
Parallel Discrepancy-based Search:
An efficient and scalable search strategy
for massively parallel supercomputers

providing intrinsic load-balancing without
communication

Thierry Moisan, Jonathan Gaudreault, and Claude-Guy Quimper

Université Laval, Québec, Canada
Thierry.Moisan.1@ulaval.ca, Jonathan.Gaudreault@forac.ulaval.ca,

Claude-Guy.Quimper@ift.ulaval.ca

Abstract. Backtracking strategies based on the computation of dis-
crepancies have proved themselves successful at solving large problems.
They show really good performance when provided with a high-quality
domain-specific branching heuristic (variable and value ordering heuris-
tic), which is the case for many industrial problems.
We propose a novel approach (PDS) that allows parallelizing a strategy
based on the computation of discrepancies (LDS). The pool of processors
visits the leaves in exactly the same order as the centralized algorithm
would do. The implementation allows for a natural/intrinsic load bal-
ancing to occur (filtering induced by constraint propagation would affect
each processor pretty much in the same way), although there is no com-
munication between processors. These properties make PDS a scalable
algorithm to be used on massively parallel supercomputer with thou-
sands of cores.

1 Introduction

Constraint solvers have been used for decades and were successful at solving
numerous operations research problems. For instance, these solvers are used
for optimizing computer networks by better routing the traffic [1, 2], and for
planning and scheduling problems [3] in different industries, among them the
forest products industry [4, 5]. A solver accepts as input a combinatorial problem
defined by a set of variables and a set of constraints posted on these variables.
The solver usually explores the candidate solutions by doing a backtracking
search in a tree.

With the rise of multi-core servers, there has been an increase in research
for parallelizing constraint solvers. Parallelization is not trivial as there is need
for a trade-off between the workload balance, the communication cost, and the
duplication (redundancy) of work between the processors.

The choice of an efficient search strategy is instrumental in solving large in-
dustrial problems, even in a centralized environment (for performance reasons, it

is essential to explore the most promising leaves first). Among others, backtrack-
ing strategies based on the analysis of discrepancies such as LDS [6], DDS [7],
and DBDFS [8] have proved themselves successful at solving large problems.
They show really good performance when provided with a high-quality branch-
ing heuristic (that is, variable and value ordering heuristic), which is the case
for many industrial problems (e.g. [5]).

In this article, we propose a novel approach (PDS) that allows parallelizing
a strategy based on the computation of discrepancies (i.e. LDS). The proposed
approach shows the following characteristics:

– The pool of processors globally visits the leaves in exactly the same order as
the centralized version of LDS would do.

– There is no need for communication between the processors.
– The implementation allows for a natural/intrinsic load balancing to oc-

cur (filtering induced by constraint propagation would affect each processor
pretty much in the same way).

– The method provides robustness (if a processor dies, it can be replaced by
a new one that must however restart the work allocated to this processor).

– It offers pretty good scaling: adding additional processors can never slow
down the global process as happens with approaches using communication
(however, redundancy between processors increases with the number of pro-
cessors used).

These properties make PDS a scalable algorithm that we intend to use to
solve industrial problems from the forest products industry (see [4, 5]) using a
massively parallel supercomputer called COLOSSE deployed at Université Laval
(7680 cores). However, as this is an ongoing work, at this stage we do not pro-
vide a comprehensive performance analysis using industrial data. The focus of
this paper is rather to provide a description of the proposed algorithm, and a
discussion and analysis of its properties using synthetic data.

The remainder of this paper is organized as follows. Section 2 reviews basic
concepts related to parallel tree search. Sections 3 and 4 describe the original
algorithm and the parallel version. Section 5 reports theoretical results and eval-
uates the performance of the algorithm on synthetic trees in order to illustrate
different characteristics of the algorithm. Section 6 concludes the paper.

2 Basic Concepts

This section provides an overview of the main approaches regarding parallel tree
search. We then give an overview of previous attempts that were made in order
to parallelize discrepancy-based strategies.

2.1 Search space in shared memory

The simplest method for parallel tree search is implemented by having many
cores share a list of open nodes (nodes for which there is at least one of the chil-
dren that is still unvisited). Starved processors just pick up the most promising

node in the list and expand it. By defining different node evaluation functions,
one can implement different strategies (DFS, BFS and others). A comprehensive
framework based on this idea was proposed in [9]. Good performance is often
reported, as in [10] where a parallel Best First Search was implemented, and
evaluated up to 64 processors.

Although this kind of mechanism intrinsically provides excellent load bal-
ancing, it is known not to scale beyond a certain number of processors; beyond
that point, performance starts to decrease. For this reason, the approach cannot
easily be adapted for massively parallel supercomputers with thousands of cores.

2.2 Search space splitting / work stealing

This family of approaches is often reported as the most frequently seen in the
literature [11]. The main idea is to have the search tree split into different regions
allocated to processors (e.g. one processor branches to the left, the other proces-
sor branches to the right). As it is unlikely those subtrees will be of equal size,
a work stealing mechanism (see [12, 13]) is needed. Because it uses both com-
munication and computation time, this cannot easily be scaled up to thousands
of processors. In practice, we observe a decrease in performance when reaching
a certain number of processors. However, interesting work was reported in [14];
the authors allocated specific processors to coordination tasks, allowing an in-
crease in the number of processors that can be used before performance starts
to decline.

Another promising approach is reported in [11]. The authors used a search
space splitting mechanism allowing good load balancing without needing a work
stealing approach. They use a hashing function allocating implicitly the leaves to
the processors. Each processor applies the same search strategy in its allocated
search space, which solves the load balancing problem. However, like previous
approaches, leaves are globally visited in a different order than they would be on a
single-processor system. This could be a pity in situations where we know a really
good domain-oriented search strategy, a strategy that the parallel algorithm
failed to exploit to its full potential.

2.3 Las Vegas algorithms / portfolios

This approach consists in allocating the same search space to each processor.
Each processor explores it using a different strategy, leading to a different visit-
ing order of the leaves. No communication is required and an excellent level of
load balancing is achieved (they all search the same search space). Even if this
approach causes a high level of redundancy between processors, the approach
shows really good performance in practice. In [15] the approach was greatly
improved by using randomized restart [16–18] on each processor.

As there is no communication between processors, this approach is fully scal-
able, although on small multi-core computers some authors increase the efficiency
of the method by allowing processors to share information learned during the
search (e.g. nogoods, see [19]).

In general, the main advantage of the algorithm portfolio approach is that
one does not need to know a good search strategy beforehand: many strategies
will be automatically tried at the same time by the parallel system, thanks
to randomization. This is very useful because, as mentioned by [20] and [21],
defining good domain-specific labelling strategies (that is, variable and value
ordering heuristic) is a difficult task.

However, for complex applications where general strategies are inefficient and
where very good domain-specific strategies are known (e.g. [4, 5]) one would like
to have the parallel algorithm exploit the domain-specific strategy. In the next
section, we will describe a classic backtracking algorithm (LDS) that is known to
be efficient in centralized context when a good variable/value selection heuristic
is provided. We will then propose in Section 4 a parallel implementation.

To the best of our knowledge, it is the first time that LDS is parallelized this
way. In [14] LDS was used locally by processors to search in the trees allocated
to them (by a tree splitting / work stealing algorithm) but the global system did
not replicate an LDS strategy. The original centralized LDS being an iterative
algorithm, Boivin [22] tried running the first k iterations at the same time on k
processors. The approach did not prove to be efficient for the following reason:
when LDS is provided with a good labelling strategy, the kth iteration of LDS
visit leaves that have considerably less expected probability of success than those
in the first iterations. Therefore, for domain-specific problems where centralized
LDS is known to be good, only the first few processors were really helpful in
the parallel implementation. Moreover, they were experimenting load balancing
problems.

Finally, LDS was adapted for distributed optimization in [23, 24]. However,
distributed problems (DisCSP [25], DCOP [26] and HDCOP [27]) refers to a dif-
ferent context than parallel computing. These are problems that are distributed
by nature; different agents are responsible for establishing the value of distinct
variables and communication/coordination are inherent to those approaches.
Therefore, the algorithm called MacDS we proposed in [23, 24] could not serve
as a basis for a scalable parallel LDS algorithm.

The next section provides a comprehensive description of the centralized
version of LDS that will be parallelized in Section 4.

3 LDS

The search space of a problem can be represented as a tree where each node
corresponds to a partial assignment. The root is the empty partial assignment
and the leaves are complete assignments (also called solutions). Each child has
one more variable assigned than its parent. In their description of LDS, Harvey
and Ginsberg [6] consider binary search trees, i.e. trees where each non-leaf node
has two children. In this section we present a generalization of LDS to n-ary trees
which includes a modification by Walsh [7] that prevents visiting a leaf more than
once.

The value ordering heuristic is a function that orders the children of a node
from the child that will most likely lead to a solution to the child that is less
likely to lead to a solution. When represented graphically, the left-child is the
most likely one to lead to a solution and the right-child is the less likely one
to lead to a solution. A discrepancy is a deviation from the first choice of the
heuristic. We say that the first choice of the heuristic has zero discrepancy, the
second choice has one discrepancy, the third choice has two discrepancies and
so on. The discrepancy of a node is the sum of the discrepancies associated to
each choice on the path from the root of the tree to the node. Figure 1 shows a
search tree where the number of discrepancies is shown for each node.

0 1 1 2 1 2 2 3 2 3 3 4

0 1 1 2 2 3

0 1 2

0

Fig. 1. Search tree. The discrepancy of each node is written inside the node.

Harvey and Ginsberg demonstrated that, with a good value ordering heuris-
tic, the expected quality of a leaf decreases as the number of discrepancies in-
creases. For that reason, they proposed to visit the leaves with the fewest dis-
crepancies first and to keep the leaves with the most discrepancies for the end.
Algorithm 2 visits all the leaves that have exactly k discrepancies. Algorithm 1
launches the search to visit all leaves in increasing number of discrepancies.

Algorithm 1: LDS([dom(X1), . . . ,dom(Xn)])

for k = 0..n do
s← LDS-Probe([dom(X1), . . . , dom(Xn)], k)
if s 6= ∅ then return s

return ∅

Algorithm 2: LDS-Probe([dom(X1), . . . ,dom(Xn)], k)

Candidates← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . , dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v|dom(Xi)|−1

be the values in dom(Xi) sorted by preference of the
heuristic.
d← max(0, k −

∑
Xj∈Candidates\{Xi}(|dom(Xj)| − 1))

d← min(|dom(Xi)| − 1, k)
for d = d..d do

s← LDS-Probe([dom(X1), . . . , dom(Xi−1), {vd},
dom(Xi+1), . . . , dom(Xn)], k − d)

if s 6= ∅ then return s

return ∅

Harvey and Ginsberg showed, by analyzing binary search trees from different
problems, that the quality of a heuristic can be approximated/described by the
probability p of finding a solution in the left subtree if no mistakes were made in
the current partial assignment. Similarly, we say that the probability of finding
a solution in the right subtree is q. If the solution is unique, we have p+ q = 1.
If there is more than one solution, we have p+ q ≥ 1 since there is a probability
of having a solution both in the left subtree and the right subtree.

The better a heuristic is, the greater the ratio p
q is. The probability that

a leaf with k discrepancies is a solution is pn−kqk since it involves branching
k times on the right and n − k times on the left. Actually, that probability
decreases according to constant rate β = −lnpq . Therefore, the probability is

pn−kqk = pne−βk. The parameter β characterizes the quality of the heuristic.
The higher β is, the more likely the solutions will be concentrated in leaves having
few discrepancies. In contrast, the extreme situation where β = 0 corresponds to
a heuristic that does no better than random variable/value selection (all leaves
share the same probability of being a solution, and using an LDS would not be
a logical choice).

Finally, the solution density D of a problem is the ratio between the expected
number of solutions and the total number of leaves. Equation 1 gives the solution
density for binary search trees.

D =
1

2n

n∑
k=0

(pne−βk)

(
n

k

)
(1)

4 PDS

We want to run an LDS search over multiple processors. Parallelization can be
achieved in multiple ways but we set four goals that will influence our choices.

1. Search strategy preservation We want the leaves of the search tree to be
visited in the same order than they are on a single processor. Suppose that
we mark each leaf of the tree with the time as it appears on a wall clock at
the moment the leaf is visited. We assume that the clock is precise enough
to break any ties. The ordering of the leaves by their visiting time should be
the same regardless of the number of processors used.

2. Workload balancing We want the amount of work assigned to each proces-
sor to be evenly spread. This goal is particularly difficult to reach when the
constraints filter the variable domains and make the search tree unbalanced.

3. Robustness We aim at running the search on a large cluster of computers.
It is frequent on those computers that a processor fails for different reasons
and that the program must be restarted on another processor. It must be
possible to identify which part of the search tree was assigned to the failing
processor so that we can reassign this part of the search tree to another
processor.

4. Minimizing the communication We aim at minimizing the communica-
tion between the processors. We actually want to avoid any communication.
We make no assumptions about the geographical location of the processors
and their ability to communicate. Communication should be limited to the
broadcast of a solution.

We define a variation of LDS that we call PDS. Given there are ρ processors,
each processor is labelled with an integer between 0 and ρ − 1 called the pro-
cessor id. There is exactly one process running on each processor. The number
of processors ρ and the processor id are given as input to each process. These
two parameters are sufficient to identify which nodes of the search tree will be
explored by each process.

We label each leaf s of the search tree by its visit time t(s) in a standard LDS
run on one processor. The first leaf to be visited has a visit time of t(s0) = 0,
the second leaf has a visit time of 1 and so on. We assign each leaf to a processor
in a round-robin way by assigning a leaf s to processor t(s) mod ρ. A processor
j is only allowed to visit a leaf s that satisfies t(s) mod ρ = j or an ancestor of
such a leaf. Consequently, before branching on a child node, a processor j has
to check whether this child leads to a leaf it can visit. We show how to perform
this test.

Each call to Algorithm 4 corresponds to the visit of a node a in the search
tree. The parameter k corresponds to the number of discrepancies that must lie
on the path between the node a and the leaves. Let C(X1, . . . , Xn, k) be the
number of leaves that have exactly k discrepancies in a search tree formed by
the variables X1, . . . , Xn. The function C(X1, . . . , Xn, k) is recursively defined

as follows.

C(X1, . . . , Xn, k) =


0 if k < 0
1 if k = 0∑|dom(Xn)|−1
i=0 C(X1, . . . , Xn−1, k − i) otherwise

(2)

When all domains have cardinality two, the recursion becomes C(X1, . . . , Xn, k) =
C(X1, . . . , Xn−1, k) + C(X1, . . . , Xn−1, k − 1). This recursion is the same that
appears in Pascal’s triangle to compute the binomial coefficients. We therefore
have C(X1, . . . , Xn, k) =

(
n
k

)
when |dom(Xi)| = 2. Intuitively, since each variable

generates at most one discrepancy, the number of solutions with k discrepancies
is the number of ways one can choose k variables among the n variables. When
the domains have cardinalities greater than two, the recursion can be understood
as follows: the variable Xn can generate a number of discrepancies i between 0
and |dom(Xn)|−1. For each possible value of i, we count the number of solutions
in the subtree of height n− 1 that have exactly k − i discrepancies.

By looking at equation (2), it seems that we consider a fixed ordering of
the variables X1, . . . , Xn. However, the function returns the same value for any
ordering. Consequently, the ordering used in Equation (2) does not need to be
the same ordering as the one used by the search heuristic. In fact, the variable
ordering imposed by the heuristic does not need to be static, but is required to
be deterministic.

Consider a node a where a value is going to be assigned to Xn and none of
the variables X1, . . . , Xn are assigned. The node a has for children the nodes
c0, . . . , c|dom(Xn)|−1. Let l(a, k) be the processor assigned to the left-most leaf

with k discrepancies in the subtree rooted at a. From this construction, we
have l(a, k) = l(c0, k) since branching from a to c0 adds no discrepancies to
the partial assignment and that both expressions refer to the same leaf. There
are C(X1, . . . , Xn−1, k) leaves with k discrepancies in the subtree rooted at c0.
Since each of these leaves are assigned to the processors in a round-robin way,
the processor assigned to the first leaf in the subtree rooted at c1 is therefore
(l(c0, k) + C(X1, . . . , Xn−1, k)) mod ρ. The same reasoning applies for the other
children leading to the following recursion.

l(ci, k − i) =

{
l(a, k) if i = 0
(l(ci−1, k − i+ 1) + C(X1, . . . , Xn−1, k − i+ 1)) mod ρ otherwise

(3)

We now have all the tools to present how the search strategy PDS proceeds.
Each processor visits only the nodes that lead to one of its assigned leaves. For
each node a with children c0, c1, . . ., Algorithm 4 computes which processor will
treat the left-most leaf of the subtree rooted at ci. This allows computing a range
of processors that will visit each child. If the current processor is among that
range, then it branches to the child.

Algorithm 3: PDS([dom(X1), . . . ,dom(Xn)])

l← 0
for k = 0..n do

s← PDS-Probe([dom(X1), . . . , dom(Xn)], k, l)
l← l + C({X1, . . . , Xn}, k) mod ρ
if s 6= ∅ then return s

return ∅

Algorithm 4: PDS-Probe([dom(X1), . . . ,dom(Xn)], k, l)

Candidates← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . , dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v|dom(Xi)|−1

be the values in dom(Xi) sorted by preference of the
heuristic.
d← max(0, k −

∑
Xj∈Candidates\{Xi}(|dom(Xj)| − 1))

d← min(|dom(Xi)| − 1, k)
for d = d..d do

z ← C(Candidates \ {Xi}, k − d)
if z < ρ then

if l < l + zmod ρ then
processors← {l, . . . , l + z − 1 mod ρ}

else
processors← {0, . . . l + z − 1 mod ρ} ∪ {l, . . . , ρ− 1}

else
processors← {0, . . . , ρ− 1} // All processors

if currentProcessor ∈ processors then
s← PDS-Probe([dom(X1), . . . , dom(Xi−1), {vd},

dom(Xi+1), . . . , dom(Xn)], k − d, l)
if s 6= ∅ then return s

l← l + zmod ρ

return ∅

5 Analysis

This section provides an analysis of PDS in order to illustrate different properties
of the algorithm. Section 4 showed how parallel cores can globally visit the leaves
in the same order as the centralized algorithm would do. We now demonstrate the
quality of the intrinsic workload balance that is achieved. First, when exploring
the whole tree, the round-robin assignation of the processors insures that the
difference between the number of leaves visited by two processors is at most one.
Workload balancing is easy to achieve when considering complete search tree.
However, it becomes harder to evenly divide the work among the processors
when the tree is unbalanced. Search trees are often unbalanced when domain
filtering and consistency technique are applied. We prove that when a value is
filtered out of a variable domain and that a branch is cut from the tree, the
workload is evenly reduced among all processors.

Theorem 1. Let n be the number of variables in the problem. If a branch is cut
from the search tree, the number of leaves removed from the workload of each
processor differs by at most n+ 1.

Proof. The round-robin affection of the leaves with k discrepancies in a subtree
guarantees that the number of leaves for each processor differs by at most one.
Since we explore a subtree n+1 times for solutions with 0, 1, ..., n discrepancies,
the difference of workload between the processors is at most n+ 1 leaves. ut

In addition to this, we provide empirical results showing that the performance
of the algorithm never declines, even if we have more cores than there are leaves
in the tree. This was done using a Monte Carlo approach reminiscent of what
was done in [6] and [7].

We first generated very small trees for which we can easily have more cores
than leaves (we chose n = 5, so we have 25 = 32 leaves). A thousand trees were
randomly generated for a given p

q ratio (represented by the parameter β) and

a given expected density D (we used “moderate” values for those parameters -
we will provide results for other values later in this section). We then searched
each tree using PDS, emulating the work of different numbers of cores and noted
the “computation time” (number of nodes visited by the first core that finds a
solution). 1

Figure 2 shows the probability that a solution is found according to the
computation time. For a given computation time, increasing the number of cores
increases the probability that a solution has been found. With 32 cores, we have
one processor per leaf. Passed that point, we have neither improvement nor
deterioration. Figure 3 shows the same information in a different way.

It shows the average reduction of the computation time achieved when pro-
viding additional cores (in comparison with a single core).

1 We didn’t include pruning in these experimentations. However, theorem 1 shows that
we can define an upper bound on the amount of work removed from each processor
when pruning is done.

This clearly illustrates that we always increase the performance when we
provide more cores until we reach the number of leaves. From that point there
is no more gain. It also illustrates well that the speedup as a function of the
number of processors is far from being linear. This is caused by redundancy
between cores visiting the same nodes although reaching different leaves.

Figures 4 and 5 provide the results for the same experiment, but for trees
with n = 15 variables. Although we did not execute the algorithm using 215

cores, it shows similar results. For a given solution density, solutions tend to be
concentrated on the leaves having few discrepancies.

As the expected quality of a leaf decreases exponentially with its number
of discrepancies (recall Section 3), adding more cores makes us visit additional
leaves in the same computation time, but those leaves have smaller probability
of success. This is a natural (and desired) consequence of using a good vari-
able/value selection heuristics and a backtracking strategy visiting leaves in or-
der of expected quality.

The next experiment (Figures 6 and 7) illustrates that, for a given number
of cores, the redundancy between cores decreases as the size of the problems
(number of variables) increases.

The previous result tends to show that huge problems would greatly gain
from this parallelization. The next experiment studies the performance of the
algorithm according to the quality of the variable/value selection heuristics used.
We recall from Section 3 that the higher the β ratio is, the more likely the
solutions will be concentrated in leaves having few discrepancies. In contrast,
the extreme situation where β = 0 simulates the use of a heuristic that does no
better than random variable/value selection (all leaves share the same probability
of being a solution, and using an LDS would not be a logical choice).

On Figure 8, the curve for 1 core shows that computation time decreases
exponentially when β increases (the results we would get using the centralized
version of LDS). Other curves show that when we provide additional cores, the
computation time still decreases exponentially, but much more quickly.

Finally, the last experiment evaluates the algorithm according to problem
density (Figures 9 and 10). The harder the problems are (low density), the more
it pays to increase the number of cores. The easier they are (high density), the
less useful it is to provide more cores.

0 20 40 60 80 100 120
Computation time (nb visited nodes)

0

20

40

60

80

100
%

1 core
2 cores
4 cores
16 cores
32 cores
64 cores

Fig. 2. Probability that a solution is found after some computation time [n = 5 vars;
β = 0.4; pn = 0.04; density D = 0.0163]

0 5 10 15 20 25 30 35
Number of cores

5

10

15

20

25

30

35

40

45

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

n
b
 v

is
it

e
d
 n

o
d
e
s)

Fig. 3. Computation time according to the number of cores used [n = 5 vars; β = 0.4;
pn = 0.04; density D = 0.0163]

0 500 1000 1500 2000
Computation time (nb visited nodes)

0

20

40

60

80

100
%

1 core
2 cores
4 cores
16 cores
32 cores
64 cores

Fig. 4. Probability that a solution is found after some computation time [n = 15 vars;
β = 0.4; pn = 0.04; density D = 0.0027]

0 5 10 15 20 25 30 35
Number of cores

0

50

100

150

200

250

300

350

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

n
b
 v

is
it

e
d
 n

o
d
e
s)

Fig. 5. Computation time according to the number of cores used [n = 15 vars; β = 0.4;
pn = 0.04; density D = 0.0027]

0 2 4 6 8 10 12 14 16
Nb variables

0

50

100

150

200

250

300

350
C

o
m

p
u
ta

ti
o
n
 t

im
e
 (

n
b
 v

is
it

e
d
 n

o
d
e
s)

1 core
2 cores
4 cores
16 cores
32 cores
64 cores

Fig. 6. Expected computation time according to the number of variables [β = 0.4;
pn = 0.04]

0 2 4 6 8 10 12 14 16
Nb variables

0

20

40

60

80

100

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

%
 v

s
1

 c
o
re

)

1 core
2 cores
4 cores
16 cores
32 cores
64 cores

Fig. 7. Reduction of computation time when providing more cores, for different prob-
lem sizes [β = 0.4; pn = 0.04]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quality of variable/value selection heuristic (β)

0

20

40

60

80

100

120

140

160

180

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

n
b
 v

is
it

e
d
 n

o
d
e
s)

1 core
2 cores
4 cores
16 cores
32 cores

Fig. 8. Performance according to the quality of the variable/value selection heuristic
[n = 15 vars; density D = 0.0400] The higher the β is, the more likely solutions will be
concentrated on leaves with fewer discrepancies. In the extreme case where β = 0, this
simulates the use of a heuristic that does no better than random selection (all leaves
have the same probability of being a solution).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pn

0

50

100

150

200

250

300
C

o
m

p
u
ta

ti
o
n
 t

im
e
 (

n
b
 v

is
it

e
d
 n

o
d
e
s)

1 core
2 cores
4 cores
16 cores
32 cores

Fig. 9. Computation time according to solution density [n = 15 vars; β = 0.4] The
pn parameter goes from 0.05 to 0.9. This corresponds to trees with a solution density
going from 0.0034 to 0.0604

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pn

0

20

40

60

80

100

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

v
s

1
 c

o
re

)

1 core
2 cores
4 cores
16 cores
32 cores

Fig. 10. Computation time according to solution density [n = 15 vars; β = 0.4] The
pn parameter goes from 0.05 to 0.9. This corresponds to trees with a solution density
going from 0.0034 to 0.0604

6 Conclusion

We proposed a new parallelization scheme based on the LDS backtracking strat-
egy. This parallelization does not alter the strategy since the order of visits of
the nodes remains unchanged. Moreover, PDS provides an intrinsic workload
balancing, it scales on multiple processors, and it is robust to hardware failures.

These properties make PDS a scalable algorithm that we intend to use to
solve industrial problems for which excellent problem-specific variable/value se-
lection heuristics are known.This is presently a work in progress and more de-
velopments are on their way. PDS will be implemented on a massively parallel
supercomputer (7680 cores) in order to solve huge problems from the forest
products industry.

References

1. Chabrier, A., Danna, E., Le Pape, C., Perron, L.: Solving a network design problem.
Annals of Operations Research 130 (2004) 217–239

2. Le Pape, C., Perron, L., Régin, J.C., Shaw, P.: Robust and parallel solving of a
network design problem. In: Proceedings of the Eighth International Conference
on Principles and Practice of Constraint Programming (CP 2002). (2002) 633–648

3. Le Pape, C., Baptiste, P.: Heuristic control of a constraint-based algorithm for the
preemptive job-shop scheduling problem. Journal of Heuristics 5 (1999) 305–325

4. Gaudreault, J., Forget, P., Frayret, J.M., Rousseau, A., Lemieux, S., D’Amours,
S.: Distributed operations planning in the lumber supply chain: Models and co-
ordination. International Journal of Industrial Engineering: Theory, Applications
and Practice 17 (2010)

5. Gaudreault, J., Frayret, J.M., Rousseau, A., D’Amours, S.: Combined planning
and scheduling in a divergent production system with co-production: A case study
in the lumber industry. Computers Operations Research 38 (2011) 1238–1250

6. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995).
(1995) 607–613

7. Walsh, T.: Depth-bounded discrepancy search. In: Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI 1997). (1997) 1388–
1393

8. Beck, J.C., Perron, L.: Discrepancy-bounded depth first search. In: Proceedings
of the Second International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR
2000). (2000) 8–10

9. Perron, L.: Search procedures and parallelism in constraint programming. In: Pro-
ceedings of Fifth International Conference on Principles and Practice of Constraint
Programming (CP 1999). (1999) 346–360

10. Vidal, V., Bordeaux, L., Hamadi, Y.: Adaptive k-parallel best-first search: A simple
but efficient algorithm for multi-core domain-independent planning. In: Proceed-
ings of the Third International Symposium on Combinatorial Search (SOCS 2010).
(2010)

11. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: Proceedings of the Twenty-First International Joint Con-
ference on Artificial Intelligence (IJCAI 2009). (2009) 443–448

12. Michel, L., See, A., Van Hentenryck, P.: Transparent parallelization of constraint
programming. INFORMS J. on Computing 21 (2009) 363–382

13. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel
constraint programming. In: Proceedings of the Fifteenth International Conference
on Principles and Practice of Constraint Programming (CP 2009). (2009) 226–241

14. Xie, F., Davenport, A.: Massively parallel constraint programming for supercom-
puters: Challenges and initial results. In: The Seventh International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CP-AI-OR 2010). (2010) 334–338

15. Shylo, O.V., Middelkoop, T., Pardalos, P.M.: Restart strategies in optimization:
Parallel and serial cases. Parallel Computing 37 (2010) 60–68

16. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms.
Information Processing Letters 47 (1993) 173–180

17. Gomes, C.P.: Boosting combinatorial search through randomization. In: Proceed-
ings of the fifteenth national/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence (AAAI ’98/IAAI ’98). (1998) 431–437

18. Gomes, C.P.: Complete randomized backtrack search. In: Constraint and Integer
Programming: Toward a Unified Methodology. (2003) 233–283

19. Hamadi, Y., Sais, L.: Manysat: a parallel sat solver. Journal on Satisfiability,
Boolean Modeling and Computation 6 (2009) 245–262

20. Hamadi, Y., Ringwelski, G.: Boosting distributed constraint satisfaction. Journal
of Heuristics (2010) 251–279

21. Puget, J.F.: Constraint programming next challenge: Simplicity of use. In: Proceed-
ings of the Tenth International Conference on Principles and Practice of Constraint
Programming (CP 2004). (2004) 5–8

22. Boivin, S., Gendron, B., Pesant, G.: Parallel constraint programming discrepancy-
based search decomposition. Optimization days, Montréal, Canada (2007)

23. Gaudreault, J., Frayret, J.M., Pesant, G.: Discrepancy-based method for hierar-
chical distributed optimization. In: Nineteenth International Conference on Tools
with Artificial Intelligence (ICTAI 2007). (2007) 75–81

24. Gaudreault, J., Frayret, J.M., Pesant, G.: Distributed search for supply chain
coordination. Computers in Industry 60 (2009) 441–451

25. Yokoo, M.: Distributed constraint satisfaction: foundations of cooperation in multi-
agent systems. Springer-Verlag, London, UK (2001)

26. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence 161 (2006)
149–180

27. Gaudreault, J., Frayret, J.M., Pesant, G.: Discrepancy-based optimization for
distributed supply chain operations planning. In: Proceeding of the Ninth Inter-
national Workshop on Distributed Constraint Reasoning (DCR 2007). (2007)

