
Human-Machine Interaction

for Real-time Linear Optimization

Simon Hamel, Jonathan Gaudreault
*
, Claude-Guy Quimper, Mathieu Bouchard, Philippe Marier

FORAC Research Consortium, Université Laval

Québec, Canada, G1V 0A6

*
Corresponding author: jonathan.gaudreault@forac.ulaval.ca

Abstract — Mixed-Initiative-Systems (MIS) are hybrid decision-

making systems in which human and machine collaborate in

order to produce a solution. This paper described an MIS system

adapted to business optimization problems. These problems can

be solved in less than an hour as they show a linear structure.

However, this delay is unacceptable for iterative and interactive

decision-making contexts where users need to provide their input.

Therefore, we propose a system providing the decision-makers

with a convex hull of optimal solutions minimizing/maximizing

the variables of interest. The users can interactively modify the

value of a variable and the system is able to recompute a new

optimal solution in a few milliseconds. Four real-time

reoptimization methods are described and evaluated.

Keywords — Linear optimization; Mixed-initiative systems;

Supply chain optimization; Human-machine interaction.

I. INTRODUCTION

Most decision-making systems (e.g. planning or scheduling
systems) found in enterprises lie on one of the following
paradigms. The first one is fully automated systems. It is
typically the case when an algorithm is used to find an optimal
solution to the decision problem. In other cases, the planning is
done by a human expert, sometimes with the help of a visual
interface allowing him to get real time feedback regarding his
decisions and choices. Surprisingly, quite a few optimization
problems are planned manually as such. Indeed, automated
planning tools are lacking of a political sensitivity or, more
generally, do not take into consideration many important soft
constraints that are often quite difficult to model (constraints
that even human does not realize they exists before he sees a
solution violating them).

Mixed-Initiative-Systems (MIS) [1, 2] are hybrid decision-
making systems in which human and machine collaborate in
order to produce a solution. Most MIS-related research is done
by the A.I. community and applies to discrete combinatorial
optimization problems.

The goal of this research is to propose MIS methods
adapted to business optimization problems showing a linear
structure. Preliminary notions regarding MIS and supply chain
optimization are provided in Section II. The proposed Mixed-
Initiative system for linear optimization is described in Section
III. It is then evaluated for a real-size industrial supply chain
problem in Section IV. Finally, section V concludes the paper.

II. PRELIMINARY NOTIONS

A. Mixed-Initiative Systems (MIS)

The motivation behind MIS is that human and machines
show different strength [3]. Human has an implicit knowledge
of the problem that cannot always be formalized. Human
guidance can improve the performance of search
algorithms [4]. Moreover, the decision-maker is often unaware
of a constraint or an issue till he sees it in the solution proposed
by the machine. In this context, involving the human in the
search for the solution has some values.

Depending on the context, MIS provide different benefits.
In some situations, the solution is produced using less
computation time because the user can guide the search
according to his intuition [4]. In other contexts, the main
interest is for the final solution to get a better acceptance level
by decision-makers because it is more in line with informal
objectives of the company/decision maker.

Most MIS-related researches target discrete combinatorial
optimization problems such as timetabling [5], space mission
planning and scheduling [6-8], air traffic control [9], military
applications [10, 11], etc.

Mixed-Initiative Systems have not yet made their way into
business management systems such as those used for Supply
Chain Management (SCM). We believe the main reasons are
that (1) most of these situations can be modeled as linear
optimization problems for which good algorithms exists, and
(2) methods developed for classical A.I. planning could not
easily be applied to those kind of problems.

B. Products flow optimization in supply chain management

The goal of our research is to propose MIS methods
adapted to business problems showing a linear structure model.
Such structure is present in supply chain product flows
problems where decisions typically involve determining, for
each period of time, the volume of products that needs to be
transported between business units, the target inventories to
keep on hand, the amount to replenishment from suppliers, the
quantities of each product to ship to customers and the
production quantities [12, 13].

These problems are typically solved using commercially
available software like IBM ILOG CPLEX. They can solve
problems having several hundreds of thousands variables in a

few minutes, thanks to well known algorithms like Dantzig’s
simplex method.

One shortcoming of these solvers is that they usually return
one and only one solution for a given problem (defined as a set
of variables, constraints and an objective function) – although
thousand of alternative optimal solutions may exist. Most of the
time, the returned solution is inadequate as the problem
specification does not take into account the contextual and
political information known only to the decision maker [4]. It is
indeed very difficult in a mathematical model to consider all
the preferences of the user. Moreover, the decision maker does
not know exactly all the constraints; he “discovers” some when
he sees solutions violating them.

Although the solution produced by the solver often contains
hundreds of thousands of variables, in practice the decision-
maker analyzes the solution by consulting only a few charts,
each one containing a few dozens of variables (e.g. 52 variables
matching the 52 weeks in the year). An example of this type of
chart is provided in Figure 1.

Figure 1. Example of a chart used by decision-makers to analyze the solution

of a supply chain optimization problem.

When the solution does not satisfy the requirements of the
decision maker (e.g. he does not like the value for a specific
variable), the mathematical model has to be modified and
reoptimized so that a new solution can be found (Figure 2).

Figure 2. Typical process of finding a suitable solution

Not only is this process very long (solving an integrated
supply chain planning problem may easily take up between 10
and 60 minutes), this is also a frustrating iterative process
because when the decision-maker is not satisfied by a variable
value, he never knows if the variable is really constrained to
that specific value in order for the solution to be optimal, or if
exists other optimal solutions with other values for that
variable. He does not have the choice but to run new
optimizations.

III. THE PROPOSED MIXED-INITIATIVE SYSTEM FOR

LINEAR OPTIMIZATION PROBLEMS

A good Mixed-Initiative System for linear optimization
would provides the user with information regarding whether or
not the variables of interest are constrained to a certain value in
order for the solution to be optimal. It also allows the user to
interactively modify the value of a variable and see, in real-
time, how the other variables should be modified in response to
that modification.

The system we propose allows the user to visualize an
implicit sub-space of optimal solutions for a given set of
variables. The user can interactively increase or decrease the
value of a variable and the system reacts by computing and
displaying, in real time, the new sub-space of optimal solutions
(Figure 3).

Figure 3. MIS concept applied to linear programming

A. Obtaining and displaying a sub-space of optimal solutions

To palliate the fact that classical solvers return a single
solution, we proceed as follows. We use a classical solver to
compute an optimal solution for the problem P. Once the
optimal objective value is known, we search for other optimal
solutions. We create a new instance P’ by augmenting the
instance P with a constraint forcing the objective value to be
equal to the optimal value found for P. The space of feasible
solutions of P’ is therefore equivalent to the space of optimal
solutions of P. For each of the n variables xi displayed on the
graph, we search for a solution that minimizes xi and a
solution that maximizes xi while preserving the optimality of
the solutions. These 2n computations can be performed in
parallel using a supercomputer.

Then, one can display on the chart (see Figure 4) the range
of optimality for each variable xi (the minimum and maximum
values the variable can take in an optimal solution).

Figure 4. An optimal solution with range of optimality for the variables.

Moreover, it is possible to construct an “average” solution
to be displayed to the user by summing the 2n solution vectors
and dividing the result by the scalar 2n. The validity of this
process relies on the concept of convexity that we present
bellow.

A n-dimensional vector represents the values assigned to n
variables, and therefore a solution to a problem. A vector also
represents a point in an n-dimensional space. Let x and y be
two n-dimensional vectors. A linear combination is the
weighted sum of two or more vectors, e.g. x yα β+ . A linear

combination is affine if the sum of the weights equals one, e.g.

()1x yα α+ − . Any point on the line passing by the points x

and y is an affine combination of x and y. A linear combination
is convex if it is affine and if each weight is non-negative, e.g.

()1x yα α+ − for []0,1α ∈ . The points that can be obtained

by a convex combination of x and y are those on the segment

connecting x to y . A space S is convex if any convex

combination of two points in S is also in S .

Theorem 1 is a well-known result in the linear
programming literature (e.g. [14]). It shows how an optimal
solution to a linear program can be obtained from the convex
combination of distinct optimal solutions. We reproduce the
proof of the theorem as it shows the properties we will exploit
in our system.

Theorem 1 : The convex combination of two optimal
solutions of a linear program is also an optimal solution.

The space { }, 0S x Ax b x= ≤ ≥ contains the feasible

solutions of a linear program. Let x S∈ and y S∈ be two

solutions. We show that any convex combination of x and y
belongs to S.

Suppose that x and y are two optimal solutions to the linear

program, i.e. x maximizes the scalar product Tc x and so does y.

Let T T*c c x c y= = be the optimal cost. We show that any

convex combination of x and y is also an optimal solution. �

The convex hull of a set of points { }1, , nX x x=
� �

… is the

space containing all convex combinations of the points in X .
Formally, we note

From Theorem 1, if the points 1, , nx x
� �

… are optimal

feasible solutions to a linear program, then all points in

()1conv , , nx x
� �

…

are optimal feasible solutions.

In our system, the convex hull of the solutions is and is

that minimize and maximize each of n variables form a
subspace of optimal solutions.

B. Real-time convex combination of optimal solutions

A chart like the one depicted in Figure 4 allows the user to
see the flexibility (range of optimality) he has for any of the
variable of interest. He can thus change the value of a variable
within the optimality zone of that variable, for example by
dragging up or down the top of a bar in the chart. The system
should then adjust the value taken by the other variables such
that the solution is still optimal. Normally, this operation would
require a lengthy complete re-optimization of the problem.
Based on Theorem 1, we know however that it is possible to
compute a new optimal solution by generating new convex
combination of the optimal solutions obtained from the
previous section. To find a solution with a given variable
assigned to a specific value, it is sufficient to compute a new
convex combination of extreme solutions.

If this could be done in real-time, we could instantly refresh
the chart and display the impact of the user modification on the
other variables. The user could thus navigate through the
solutions space, successively modifying several variables until
a suitable solution is found.

Figure 5 illustrate this idea for a small problem with two
variables. The polygon shows the set of convex combination
formed by optimal solutions minimizing and optimizing each
of the variables

1
.

Figure 5. Available optimal zone using convex combinations.

When the user modifies a variable, we do not just want to
find any point in the sub-space such that the modified variable
takes the desired value; we want to find a solution such that the
other variables move as little as possible so that the overall
system appears to be stable. If it would not be the case, then
any modification made to a variable could offset the previous
modifications made to the other variables and it would never be
possible for the user to converge to a satisfactory solution.

Given a solution x, a variable xi, and a value v, finding a

new solution x′ where i ix v x′ = ≠ while changing as little as

possible the values of the other variables is an optimization
problem.

1 This example (Figure 5) also shows that there could be optimal solutions not

covered by this sub-space. This is why we say that the user navigate in a space

(formed by convex combination of our extreme solutions) that is in reality a
sub-space of the optimal solutions.

We propose four approaches to solve this optimization
problem. Each of them is a trade-off between responsiveness
and stability.

Definition 1: Responsiveness refers to the computation
time needed to obtain a new solution each time the decision-
maker modifies a variable. It determines the time before the
software can display the new optimized solution.

Definition 2: Stability is the property of computing a new
solution that is as close as possible from the current solution.

While responsiveness guarantees that the software reacts in
real-time to the changes of the decider, stability ensures that the
software does not move the solution away from the choices that
the decider previously made.

Responsiveness is measured in milliseconds. Stability is
given by the Euclidean distance between the original solution x
and the modified solution x’.

Since responsiveness is an important criterion, we exclude
the method of resolving the original problem from scratch. We
restrict ourselves to find a solution in the convex hull of the 2n

precomputed solutions 1 1, , , ,n ns s s s… , a much smaller problem

then the original one. Here are the proposed methods.

1. Minimizing the Euclidean distance. This method aims

at finding in the convex hull ()1 1conv , , , ,n ns s s s… the solution

whose Euclidean distance is the closest to x. Let S be the

2n n× matrix whose columns are the solutions 1 1, , , ,n ns s s s… .

The solution we are looking for is a convex combination of

these solutions. We are therefore looking for a vector such

that x Sα′ = ,
2

1
1

n

i
i
α

=
=∑ , and 0iα ≥ . Moreover, we want

ix′ to be equal to v . We obtain the following quadratic

problem where ie is the vector with null components except

for the thi one that is equal to one, 1
�

is the vector with all

components equal to one, and 0
�

is the null vector:

The squared Euclidean distance
2

x Sα− can be rewritten

as T T T T2S S x S x xα α α− + . The problem is a semidefinite

program. The objective function is quadratic and convex and
the constraints are linear. Solvers like CPLEX can solve this
problem using interior point algorithm.

2. Minimizing the maximum distance. Even though

semidefinite problems can be efficiently solved, they are more

computationally demanding than linear programs. We propose

another approach that is likely to be faster. Rather than

minimizing the Euclidean distance between the new and the

former solution, we minimize the maximum distance between

two variables, i.e. we minimize max j j jg x x′= − . The linear

program we present is inspired from the previous one. Once

more, we compute the vector α that expresses x′ in terms of

a convex combination of the 2n solutions stored in the

columns of S (x Sα′ =). The two first constraints of this

linear program force the variable g to be at least as large as

j jx x′ − . The unknown of this problem are the vector α and

the gap variable g.

This problem can be solved using the simplex method,
which is usually faster than the interior point method used for
semidefinite problems of the previous approach. The obvious
drawback is that the objective function is not completely in line
with our stability metric. Even if we minimize the distance
between the two variables that are the furthest apart, we do not
minimize the distance between the other variables. A solution

x′ where all variables are changed by the same amount would
be equivalent to a solution where only the variable xi is
modified.

3. A bipolar heuristic. We introduce a third method that

focuses on responsiveness. The bipolar heuristic is a very fast

way to compute a new solution. Given that the decider wants

to set the variable xi to the value v, we compute the unique

convex combination such that .

To do so, we set where and

are the values of xi in the precomputed solutions that minimize

and maximize xi. The geometric interpretation of this method

is that we choose x’ to be the intersection of the segment

connecting to and the plane .
This solution is by far the most responsive one, as it does

not involve any solver. However, it does not take into account
the stability metric. Indeed, a small change on the variable xi
can produce big changes on the other variables of the solution.
For example, consider an example in the plane where we have

[]1 1,0s = − , []1 1,0s = , []2 0, 1s = − , and []2 0,1s = (see Figure

6). Let the current solution be []0.5, 0x = . A small move of

variable x2 from 0 to ε causes the solution to change for

[]0,x ε′ = even though the solution []0.5,x ε′ = is a better

choice.

Figure 6. Illustrating the bipolar method stability drawback.

4. The triangular heuristic. To palliate to the non-

stability of the previous approach, we propose the triangular

heuristic. First, this method determines whether the variable xi

is increased (v > xi) or decreased (v < xi). If the variable is

increased, we compute the unique convex combination

between the current solution x and that intersects the plane

. If the variable is decreased, we compute the unique

convex combination between the current solution x and that

intersects the plane . In other words, if the decision-

maker increases xi, we set

where

.

If the decider decreases the variable xi, we set

where

.

Going back to the example of Figure 6 where x = [0.5, 0].
Increasing x2 by ε sets the new solution to

[]0.5 / 2,x ε ε′ = − . This is significantly more stable that the

bipolar heuristic.

There is a second difference between the bipolar heuristic
and the triangular heuristic. The bipolar heuristic can only
produce a solution that lies on a segment connecting a solution

 to a solution for a given j. The triangular heuristic can
produce any solution in the convex hull

. Indeed, there exist a sequence of
movements that the decider can make in order to reach any
solution in the convex space.

Property 1: A sequence of movements made with the
triangular heuristic from a solution x can reach any solution in

the convex hull .

Proof. Let x’ be the final solution in

. Let S be the matrix whose columns
are the extreme points of the convex hull. There exists a non-
negative vector whose components sum to one and that
satisfies . We prove by induction on the number of
non-null components in that any x’ is reachable from a
sequence of triangular movements.

Suppose that there exists a single non-null component in .

This component is equal to one and we have or

 for some j. Increasing the value of xj in the current
solution to its maximum or minimum makes the triangular
heuristic fix the new solution to x’.

Suppose that one can reach any solution with k > 0
non-null components in , we prove that one can also reach

any solution with k + 1 non-null components in . Let

 be a solution with k + 1 non-null components in .

Let j be the index of any non-null component in . We
construct the vector as follows.

The solution is reachable since it has only k non-

null components. Moreover, let be the solution

associated to the component . It is possible to move from the
solution x to x’ using the triangular heuristic since this relation
holds.

This is the relation computed when the decider changes the

value of to . �

Property 1 ensures that any solution in the convex hull can
be reached.

Figure 7. An example of the triangular method.

IV. EVALUATION

A. The industrial case study

The industrial partner in this project is looking to put in
place an efficient process for integrated sales and operation
planning (S&OP). As part of this process is the use of a large
scale linear programming model with over 200,000 variables
and 100,000 constraints we introduced in [13]. This model
generates a unified tactical plan for the production and
distribution network. This plan is divided in fifty two weekly
periods and integrates decisions pertaining to production,
distribution and sales.

Production. Lumber production from sawmills involves
three main processes: sawing, drying and planning. The sawing
process is divergent as a single product entering the production
line gets transformed into several different products. Different
production recipe can be chosen in order to influence the
products’ basket that gets produced. The drying of the wood
allows giving its stability over its life time. The drying is done
by batch in large kilns and the process can lasts from 2 to 5
days depending on several factors like the species, the lumber
dimension (section width and thickness) and the original
moisture content. Kiln drying may be preceded by an air drying
operation that can lasts from 2 to 18 weeks. Air drying usage
reduces kiln dry time and may increase the lumber quality. The
reduction in kiln dry time depends not only on the time the
wood was air dried, but also the period of the year at which the
air drying was done. Finally, the planing is the process that
gives the lumber its finish and exact dimension. Because of the

wood characteristics and defects, not two lumber units entering
the planing process are exactly identical. It is therefore
impossible to precisely predict the final products exiting the
planing process given a set of input products. Historical
production planing data are used to estimate the production of a
given input product. The tactical production planning help
determine, for each sawmill in the network and for each week,
the sawing recipe to use, the volume of each sawed product to
air dry along with the air dry duration, the volume of each
product to kiln dry and the volume of each product to plane
along with the planing recipe to use.

Sales. In the North American forest products industry,
lumber market prices follow a seasonal pattern. The planning
model takes this into account and may suggest producing in
advance some quantities of a given product that will be sold at
a later time during the year when the market price is more
profitable. At the planing stage, the model will suggest the
most appropriate recipe considering the selling prices for that
period. The model not only considers the varying selling price
in time. It also considers the limited volume that can be sold in
given markets per product per period. The user running the
model can also constrains the percentage of the production that
goes to service each market. Another complexity comes from
the fact that the drying operation is optional and that some
customers may want to buy green planed lumber at a
discounted price. So when the drying capacity is reached but
there is still planing capacity, lumber can be routed directly
from the completion of the sawing operation to the planing
activity.

Distribution. The company runs three sawmills in the
province of Quebec in Canada and makes use of two
distribution centers in the eastern United States and one in
Quebec. It is not always required for the lumber products to go
through a distribution centre to reach a market, but it is
sometimes more economical. Transportation can also occur
between mills as in the company’ network, not all sawmills
have planing capability. From a sawmill with no planing
capability, the dry lumber can either be moved to another
sawmill with planing capability or it can be transported to a
distribution centre or be sent directly to a customer. The model
help determine where to send the lumber along with the
transportation mode to use which can be either by trucks or by
rail.

Planning the overall network of sawmills taking into
consideration market requirement, price fluctuation, production
capacity and transportation alternatives and costs is not an easy
task. To solve to optimality this complete problem can take up
to 45 minutes using CPLEX, one of the leading software to
solve linear programming models.

B. Experiments

The main purpose of these experimentations is to evaluate
the behavior of the system in terms of stability and
responsiveness metrics (as defined in Section III.B) for the
proposed approaches.

We first generated an optimal solution for the industrial
case introduced previously. Then, we simulated the situation
where the decision-maker visualizes various charts with
different number of variables on them (1, 10, 20, 30, 40, and 52
variables). For each variable we computed its optimality range.
We then simulated the situation where the decision-maker asks
for modification of some variable values. We tested the
behavior of the system for small modifications (the variable is
increased or decreased by a gap corresponding to 7% of its
optimality range, i.e. the difference between the maximum and
minimum a variable can take), medium modifications (45% of
optimality range) and large modifications (75% of optimality
range).

After each modification, an optimal solution is computed
using one of the four approaches and we measure
responsiveness (computation time) and stability (Euclidean
distance between original and recomputed solutions).

C. Results

Figure 8 provides results for responsiveness of the system
(in milliseconds). We recall that solving the original problems
each time a modification is asked by the user would require a
few minutes for each modification. Using the proposed
approaches the worst case observed was a recomputation time
of 600 milliseconds (minimization of the Euclidean Distance
approach), see subfigure i. We were not expecting this method
to perform so well because of the computation time required to
solve a quadratic optimization problem. Nonetheless, it appears
the problem is small enough to provide good performance.

Figure 8. Solution recomputation time (in milliseconds) in reaction to small (i), medium (ii) and large (iii) variable value modifications,

according to the number of variables displayed.

However, as expected, computation time rapidly grows
with the number of variable displayed on the charts. Clearly, in
a situation where the decision maker would be visualizing 4 or
5 charts with 52 variables on each of them, the Euclidean
approach would not meet our real-time expectations.

Subfigures i, ii, and iii show that the size of the
modification asked by the user has a strong effect on the
responsiveness of the Euclidean approach. The larger the
modification is (in terms of % of the optimality range) the
easier is the computation of the new solution. The explanation
is the following. In the extreme case where the user constrains

the variable to take its value ix , the system is limited to the

solutions corresponding to an extreme point of our convex hull.
Said otherwise, there is not much exploration to perform.

The responsiveness of the method that minimizes the
maximum distance is not affected by how much a variable is
changed. Its linear optimization problem is small and easy to
solve – although it is of not as efficient as the heuristic
methods. However, those three approaches meat our real-time
expectations.

Figure 9 shows the Euclidean distance between the original
and the recomputed solution after a small (i), medium (ii) or
large (iii) modification and according to the number of
variables displayed. The method that minimizes the Euclidean
distance always offer the best results.

As expected from Section III.B, the bipolar heuristic gives
the worst results. Small modifications of a variable value
(subfigure i) lead to huge modifications to other variables.
Even worse, the beta-testers considered unacceptable that the
new solutions are computed without any consideration for
changes they made previously.

For small modifications (subfigure i), minimization of the
maximum distance or using the triangular heuristic provides
stability very close to the Euclidean approach. Actually, for the
minimization of the maximum distance, results on the chart are
indistinct from those of the Euclidean approach.

However, minimizing the maximum distance sometimes
leads to the problematic situation discussed in Section III.B, i.e.
the largest change is minimized but the other variables move
for no valid reason. The triangular heuristic does not have this
drawback.

We analyze the impact of small, medium and large

modifications (comparing subfigures i, ii and iii). The larger

the modification asked by the user is, the more the different

approaches give similar results. As discussed previously, large

modifications to a variable value lead to a very small space of

optimal solutions to which all the approaches are restricted.

V. CONCLUSION

Supply chain optimization leads to large problems with
hundreds of thousands variables. They however can be solved
in reasonable time (less than an hour) as they often show a
linear structure. However, this computation time is
unacceptable for iterative and interactive decision-making
contexts where decision-makers need to provide their input.

In this research, we proposed a system that provides the
decision-makers with a representation of an optimal solution
space directly on the charts they are used to work with. This
space is modeled as a convex hull of optimal solutions
minimizing/maximizing the variables of interest. Users can
interactively modify the value of a variable and the system is
able to recompute a new optimal solution in less than a second
(instead of optimizing the original problem, which is very
long).

We developed four approaches for this real-time re-
optimization. The minimization of the maximal distance and
the bipolar heuristics both have drawbacks in terms of solution
stability. The minimization of the Euclidean distance is optimal
regarding this aspect. It should be used in situations where the
decision-makers based their decision on the analysis of a small
subset of variables (typically a chart with a dozen of variables)
although the optimization problem can have hundreds of
thousands of variables. If the decision-makers need to
simultaneously analyze and modify charts with hundreds of
variables, the triangular heuristic should be used as our
experiments reported near optimal performance.

Figure 9. Euclidean distance between the original and recomputed solution after a small (i), medium (ii) or large (iii) variable value modification,

according to the number of variables displayed.

REFERENCES

[1] M. A. Hearst, "Mixed-Initiative Interaction", IEEE Intelligent
Systems, vol. 14, pp. 14, 1999.

[2] J. E. Allen, "Mixed-initiative interaction", IEEE Intelligent

Systems, vol. 14, pp. 14-16, 1999.

[3] M. Fleming, "The use of increasingly specific user models in the

design of mixed-initiative systems", Proceedings of the 17th
Conference of the Canadian Society for Computational Studies of

Intelligence (LNCS #3060), London, Canada, 2004, pp. 434-438.

[4] G. Klau, N. Lesh, J. Marks, and M. Mitzenmacher, "Human-guided
search", Journal of Heuristics, vol. 16, pp. 289-310, 2010.

[5] W. Kun and W. S. Havens, "Modelling an academic curriculum
plan as a mixed-initiative constraint satisfaction problem",

Proceedings of the 18th Conference of the Canadian Society for

Computational Studies of Intelligence (LNCS #3501), Victoria,
Canada, 2005, pp. 79-90.

[6] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J. C. J. Hsu, A.

Jonsson, B. Kanefsky, P. Morris, R. Kanna, J. Yglesias, B. G.
Chafin, W. C. Dias, and P. F. Maldague, "MAPGEN: mixed-

initiative planning and scheduling for the Mars Exploration Rover

mission", IEEE Intelligent Systems, vol. 19, pp. 8-12, 2004.

[7] J. L. Bresina and P. H. Morris, "Mission operations planning:

beyond MAPGEN", Second IEEE International Conference on
Space Mission Challenges for Information Technology, Pasadena,

California, 2006, pp. 477-484.

[8] J. L. Bresina and P. H. Morris, "Mixed-initiative planning in space

mission operations", AI Magazine, vol. 28, pp. 75-88, 2007.

[9] B. Guiost, S. Debernard, T. Poulain, and P. Millot, "Supporting air-

traffic controllers by delegating tasks", Proceedings of the 2004
IEEE International Conference on Systems, Man and Cybernetics,

The Hague , Netherlands, 2004, pp. 164-169.

[10] T. Lenor, M. Lewis, S. Hahn, T. Payne, and K. Sycarn, "Task
characteristics and intelligent aiding", Proceedings of the 2000

IEEE International Conference on Systems, Man and Cybernetics,

Piscataway, NJ, USA, 2000, pp. 1123-1127.

[11] M. Linegang, C. Haimson, J. MacMillan, and J. Freeman, "Human

control in mixed-initiative systems: lessons from the MICA-
SHARC program", Proceedings of the 2003 IEEE International

Conference on Systems, Man and Cybernetics, Washington, D.C.,

2003, pp. 436-441.

[12] A. G. de Kok and S. C. Graves, Supply Chain Management:

Design, Coordination and Operation. Amsterdam: Elsevier, 2003.

[13] P. Marier, J. Gaudreault, M. Knaptik, and M. Savard, "Maximizing

profits through sawmills specialization and supply chain design",

Proceedings of the 14th Annual International Conference on
Industrial Engineering Theory, Applications & Practice, Anaheim,

CA., 2009, pp. 484-491.

[14] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Mineola, N.Y.: Dover, 1998.

