Constraint Acquisition Based on Solution Counting
Christopher Coulombe 1 Claude-Guy Quimper 1
1Université Laval, Québec, Canada

Abstract
We propose CABSC, a system that performs Constraint Acquisition Based on Solution Counting. In order to learn a Constraint Satisfaction Problem (CSP), the user provides positive examples and a Meta-CSP, i.e. a model of a combinatorial problem whose solution is a CSP. It allows listing the potential constraints that can be part of the CSP the user wants to learn. It also allows stating the parameters of the constraints and imposing constraints over these parameters. The CABSC reads the Meta-CSP and returns the CSP that accepts the fewest solutions among the CSPs accepting all positive examples. This is done using a branch and bound where the bounding mechanism returns the CSP that accepts the fewest solutions among the CSPs. This is done using a branch and bound where the bounding mechanism accepts the fewest solutions among the CSPs.

Meta-CSP - Example
Following the examples with the 8 points.

Meta-CSP - Activation variables
An activation variable is a Boolean decision variable that is associated to a constraint. The constraint associated to the variable is included in the learned model if and only if the variable is set to True. If the variable is set to False, the solutions of the model can still satisfy the constraint.

Meta-CSP - Activation variables

Motivation & Simple Example
The 8 points are positive examples of solutions.
- We want to learn a CSP that explains the points.
- We learn either a linear equation or an ellipse.
- We know the points are in the first quadrant.
- We need to find a, b, and c that define a CSP accepting all sample solutions while minimizing the number of feasible solutions.
- Here, the solution is an ellipse with a = 1, b = 2 and c = 10.

Gist of the idea
CABSC learns a CSP by creating a Constraint Optimization Problem whose solution is the CSP that we aim to learn.

Meta-CSP
A Meta-CSP is a combinatorial optimization problem whose solution is itself a constraint optimization problem (CSP).

Features
- A Meta-CSP model has:
 1. a mapping from the decision variables to the solution examples
 2. the parameters of the constraints as new decision variables
 3. the known constraints that partially explain the example solutions
 4. constraints that potentially explain the example solutions

Model counting
A model counter is a tool that counts, but not necessarily enumerates, the number of solutions of a CSP. A model counter is exact if it gives an exact count, probabilistic exact if it gives an exact count with configurable probability, and approximate if it gives a configurable approximation of the number of solutions.

We used GARA [Sharma et al. IJCAI-19] as a probabilistic exact model counter and considered the return values exact. We also used ApproxMC [Chakraborty et al. IJCAI-16, Soos et al. AAAI-19] as an approximate model counter to quickly remove CSPs from the search tree.

How CABSC works
1. A Meta-CSP model that lists the known and potential constraints is created
2. Branch and bound is used where the nodes represent partial CSPs
3. A leaf in the search tree is a CSP
4. The bounding mechanism rewrites the CSPs as SAT models. The model counter then count the number of solutions of the CSPs.
5. CABSC uses a simple cache to avoid redundant queries to the model counters

Conclusion et contributions
- CABSC is a new way to do constraint acquisition
- Our approach learns the CSP that minimizes the size of its solution space
- The approach do not assume independence between decision variables
- CABSC learns multiple constraints and takes into account partial models
- CABSC successfully learns CSPs and requires few examples

Experiments
We created 4 benchmarks of instances that represent a nurse rostering problem. The goal was to learn the model that generated the example schedules.

Benchmarks
The benchmarks were created using conjunctions of the Sequence constraint or the Among constraint [Beldiceanu et al. Math. and Comp. Modelling]. The benchmarks included simplified instances, instances with known constraints (a partial model), instances with vacations and instances with overtime.

Meta-CSP
The Meta-CSP was written so that the solver had to select which constraint to learn among Sequence and Among. It also had to learn the correct parameters.

Results
The 3 CSPs with the smallest solution space are learned. The following graph shows for one of the benchmark whether the CSP used to generate the examples is among the 3 first CSPs learned by CABSC. If the correct CSP was not learned, the instance was sorted with "Other".

Code: http://www2.ift.ulaval.ca/quimper/publications.php
28th International Conference on Principles and Practice of Constraint Programming (CP 2022), Haifa
christopher.coulombe.1@ulaval.ca claudie-guy.quimper@ift.ulaval.ca