Activities

Request a resource allocation

CSP

Figure 1: Architecture of the Smart Workflow Foundation.

A task should always be assigned to a resource before being executed. Before
executing a task, the WWF should check if the task’s resource is allocated. If it
is not the case, a CSP is generated on the fly based on the current states of the
workflows, the availability of the resources, and the resource allocation policies.
The solver finds the best resource allocation for the task based on the policies
and assign the task to this resource.

When planning an activity, the system selects a resource based on the current
workload of each resource and based on the future actions that require to be
planned. Since the workflows might be very long and some activity might not
be visited before a long while, the planning only takes into account the activity
within a given horizon. This horizon is the number of tasks we look ahead in
order to assign a resource to the current task.

4

4 Workflow Model

4.1 Information about Tasks

We assume that for every task WT in the workflow, the information depicted
in Table 1 is available.

Variable Name Description

WT.ProcT ime Expected processing time.

WT.StartT ime Starting time (unassigned if the task has not been started)

WT.EndT ime Ending time (unassigned if the task has not been com-
pleted)

WT.Skills A skill vector indicating, for each skill, the required level to
accomplish the task.

WT.Done True if the task is completed, false otherwise.

WT.Available True if the task might eventually be executed, false other-
wise.

WT.Resource Resource used to accomplish the task. This property might
be unassigned if the task has not been attributed to a re-
source yet but must be assigned before the execution of the
task.

Table 1: Information about tasks stored in each workflow.

4.2 Information about Resources

For each resource R in the database, one can retrieve a skill vector R.Skills.
Each component of this vector indicates the skill level for a specific skill. For
instance, the skill vector of a computer consultant could look like the following
one.

.NET SQL C++ Networking Billing

3 3 1 2 0

In addition to the skill levels, a resource R has an agenda of tasks that have
been assigned to R. We denote these tasks with R.Tasks.

Additional information about resources can be mentioned in the database.
For instance, the geographical position R.Position of each employee can be
relevant (cf. [DHB05]).

5

Variable Name Description Initial Domain

T.StartT ime Estimated starting
time

{WT.StartT ime} if
WT.StartT ime is assigned.
[0,∞] otherwise.

T.EndT ime Estimated ending
time

{WT.EndT ime} if
WT.EndT ime is assigned,
[0,∞] otherwise.

T.Available 1 if the task might
eventually be
executed, 0
otherwise

{0} if not WT.Available, {1} if
WT.Done, {0, 1} otherwise.

T.Resource Resource that will
accomplish the
task.

{WT.Resource} if
WT.Resource is assigned,
{R | R.Skills ≥
WT.Skills} ∪ {Null} otherwise.

4.3 Information about the Workflows

Using properties, it is possible to store information about the structure of the
workflows. For instance, in an If-Else statement, it is possible to store the
probability that the workflow branches on the if statement and therefore, the
probability that it branches on the else statement. These probabilities can even
be computed from the history of past executions of the workflow saved in the
WWF database. The probabilities are used to better predict the execution of
the workflow. If the probabilities are unknown, a uniform distribution over the
different choices can always be used.

5 CSP Model

Following [Ham03a] and [ST05], we present a CSP model whose solution space
corresponds to all possible walks through the workflows. The solution space
is given by hard constraints on which we add soft constraints for optimization
purposes. These soft constraints, when violated, only deteriorate the objective
value. The feasibility of the solution is not compromised.

5.1 Variables

For every workflow task WT , we declare a task T in the CSP whose members
are the following constrained variables.

6

Figure 2: Single activity

Figure 3: Sequential Activities

5.2 Hard Constraints

5.2.1 Structural Constraints

We present in this section hard constraints based on the structure of the work-
flow. For every single activity (see Figure 2), we have the following constraint.

T1.EndT ime = T1.StartT ime + T1.Available× WT1.P rocT ime (1)

For any two activities forming a sequence (see Figure 3), we have the follow-
ing constraints.

T1.Available = T2.Available (2)

T2.StartT ime ≥ T1.EndT ime (3)

For activities executed in parallel (see Figure 4, we have the following con-
straints.

7

Figure 4: Parallel Activities

8

Figure 5: Listen-Activity block

T1.Available = T2.Available = T3.Available = T4.Available (4)

T2.StartT ime ≥ T1.EndT ime (5)

T3.StartT ime ≥ T1.EndT ime (6)

T4.StartT ime ≥ max(T2.EndT ime, T3.EndT ime) (7)

A workflow might have to branch on a specific activity depending on the
event it receives. This is modeled with a Listen-Activity block in the Windows
Workflow Foundation (see Figure 5). The following constraints apply to the
activities in this block.

9

Figure 6: If-else statement block

T1.Available = T2.Available + T3.Available = T4.Available (8)

T2.StartT ime ≥ T1.EndT ime (9)

T3.StartT ime ≥ T1.EndT ime (10)

T4.StartT ime ≥ max(T2.EndT ime, T3.EndT ime) (11)

A workflow can also branch according to an if statement (see Figure 6 based
on a given condition C. The following constraints apply.

10

T1.Available = T2.Available + T3.Available = T4.Available (12)

T2.StartT ime ≥ T1.EndT ime (13)

T3.StartT ime ≥ T1.EndT ime (14)

T4.StartT ime ≥ max(T2.EndT ime, T3.EndT ime)(15)

C ⇐⇒ T2.Available = 1 (16)

The WWF supports composite activities. These activities are built from
other activities that form a sub-workflow. We construct the CSP by replacing
all composite activities by a decomposition into atomic activities. If a composite
activity contains other composite activities, we construct the CSP model by
recursively replacing composite activities by atomic activities.

The WWF also supports loops (see Figure 7). The while loop tests a con-
dition before executing a sub-workflow and keeps executing this sub-workflow
until the condition becomes false. The number of times the loop will execute is
unknown but one has to be ready to this eventuality.

5.2.2 Resource Constraints

We present some constraints that model the use of the resources. Notice that
according to the initial domain of Ti.Resource, only the resources with the
proper skills can be affected to a task. There is also a special resource called the
Null resource. The resource is allocated to tasks that are not executed. The
following constraint models the use of the Null resource.

Ti.Resource = Null ⇐⇒ Ti.Available = 0 (17)

When sharing the same resource, two tasks cannot be executed at the same
time. This is modeled with the following constraint1.

Ti.Resource = Tj.Resource −→Ti.EndT ime ≤ Tj.StartT ime

∨ Tj.EndT ime ≤ Ti.StartT ime
(18)

We assume that a list of tasks was previously assigned to each resource. This
list is denoted by R.Tasks. We assume that each resource executes the tasks
using a FIFO policy (first in first out). Therefore, if a task is assigned to a
resource R, the task will not be executed until all other tasks in R.Tasks are
completed. This is expressed using the following constraint. Notice that in this
constraint, Ti.Resource and Ti.StartT ime are the two only variables. All other
terms are constants.

1This will not preclude a human resource to balance its time between multiple assignation

and this constraint is only used to report the cumulative use of the resources.

11

Figure 7: While loop block

12

Ti.Resource = R −→Ti.StartT ime ≥
∑

Tj∈R.Tasks

Tj.P rocT ime

+ CurrentT ime − min
Tj∈R.Tasks

Tj .StartT ime

(19)

5.3 Soft Constraints

In this section, we present constraints expressing preferences on the solution we
would like to obtain. These constraints generally map a property of the solution
to an integer variable on which we try to minimize (or maximize) the value.

Remark that our modeling directly filters-out non-properly qualified re-
sources (see section 5).

5.3.1 Distributing the Workload

A good resource allocation solution spreads the workload between the different
resources. For instance, we want to avoid overloading a resource A while resource
B is idle. We define the workload W (R) of a resource R to be the processing
time of the tasks assigned to this resource. More formally, we have.

W (R) =
∑

Ti∈R.Tasks

Ti.P rocT ime +
∑

Ti.Resource=R

Ti.P rocT ime (20)

Two different techniques can be used to spread the workload over the re-
sources. The simplest one is to minimize the maximum workload. We therefore
solve the following optimization problem.

min M (21)

M ≥ W (Ri) ∀Ri (22)

This solution is simple as it only involves standard binary constraints. Un-
fortunately, the workload vectors for three resources [10, 8, 6] and [10, 7, 7] are
equivalent since the maximum workload is 10 in both cases. Clearly, the vector
[10, 7, 7] is a better solution since it better spreads the workload over the second
and the third resource.

Pesant and Régin [PR05] solved this issue by introducing the spread con-
straint. The expression Spread([X1, . . . , Xn], E, σ) is satisfied if E is the mean
and σ the standard deviation of the sample X1, . . . , Xn. The workload can be
spread over the resources using the following constraints.

min σ (23)

Spread([W (R1), . . . , W (Rn)], E, σ) (24)

0 ≤ E < ∞ (25)

13

We showed two different solutions for distributing the workload over the
different resources. Many other solutions might exist. The architecture we
present in this document is flexible enough to support new or enhanced models
that can better address the needs of a particular organization.

5.3.2 Skill Refreshing

Skill refreshing consists of assigning tasks to resources that have not used a
required skill for a long time [DHB05]. We show how to compute the resource
allocation that maximizes skill refreshing.

Let f(R, T) be a function that returns the skill refreshment gain if task T is
assigned to resource R. The total skill refreshing is represented by S which we
want to maximize.

max S (26)

S =
∑
Ti

f(Ti.Resource, Ti) (27)

5.3.3 Avoiding Over-qualified Allocations

A resource must satisfy the required skills in order to accomplish a task. Al-
though, it is undesirable to assign an over-qualified resource to a task. It is a
better solution to keep this resource available for more demanding tasks. We
define a variable Q evaluating the degree of over-qualified allocations in an as-
signment. We want to minimize Q.

min Q (28)

Q =
∑
T

∑
i

T.Resource.Skills[i]− T.Skills[i] (29)

5.3.4 Other Policies

Our architecture can handle many other policies. For instance, one might want
to minimize the traveled distance of a team of consultants that need to move
to accomplish tasks (cf.[DHB05]). This could be done by affecting a start-up
cost between each pair (Task, Resource). In this example, we simply want to
minimize the sum of the start-up costs for every pair of tasks and resources.

All policies can be encoded with soft constraints that map the quality of a
solution to a variable called the cost variable. We find the best resource allo-
cation subject to multiple policies by minimizing (maximizing) a weighted sum
over all cost variables. The user provides these weights dynamically according
to the importance given to each policy.

14

6 Solving the Resource Allocation Problem

We show how to use the model developed in Section 5 to solve the resource
allocation problem in workflows. Workflow optimization is a complex problem.
It might involve many tasks to schedule with multiple resources. Moreover, the
processing time given for each task is only an estimate and therefore scheduling
on a long term basis becomes inaccurate. The number of tasks to schedule and
the inaccuracy for long term prediction is the first challenge we need to address.

Uncertainty in workflows represents the second challenge. Some activities
are conditional to events that cannot be predicted and therefore prevent to
derive any precise schedule. It is the case for the Listen-Activity blocks, if-else

statements, and while loops. We cannot predict which event will occur first,
if the condition will be true or not, or how many times the while loop will be
executed. We will show how one can find the best resource allocation despite
this uncertainty.

6.1 Horizon

In order to reduce the combinatorial search space, we propose to reduce the total
number of tasks by considering a horizon. The tasks beyond a given horizon h

from the tasks that are currently being executed are temporarily ignored. Their
corresponding variables are not included in the CSP.

6.2 Scenarios

There exist different ways to visit a workflow. For instance, there are two
ways to walk through a if-else statement: by visiting the if branch or the else

branch. Consider the binary vector S = [T1.Available, . . . , Tn.Available]. Any
such binary vector that satisfies the structural constraints represent a valid walk
in the workflow. We call these walks scenarios.

Scenarios depend on branching activities: the Listen-Activity blocks, the
If-Else statements, and the loops. We assign a probability on each of these
activity branches. For instance, in the case of an If-Else statement, we assign a
probability p that the condition is true and therefore a probability 1−p that the
condition is false. Based on these probabilities, we can compute the probability
p(S) that a scenario S occurs.

Assume, without loss of generality, that we want to find the best resource
allocation for task T1. Let C

j
i be the cost of the best solution for scenario Si

such that T1.Resource = Rj . We then allocate T1 to the resource Rj that
minimizes the following expression.

∑
Si

p(Si)C
j
i (30)

Notice that this solution implies to solve s× r different CSPs where s is the
numbers of scenarios and r the number of resources available for task T1.

15

7 Evaluation

7.1 Methodology

We generated 5 random workflows, each having ten tasks. We used different
control structures to connect these tasks together. Some workflows are highly
probabilistic with many nested if-else statements. Other workflows execute
many tasks in parallel. Other workflows have while loops that increase or de-
crease the number of resource allocations during a workflow execution.

The duration of each task is precomputed for each instance. A duration is
assigned to each combination of a resource and a task. We therefore model the
case where some resources require more time to execute a task than others. Each
resource is given two or three skills out of four. Each task requires one or two
skills to be executed. The skills of the resources remain the same throughout
the simulation while the skills associated to each task vary for each instance of
a workflow.

Each branch in an if-else statement is associated to a probability of branch-
ing to this branch. During the execution of the workflow, the system generates
pseudo-random numbers to branch in the workflow according to the probabili-
ties. Note that each instance can have different probabilities. The same principle
applies for the while loops. Each loop has a probability p that the condition is
satisfied. The simulator generates pseudo-random numbers before each iteration
in order to test if the loop should be executed or not.

A simulation consists of the execution of 10 workflows whose starting time
is uniformly spread over an interval of T seconds. Throughout the simulation,
the scheduler uses a predefined resource allocation policy. We compare different
metrics against the allocation policies and the length of interval T . We label
the random resource allocation policy which allocates one compatible resource
to a task at random with Rd, the minimization of the largest resource workload
with MSW, the minimization of the resource workload variance with MV, the
skill refreshing policy with SR, and the overskill minimization policy with OS.

The Disolver constraint solver was used in all our tests [Ham03b].

7.2 Results

Number of Resource Allocations We present in this table the number
of resource allocations that occurred in each simulation. This number should
roughly be the same for all simulations having the same time span T but can
vary since the if-else statements as well as the while loops are non-deterministic.

Average Scheduling Time We report the average time for allocating a re-
source using different resource allocation policies.

As expected, the random resource allocation policy is the fastest since it only
requires to generate a pseudo-random number associated to a resource. The
minimization of the resource workload variance (MV) is the policy requiring, by
far, the most computation time.

16

T Rd MSW MV SR OS
40 74 78 70 63 69
60 69 45 84 61 57
80 69 86 74 68 71

120 71 75 81 69 69

Table 2: Number of tasks execution during the simulation

T Rd MSW MV SR OS
40 0 49 285 72 65
60 0 105 255 112 132
80 0 179 396 71 75

120 0 60 396 76 70

Table 3: Average scheduling time for finding a resource allocation. All times
are in milliseconds.

Workflow Execution Time The workflow execution time is the total amount
of time spent in executing a task. Since many tasks can be executed at the same
time, the workflow execution time might be greater than the workflow comple-
tion time. The policies can affect the workflow execution time by choosing
resources that are faster or slower at executing a particular task.

T Rd MSW MV SR OS
40 37.2 25.6 23.3 21.4 48.9
60 22.0 12.8 24.5 18.0 19.2
80 25.8 28.5 23.5 21.7 29.5

120 20.9 19.5 26.9 22.5 23.1

Table 4: Workflow execution time in seconds.

The different policies are comparable in this case since none of them aim at
optimizing the workflow execution time.

Workflow Idle Time Resources execute tasks using a FIFO policy. While a
task is in a resource’s queue, we say that this task is idle since it is waiting for
its resource to be freed. We compute the average idle time of the workflows.

One would expect the minimization of the largest resource workload policy
(MSW) or the minimization of the resource workload variance policy (MV) to
be the best policies in this context since they spread the workload among the
resources. Surprisingly, the skill refreshing policy (SR) is the policy offering the
best performances in terms of idle time.

17

T Rd MSW MV SR OS
40 16.5 6.8 6.9 5.9 30.7
60 3.2 1.0 2.4 1.3 3.2
80 9.2 5.9 4.5 1.5 12.9

120 2.2 1.2 4.0 1.8 3.5

Table 5: Workflow idle time in seconds.

Skill Freshness We compare the freshness of the skills at the end of the
simulation, i.e.,the average number of seconds since the last time the skill has
been used. The smaller the values are, the fresher the skills are.

T Rd MSW MV SR OS
40 22.2 10.0 11.2 12.2 48.0
60 20.0 19.7 34.0 17.2 53.5
80 28.0 29.5 25.0 20.6 41.0

120 12.0 13.3 17.4 11.2 52.0

Table 6: Average time in seconds since the last time the skill has been used.

As expected the skill refreshing policy (SR) is the most efficient. Notice that
the overskill minimization policy gives the worst results. Indeed, the overskill
minimization policy tends to assign the same resources to the same tasks and
prevents the refreshment of the skills.

Average Workload Let W (R, t) be the workload of resource R at time t

i.e.,the amount of work in the to-do list of the resource R expressed in seconds.
Let E be the completion time of the simulation. The following formula defines
the average workload A.

A =
1

|R|E

∑
R

∫ E

0

W (R, t) dt (31)

T Rd MSW MV SR OS
40 1.38 0.78 0.79 0.87 1.34
60 0.60 0.39 0.43 0.56 0.40
80 0.98 0.59 0.45 0.56 0.77

120 0.41 0.36 0.35 0.46 0.41

Table 7: Average workload in seconds.

Both the minimization of the largest resource workload policy (MSW) and
the minimization of the resource workload variance policy (MV) perform well

18

as they tend to minimize the average workload. Moreover, the overskill mini-
mization policy (OS) seems comparable to the random allocation policy.

Variance of Average Workloads Let W (R, t) be the workload of resource
R at time t i.e.,the amount of work in the to-do list of the resource R expressed
in seconds. The average workload of a resource R over a period of time E is
given by the following expression.

AverageWorkload(R) =
1

E

∫ E

0

W (R, t) dt (32)

We compare the variance of AverageWorkload(R) among all resources. A
high variance indicates some imbalance in the resource allocations i.e.,some
resources had a peek period more intense than others.

T Rd MSW MV SR OS
40 2.23 0.11 0.12 0.18 4.70
60 0.09 0.03 0.02 0.07 0.09
80 0.96 0.06 0.06 0.00 0.92

120 0.02 0.00 0.02 0.03 0.12

Table 8: Variance of average workload.

Clearly the minimization of the largest resource workload policy (MSW)
and the minimization of the resource workload variance policy (MV) perform
the best as they aim at minimizing the variance. However, notice that the MV
policy is not significantly better than the MSW despite its high computation
time (see Section 7.2). Once more, we observe that the skill refreshing policy
(SR) spreads the workload among the resources while the overskill minimization
policy (OS) tends to assign the tasks to the same people.

Average Overskill Indicator The overskill indicator indicates how over-
skilled is a resource R to perform a task T . Let R.Skills be the resource’s skill
vector and T.Skills be the task’s skill vector. The overskill indicator is given by
the square of the differences between the resource’s skills and the task’s skills.

OverSkillIndicator(R, T) =
∑

s

(R.Skills[s]− T.Skills[s])2 (33)

Clearly, the overskill minimization policy (OS) is the only one that minimizes
the overskill indicator. All other policies are equivalent for this measure.

19

T Rd MSW MV SR OS
40 8.5 8.4 8.5 8.7 6.3
60 9.0 8.6 8.7 8.7 6.1
80 8.6 8.6 8.7 8.7 6.4

120 9.1 8.6 8.9 9.1 6.4

Table 9: Average overskill indicator.

8 Extensions

This section explores many interesting ideas which could easily be integrated in
our original SWF architecture.

8.1 Future scenarios

In the current architecture, we decided to allocate the best compatible resource
for a task while considering the possible future steps of the workflow. Since
resources are shared by the different workflows running at the same time, the
evaluation of the cost of allocation could be performed against all the future
steps of the other workflows. The problem would become more complex but
priority levels between business processes could be used to limit the scope.

8.2 Scheduling of different workflows

In our architecture, the scheduling of the tasks is completely reactive. The
engine follows the progress of the workflows and decides to allocate them re-
sources on a first come, first served basis. A more informed scheduling might
help in order to give priority to important processes. By doing this the tasks
of critical business processes would be scheduled before the others and benefit
form larger/better combinations of resources. This could be implemented by an
ordered queuing of the tasks.

8.3 Cross-workflows synchronization

Business processes are usually cross-functional and involve the simultaneous or
reciprocal flow of information between several functional areas. For example,
the order-fulfilment process needs input from sales, logistics, manufacturing and
finance as it progresses from sales order through production and cash payment
[DKKS04]. Today, these dependencies are well addressed by workflows, as long
as they correctly define each required input. However, situations which need the
loose coordination of different processes are not easily defined. For example, in
Microsoft, the activity of Microsoft Consulting Services (MCS) highly depends
on the company product releases, and any information on release dates can
greatly improve MCS’s work.

20

One obvious solution here would integrate MCS’s and product groups’ work-
flows into a large and complicated workflow. Unfortunately, this would intro-
duce an artificial complexity for the managers and will go against the accepted
separation between functional areas.

To successfully address these loose dependencies, we propose to extend
the SWF with a new cross-workflow synchronization mechanism. It uses a
client/server architecture where workflows register their dependency to other
workflows’ tasks. The server is there to maintain these dependencies2 and to
trigger registered clients each time external tasks make progress.

8.4 Online and batch optimization

Balancing choices between different opportunities is part of the daily life of
an organization. For instance, in a typical back-ordering problem, a company
whose inventory is less that its cumulated orders must decide which customer
will immediately receive the totality of their order and which customer will
immediately receive part of their order and later receive the balance. These
decisions may have a financial cost, especially in advanced B2B scenarios where
discounts are agreed when back-ordering takes place. Constraint optimization
can be used to take the optimal decisions, e.g.,to decide when to back-order a
client.

The designer of a workflow declares a vector ~q of decision variables relative
to a workflow. In the case of the back-ordering problem, the decision variables
are the quantity that is immediately shipped to the customer and the quantity
that is back-ordered. The sum of these two quantities must equal the command.
This constraint is also expressed at the level of the workflow instance.

At the workflow class level, one has access to the matrix Q whose columns are
the vectors of decision variables of the workflow instances. Constraints can be
posted on this matrix of variables. For instance, the total quantity of delivered
goods must be less or equal to the inventory.

Finally, at the system level, one can think about a collection of workflow
classes. Constraints can be posted over the matrices of variables associated to
each workflow class.

8.5 Offline capacity planning

Intuitively, the robustness of a workflow represents its chances of being efficiently
executed. In B2B frameworks, efficiency may have different meanings. It could
be the time for completion but it could also involve qualitative criteria like the
ability of the resources, etc. In any case, these criteria are all related to available
resources. For example, consider an organization where only one person can
perform a particular task. If this resource becomes unavailable for some period,
all the processes involving her unique skills could experience difficulties.

2Checking for consistency, i.e.,avoiding circular references.

21

The abstraction introduced by the SWF allows us to connect the previous
intuitive definition to solution space. The more robust a workflow is, the bigger
is its solution set.

We propose to use this relation to define an offline capacity planning able to
reason on an organization’s workflows. The same constraint solver used for the
daily resource allocation can be used for this [Ham03b].

Such a tool could be used on a regular basis by business analysts and man-
agers. It would use the following input:

• For each resource, the cost of acquiring some level in a new skill or a better
level in an existing skill.

• A training budget limit or an objective in robustness increase.

The goal is to automatically compute a training plan made of tuples {(resource, skill, level)}
which associate an existing resource to some missing skill/level. It can respect
the training budget and maximize the overall increase in robustness or meet the
robustness criterion and minimize the training cost. Remark that weights could
be automatically computed assuming that the past allocation are representa-
tives of the future ones or added by analysts according to their own predictions.
They would bias the reasoning toward critical business processes and improve
their capacity.

The previous could easily be generalized to non-existing resources, i.e.,to
compute hiring plans which will really have a high impact on a company’s
business.

9 Related Work

Senkul and Toroslu [ST05] use constraint programming for scheduling resource
allocations in workflows. They focus on the satisfiability of resource allocation
problems. More precisely, they study offline scheduling problems. Their model,
similar to the one presented in Section 5, allows the optimization of a cost
function without explicitly mentioning some resource allocation policies.

10 Conclusion

We have presented the Smart Workflow Foundation, a resource allocation sys-
tem integrated to a workflow engine. The SWF abstracts business processes
and company’s resources to perform dynamic task to resource allocation while
enforcing high level policies.

In an effort to emulate the advanced reasoning capabilities of human deci-
sion making, a form of forward-reasoning which considers the cost of the al-
location against the possible future steps of a workflow has been defined and
implemented. Our system plans ahead considering the upcoming tasks in the
workflow and optionally considering the upcoming tasks in the other workflows
running at the same time.

22

Many interesting work has yet to be done. For instance, as drafted in section
8, cross-workflows optimization could be performed on the fly and would allow to
compromise decisions against some global utility function, and capacity planning
could be easily integrated. Overall, we think that the SWF represents the right
abstraction level for a new category of important software, workflow engines.

References

[ACW06] Paul Andrew, James Conard, and Scott Woodgate. Presenting Win-

dows Workflow Foundation. Sams Publishing, 2006.

[DHB05] S. Dickson, Y. Hamadi, and L. Bordeaux. Optimizing resource
and capacity management in Microsoft enterprise services: towards
business agility. Technical Report MSR-TR-2005-188, Microsoft Re-
search, Cambridge, September 2005.

[DKKS04] Nikunj P. Dalal, Manjunath Kamath, William J. Kolarik, and Eswar
Sivaraman. Toward an integrated framework for modeling enterprise
processes. Commun. ACM, 47(3):83–87, 2004.

[Ham03a] Y. Hamadi. Constrained workflows: Challenges and opportuni-
ties. Technical Report MSR-TR-2003-101, Microsoft Research, Cam-
bridge, 2003.

[Ham03b] Y. Hamadi. Disolver : A Distributed Constraint Solver. Technical
Report MSR-TR-2003-91, Microsoft Research, Dec 2003.

[PR05] Gilles Pesant and Jean-Charles Régin. Spread: A balancing con-
straint based on statistics. In Peter van Beek, editor, CP, volume
3709 of Lecture Notes in Computer Science, pages 460–474. Springer,
2005.

[ST05] Pinar Senkul and Ismail H. Toroslu. An architecture for work-
flow scheduling under resource allocation constraints. Inf. Syst.,
30(5):399–422, 2005.

23

