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Abstract. The CUMULATIVE constraint is the key to the success of Constraint
Programming in solving scheduling problems with cumulative resources. It limits
the maximum amount of a resource consumed by the tasks at any time point.
However, there are few global constraints that ensure that a minimum amount
of a resource is consumed at any time point. We introduce such a constraint, the
MINCUMULATIVE. We show that filtering the constraint is NP-Hard and propose
a checker and a filtering algorithm based on the fully elastic relaxation used for
the CUMULATIVE constraint. We also show how to model MINCUMULATIVE

using the SOFTCUMULATIVE constraint. We present experiments comparing the
different methods to solve MINCUMULATIVE using Constraint Programming.

1 Introduction

Businesses and organizations often face scheduling problems where they must schedule
tasks while satisfying various resources constraints. In the Constraint Programming
community, with the CUMULATIVE constraint [1], significant work [3,16,17] has been
devoted to scheduling problems where the resource usage of the tasks must not exceed
the capacity of the resource. The reverse case, where a resource must have a minimum
usage did not receive as much attention. However, many businesses and organizations
need to solve scheduling problems where they need to ensure that a sufficient number
of employees are working at any given time.

We introduce MINCUMULATIVE, a new global constraint that enforces that a min-
imum amount of the resource is used at any time. We show that applying domain or
bounds consistency for this new constraint is NP-Hard. We propose a relaxed rule, the
UnderloadCheck, to detect failures and a filtering algorithm related to this rule. We
also show how to model the MINCUMULATIVE using the SOFTCUMULATIVE con-
straint, a soft version of the CUMULATIVE. This allows us to use the strong energetic
reasoning rules of the CUMULATIVE.

We present relevant background in Section 2 and introduce the MINCUMULATIVE
in Section 3. We present the UnderloadCheck rule and checker algorithm in Section 4
while Section 5 introduces the filtering algorithm. We show how to model the MINCU-
MULATIVE constraint using the SOFTCUMULATIVE constraint in Section 6. We com-
pare the difference in strength between the different approaches in Section 7. Finally,
experimental results are shown in Section 8 and Section 9 concludes the work.
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2 Constraint Scheduling Background

A scheduling problem consists in scheduling a set I of n tasks over the time points
T = 0..hor − 1. Each task i ∈ I needs to execute without preemption for pi units of
processing time between its earliest starting time esti and its latest completion time lcti
and consumes hi units of a renewable resource, which are called height. A task i can
be described using the tuple 〈i, esti, lcti, pi, hi〉. One can compute the latest starting
time lsti = lcti−pi and the earliest completion time ecti = esti+pi of task i. We
say that task i has a compulsory part in the interval [lsti, ecti) if lsti < ecti. A task is
necessarily executing during its compulsory part, regardless of its starting time.

One can model a scheduling problem using a starting time variable Si for each task
i with domain dom(Si) = [esti, lsti]. Additional constraints can be added depending
on the particularity of the problem (e.g., constraints limiting the amount of resource
used, predecessor constraints, etc.). We say that task i is fixed if there is only one value
in dom(Si). Thus we have Si = esti = lsti.

Significant efforts have been made in the constraint programming community to ef-
ficiently solve scheduling problems for which the capacity of the resource is limited.
The CUMULATIVE constraint [1] enforces that, at any time t, the sum of the heights of
the tasks in execution does not exceed the capacity C of the resource. Deciding whether
the CUMULATIVE constraint admits a solution is strongly NP-Complete [1]. Hence,
checker and filtering algorithms for this constraint cannot apply domain or bounds con-
sistency and must instead rely on rules to partially detect failures or partially filter the
domains. Many such rules have been developed over the years, including the Overload
Check [9,27], the Time Tabling [3], the Edge Finding [14,17,26] and the Energetic Rea-
soning [2,5,16,19,25]. By using lazy clause generations [10,18] with the CUMULATIVE
constraint, Schutt et al. [23,24] closed many instances of hard scheduling problems.

Baptiste et al. [2] introduced a relaxation used in many rules for the CUMULATIVE
constraint: the fully elastic relaxation. This relaxation allows the energy ei = pi · hi
of a task to be spent anywhere in the interval [esti, lcti), regardless of the task’s height
or its non-preemption. For instance, on a resource of capacity 2, a task with esti = 0,
lcti = 4, pi = 4, and hi = 1 could execute using 2 units of the resource at time 0, one
unit at time 2 and one unit at time 3 for a total of pi · hi = 2 · 2 = 4 units of energy.

One of the strongest rules using the fully elastic relaxation is the energetic rea-
soning [2,16]. This rule, as the name suggests, is based on the notion of minimum
energy in an interval [l, u). The left shift of a task i in the interval, noted LS(i, l, u) =
hi · max(0,min(u, ecti) − max(l, esti)), is the amount of energy the task consumes
in the interval when it is scheduled at its earliest. Conversely, the right shift of task i
in interval [l, u), noted RS(i, l, u) = hi · max(0,min(u, lcti) − max(l, lsti)), is the
amount of energy in the interval when the task is scheduled at its latest. The minimum
intersection MI(i, l, u) = min(LS(i, l, u), RS(i, l, u)) is the minimum between the left
and right shift. It represents the minimum amount of energy that the task consumes in
the interval regardless of when it starts. The sum of the minimum intersection of all
tasks, noted MI(I, l, u) =

∑
i∈I
MI(i, l, u), is a fully elastic lower bound on the amount

of energy consumed in an interval. The energetic reasoning detection rule (1) states that
if there exists an interval such that the minimum intersection is greater than the energy
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available on the resource, i.e. C · (u− l), the CUMULATIVE constraint cannot be satis-
fied. Baptiste et al. [2] showed that it is sufficient to consider a subset ofO(n2) intervals
said of interest to apply the rule.

∃[l, u) | MI(I, l, u) > C · (u− l) =⇒ fail (1)

Many industrial problems require that a resource has a minimum usage instead of,
or in addition to, a maximum. This is the case for the shifts scheduling [8] and the nurse
rostering [4] problems. Both problems consist in scheduling the shifts of employees or
nurses to satisfy a demand while minimizing the cost of exceeding it.

2.1 Global Cardinality Constraint

The Global Cardinality Constraint [13,15,22] GCC([X1, . . . , Xn], [v1, . . . , vm],
[l1, . . . , lm], [u1, . . . , um]) ensures that each value vi is assigned to at least li and at
most ui variables in X . If all tasks have a processing time pi = 1 and share the same
height, the GCC can be used to model the minimum usage of a resource. The variable
Xi represents the starting time of the task i. The values are the time points. When the
parameters uj are set to infinity, the GCC forces each time point to be assigned a min-
imum number of times. However, there is currently no global constraint to handle the
general case where tasks have distinct processing times or distinct heights.

2.2 Generalized Cumulative

Beldiceanu and Carlsson [3] introduced a generalization of the CUMULATIVE con-
straint, presented in (2). The GENERALIZEDCUMULATIVE constraint supports tasks
with negative heights and an operator op ∈ {≤,≥} that allows the capacity of the re-
source to be either a maximum that must not be exceeded or a minimum that must be
reached. One can use this generalization to model a problem where tasks must meet a
demand vector d = [d0, . . . , dhor−1]. The demand dt is the minimum amount of energy
that must be spent by the tasks at time t. We show how this can be done in Section 3.
We describe the portion of their algorithm that ensures that a minimum is reached.

GENERALIZEDCUMULATIVE(S, p, h, C, op) def⇐⇒∑
t

∑
i

hi · boolToInt(Si ≤ t < Si + pi) op C (2)

To filter the GENERALIZEDCUMULATIVE constraint, Beldiceanu and Carlsson pro-
posed a sweep algorithm that performs a Time-Tabling reasoning. The main idea behind
the algorithm is to compute an upper bound of the resource usage at each time point and
check whether that upper bound satisfies the minimum capacity.

Let GOOD(t) = {i ∈ I | hi > 0∧esti ≤ t < lcti} be the set of tasks with positive
height that can execute at time point t. These tasks increase the usage of the resource
and thus can contribute to meet the minimum capacity. Let BAD(t) = {i ∈ I | hi <
0 ∧ lsti ≤ t < ecti} be the set of tasks with a negative height that have a compulsory
part at time point t and therefore must execute at that time point. These tasks decrease
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the usage and thus make the minimum capacity harder to reach. The checker rule for
Beldiceanu and Carlsson’s algorithm is presented in (3). Recall that C is the constant
representing the capacity of the resource.

∃t
∑

i∈GOOD(t)

hi +
∑

i∈BAD(t)

hi < C =⇒ Failure (3)

The optimistic scenario occurs where, at a time point t, all GOOD(t) tasks that can
execute do so, and only the BAD(t) tasks that must execute due to their compulsory
parts do so. This means that if, at any time point, the sum is not enough to satisfy
the capacity, the constraint cannot be satisfied. Note that this rule does not take the
processing time of the tasks into account.

The filtering rule (4) filters GOOD tasks based on this idea. Consider a task j and
a time point t. If the lower bound on the resource usage at time point t is insufficient
to meet the minimum capacity without the contribution of task j, then task j must be
executing at time t. The domain of Sj is changed for dom(Sj) ∩ [t− pi + 1, t].

∀t ∀j ∈ GOOD(t)
∑

i∈GOOD(t)

hi +
∑

i∈BAD(t)

hi − hj < C =⇒ lstj ≤ t < ectj (4)

2.3 SoftCumulative

De Clerc et al. [7] and Ouellet and Quimper [20] proposed checker and filtering algo-
rithms for the SOFTCUMULATIVE constraint, a version of the CUMULATIVE constraint
where it is possible to overload the resource but at a cost. The definition of SOFTCU-
MULATIVE (5) generalizes the CUMULATIVE constraint by adding the overcost variable
Z, an upper bound on the cost incurred by overloading the resource. Note that it is not
an equality. Generally, the cost is either minimized or subject to another constraint.

Ouellet and Quimper [20] introduced a generic cost function, but, for the sake of
simplicity, we assume the cost function is linear in this paper. That is, overloading the
resource by x units of resources always costs x units.

SOFTCUMULATIVE(S, p, h, C, Z)
def⇐⇒

Z ≥
∑
t

max(0,
∑
i

hi · boolToInt(Si ≤ t < Si + pi)− C)
(5)

Ouellet and Quimper adapted the energetic reasoning for the SOFTCUMULATIVE
constraint. Instead of searching for one interval with an overload, their algorithm
searches for a partition of the time line into contiguous intervals such that the sum of
the overload in each interval is maximized. That sum is a lower bound on the overcost.
The partition can be computed in O(|T |2) steps using dynamic programming, where
T is the set of time points to partition. If the set T corresponds to the lower and upper
bounds of the intervals of interest, there is O(n2) time points and thus, computing the
partition is in O(n4). This is not reasonable for an algorithm that is called thousands of
times during the search. However, Ouellet and Quimper proposed to consider a set with
only 4n time points, which correspond to the est, ect, lst, and lct of the tasks. By doing
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so, the algorithm enforces a weaker filtering, but the complexity is better. Neverthe-
less, they showed that, when used on the hard version of the CUMULATIVE constraint
(with Z = 0), the algorithm using only 4n time points applies the Time-Tabling and the
Edge-Finding rules of the CUMULATIVE constraint.

3 Min-Cumulative

We introduce the MINCUMULATIVE constraint that ensures that the sum of the heights
of the tasks in execution at each time point t is greater than or equal to the demand dt.

MINCUMULATIVE( [S1, . . . , Sn], [p1, . . . , pn],
[h1, . . . , hn], [d0, . . . , dhor−1])

⇐⇒ ∀t ∈ T
∑

i∈I:Si≤t<Si+pi

hi ≥ dt

(6)

This constraint is a special case of the GENERALIZEDCUMULATIVE constraint pre-
sented by Beldiceanu and Carlsson, but a specialized version allows the design of more
specialized and stronger checker and filtering algorithms. One can model the MIN-
CUMULATIVE with GENERALIZEDCUMULATIVE by adding fixed tasks of negative
heights to the problem to represent the demand. For each interval [l, u) of maximal
length such that dt = dt+1 ∀t ∈ {l..u − 2}, we created a fixed task i with esti = l,
lcti = u, pi = u − l, and hi = −dl. For instance, a demand of [1, 1, 2, 2] in MINCU-
MULATIVE can be represented by two tasks with est1 = 0, lct1 = est2 = 2, lct2 = 4,
p1 = p2 = 2, h1 = −1, and h2 = −2. By fixing the capacity C = 0 and using operator
op = ≥, the GENERALIZEDCUMULATIVE encodes the MINCUMULATIVE.

We can generalize the constraint where processing times and heights are variables
rather than constants. The algorithms we present can substitute the height and the pro-
cessing time by the maximum value in the domain of these variables.

Theorem 1. Deciding whether the MINCUMULATIVE constraint admits a solution is
NP-Complete even when domains are intervals.

Proof. Deciding whether MINCUMULATIVE is feasible is a special case of the strongly
NP-Complete unrestricted-output 3-Partition problem (3-Part-UO) [12]. Recall that
3-Part-UO is the problem of deciding whether it is possible to partition the multiset R
containing n = 3m integers with a total sum of m · T into m multisets, each of sum T .
For each integer Ri, we declare a task with dom(Si) = [1,m], pi = 1, hi = Ri. The
demand is T at each of the m time points. The starting times of the tasks correspond to
the index of the set in which the matching integer is partitioned. The sum of the heights
of all tasks is m ·T and there is m time points of demand T . Hence, each of the m time
points must have a usage of exactly T and corresponds to one of the m multisets. ut

Since deciding the feasibility of MINCUMULATIVE is NP-Complete even when
domains are intervals, propagators cannot apply either bounds or domain consistency
and must instead rely on relaxed rules to detect failures or filter variables.

To enforce the MINCUMULATIVE, it is sufficient to use a decomposition with sum-
mations and inequality constraints, as in (6). This method has the disadvantage of re-
quiring a number of constraints and variables that is function of the horizon. In problems
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with a large horizon, this solution may not scale. We propose solutions that scale with
the number of time points and that filters more than the decomposition.

4 Underload check

We introduce the underload check rule that detects when MINCUMULATIVE is un-
feasible. This new rule is inspired from the overload check [27] and the fully elastic
relaxation. As with the overload check, the underload check is not sufficient to enforce
the MINCUMULATIVE. It needs to be paired with another rule, such as the time-tabling.

The underload detection rule is based on the rule for the lower-bound constraint, a
special case of the GCC constraint [22] where values must occur a minimum number of
times within a vector of variables. The detection rule finds a non-empty subset U ⊆ T
of time points for which the energy of the tasks that can be spent at these time points is
not enough to satisfy the demand. When such a set exists, too much energy is spent in
T \ U and not enough in U . We say that T \ U is overloaded while U is underloaded.

Underload detection rule: The underload detection rule fails iff there exists a set of time
points U whose demand exceeds the energy of the tasks that can be executed during U :

∃U ⊆ T
∑
t∈U

dt >
∑

i∈I:[esti,lcti)∩U 6=∅

ei =⇒ Failure (7)

To apply the rule, we design a greedy algorithm (Algorithm 2) that schedules the
energy of the tasks, in non-decreasing order of lct, as early as possible. The algorithm
wastes the demand at a given time point only if there is no other option. We call that
waste overflow. Once all tasks are scheduled, time points where the demand was not
met are included in the set U . If there is none, U is empty. If U 6= ∅, the constraint
cannot be satisfied.

The algorithm uses the time line data structure [9] which efficiently schedules tasks
according to the fully elastic relaxation. We begin by presenting a slightly modified
version of the time line. Since the time line was designed for the CUMULATIVE, we
replace the maximum capacity of the resource by the demand. We also prevent the
algorithm from allocating energy that is not used to fulfill the demand.

The time line is first initialized with a vector of critical time points T C that con-
tains, in increasing order, the est and lct of the tasks without duplicates. We define
a vector of demand ∆ of dimension |T C | − 1. A critical time point T C [j] has an

associated demand ∆[j] =
∑T C [j+1]−1
k=T C [j]

dk equal to the sum of the demand of the
time points in the semi-open interval [T C [j], T C [j + 1]). Two vectors, Mest and Mlct

map a task i to the index of its est and lct in T C such that esti = T C [Mest[i]] and
lcti = T C [Mlct[i]]. The time line uses a disjoint set (also called union-find) data struc-
ture [11] S upon the integers 1..|T C | containing the indexes of the critical time points.
The operation S.union(i, j) merges the set containing i with the set containing j. The
operation S.findGreatest(i) returns the greatest element of the set containing i. It
has the same complexity as the classic find operation and is implemented by keeping a
map of the greatest element of each set and updating it when union is called. The time
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line supports the operation ScheduleTask(i) (Algorithm 1), which schedules task i as
early as possible. Since the data structure is based on the fully elastic relaxation, the
task can be preempted and can take more than its height at any given time point. It
overflows at a time point only if it has to.
ScheduleTask(i) is implemented differently than in [9]. The algorithm computes

the energy ei = hi ·pi that needs to be scheduled (line 1). Using the disjoint set S, line 2
finds the first time point j that is greater than or equal to esti whose the demand is not
yet satisfied. The while loop schedules as much energy as possible at that time point,
but no more than the demand. If the demand of the current critical time point is fulfilled
(∆t = 0), the algorithm merges, on line 3, the sets of indices containing j with the one
containing j + 1. This allows for future calls to S.findGreatest to return the next
time point with unfulfilled demand. The process is repeated until all the task’s energy
is scheduled or the demand in the interval [esti, lcti) is fulfilled.

Algorithm 1: ScheduleTask(i)

1 e← hi · pi;
j ←Mest[i];
t1 ← −∞;
while e > 0 ∧ t1 < lcti do

2 j ← S.findGreatest(j);
t1 ← T C [j];
τ ← min(∆[j], e);
e← e− τ ;
∆[j]← ∆[j]− τ ;
if ∆[j] = 0 then

3 S.union(j, j + 1);

Algorithm 2: UnderloadCheck(I, d)

InitializeTimeline(I, d);
for i ∈ I sorted by

non-decreasing lct do
ScheduleTask(i);

1 return
S.findGreatest(1) = |T C |;

We present the UnderloadCheck (Algorithm 2). Once the time line is initialized, the
algorithm schedules each task in order of non-decreasing lct. The algorithm greedily
spends the task’s energy e = pi · hi as early as possible, but no more than the demand
at each time point. If the loop stops because of the condition t1 < lct, the unscheduled
energy of the task cannot be used to fill the demand, because it would be scheduled after
the latest completion time of the task. Thus, the energy is lost and we say that the task
overflowed. Once all tasks are processed, the algorithm checks, on line 1, if all the sets
have been merged together. If so, the demand of all time points is met and the check
passes. Otherwise, the demand of at least one time point is not met and the check fails.

Example 1. Recall a task is defined by 〈i, esti, lcti, pi, hi〉. Given the three tasks
〈1, 2, 4, 2, 1〉, 〈2, 2, 5, 2, 1〉, 〈3, 0, 6, 2, 1〉 and a demand of 1 for each time point in
[0, 6), the UnderloadCheck computes the vector T C = [0, 2, 4, 5, 6] of critical time
points. In the disjoint sets data structure S, all these time points are in separate sets:
{0}, {2}, {4}, {5}, {6} (in this example, we use the time point values instead of in-
dexes for the sake of clarity). The demand vector is initialized to ∆ = [2, 2, 1, 1].

The algorithm begins by scheduling task 1, which has the smallest lct, in interval
[2, 4) (see Figure 1). Since all the demand for critical time point 2 is met, the disjoint
set {2} is merged with disjoint set {4}. The UnderloadCheck then processes task 2,
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1
2

3 Unmet

0 1 2 3 4 5 6

Overflow

Fig. 1: Visual representation of the time line after the execution of the UnderloadCheck. One
unit of demand has not been met in [5, 6).

which has the second smallest lct. The algorithm finds the greatest time point greater
than or equal to est2 = 2, which is 4. Hence, it schedules one unit at time point 4 and
merges the set {2, 4} with {5}. However, since lct2 = 5, the remaining unit of energy
of task 2 is lost, causing an overload. The UnderloadCheck then processes the last
task, 3. As the greatest time point greater than or equal to est3 = 0 is 0, the algorithm
schedules 2 units of energy of task 3 in the interval [0, 2), before merging the set {0}
with {2, 4, 5}. Once all tasks have been scheduled, we have S = {0, 2, 4, 5}, {6}. There
is more than one disjoint set in S, which means that the demand has not been completely
met, leading to a failure.

Theorem 2. UnderloadCheck returns true if and only if the underload detection
rule (7) does not fail.

Proof. (=⇒) When the algorithm decrements ∆[j], it schedules the task i to spend
its energy within [T C [j], T C [j + 1]) ⊆ [esti, lcti). Once all tasks are scheduled, if
∆ = ~0 (or equivalently S.findGreatest(1) = |T C |), all the demand is satisfied and
the elastic schedule built by the algorithm disproves the existence of a non-empty set U
that satisfies the underload check detection rule.

(⇐=) If the algorithm returns false, we show that there exists a set U that satisfies
the condition in (7). We associate a time interval τi to every task i. If task i does not
overflow, we set τi = ∅. If task i overflows, the critical index Mlct[i] belongs to a set A
in S forming an interval τi = [T C [min(A)], T C [max(A)]). The demand is completely
fulfilled in the time interval τi since∆[j] = 0 for all critical points T C [j] ∈ τi. Whether
task i overflows or not, we have

∑
j:[estj ,lctj)⊆τi ej ≥

∑
t∈τi dt.

Let U = [1,m] \
⋃
i∈I τi. Consider a task j such that [estj , lctj) ∩ U 6= ∅. Its

energy was fully spent inside U . Indeed, all the non-empty intervals τi such that lcti <
lctj were fulfilled before j was processed. Its energy was therefore spent before or
after τi. For non-empty intervals τi such that lcti ≥ lctj , we necessarily have estj <
min(τi) and since the task is scheduled at its earliest, it was first scheduled outside of
τi. Moreover, it could not be scheduled in τi as the time point Mest[i] would have been
merged to the set A that defined τi, which contradicts estj < min(τi). Therefore, none
of the energy of j was scheduled within τi. Since all the energy of the tasks j such that
[estj , lctj)∩U 6= ∅was scheduled in U and that this energy does not fulfill the demand,
the condition in (7) holds. ut
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Theorem 3. UnderloadCheck has a complexity of Θ(n) provided that the tasks are
already sorted by their latest completion times.

Proof. Fahimi et al. [9] showed that ScheduleTask executes in O(1) amortized time
when |T C | ∈ O(n). As our modifications only make it run faster since the energy of a
task is not always fully scheduled, the complexity remains unchanged. ScheduleTask
is called n times hence Θ(n). ut

5 Underload Filtering

We can derive a filtering rule from the UnderloadCheck by fixing the starting time of
a task, as shown in (8). If the UnderloadCheck fails when task i starts at time t, then
task i obviously cannot start at time t and we can remove t from dom(Si).

¬UnderloadCheck(I \ {i} ∪ {〈t, t+ pi, pi, hi〉}) =⇒ Si 6= t (8)

By studying the set of time points U that makes the underload check fail, one can
derive a filtering rule that prunes more than a single value from the domain of Si.

∃U ⊆ T : D > E

=⇒ ecti ≥ min{t ∈ U | t ≥ ecti}+
⌈
D − E
hi

⌉
where D =

∑
t∈U

dt

E =
∑

j∈I\{i}:[estj ,lctj)∩U 6=∅

ej

(9)

To filter a given task i, the rule (9) uses a set of time points U for which the sum
of the demand D =

∑
t∈U

dt exceeds the energy E =
∑

j∈I\{i}:[estj ,lctj)∩U 6=∅
ej of the

tasks that can spend energy in U (except task i). If the energy of the tasks without i is
insufficient to cover the demand for U by D − E units, then task i must spend D − E
units of energy in U . Thus, we can filter the earliest completion time such that i ends at
its earliest in U by the missing units.

5.1 Naive algorithm

Algorithm 3 naively applies rule (8). For each task i, it fixes the starting time to esti,
then it executes the UnderloadCheck. If the check fails, it increases the starting time
by one and executes the UnderloadCheck again. It repeats until it finds a starting time
t for which the check passes or there is a starting time that exceeds the latest starting
time of the task. In the first case, it filters the earliest starting time of task i to t. In the
second case, it returns a failure. Filtering the latest completion time is symmetric.

This algorithm can fail even if the UnderloadCheck passes since the filtering al-
gorithm, contrary to the UnderloadCheck, fixes the current task, preventing it from
having elastic energy. Hence, the check performed by the filtering algorithm is stronger.
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Algorithm 3: NaiveFiltering(I, D)
for i ∈ I do

t← lcti;
lcti ← ecti //Temporarily fix i to its earliest;
while esti ≤ lsti ∧
¬UnderloadCheck(I) do

esti ← esti +1;
lcti ← lcti +1;

if esti ≤ lsti then
lcti ← t //Restore i to its original lcti;

else
return false // Failure;

return true // Consistent;

We call this algorithm naive because, although it is simple, it requires for each task,
in the worst case, lsti− esti calls to the UnderloadCheck, leading to a worst-case time
complexity of O(|T | · n2), which depends on the number of time points. However, this
does not make the algorithm irrelevant in practice. The best-case complexity is Θ(n2)
and it happens when there is no filtering done. Furthermore, for a given task i, the
algorithm executes the UnderloadCheck 1 + k times, where k is the number of values
removed from the domain of S. Hence, the complexity of the algorithm increases only
if it filters, which is generally not frequent though essential.

5.2 Overflow algorithm

We improve upon the naive algorithm by filtering the earliest starting time of a task i
by more than one unit at a time, allowing the algorithm to directly apply rule (9). Let
δ =

∑
j∈T C |T C

j ≥esti
∆[T Cj ] be the amount of demand not met at or after esti after a call to

UnderloadCheck. Let j be the task with the smallest estj that overflowed such that
estj ≥ esti. If such a task exists, let τ = estj otherwise let τ = esti. The starting time

of i can be filtered such that esti ≥ τ +
⌈
δ
hi

⌉
.

We now explain the intuition behind that filtering. In the first case, τ = esti. We
know that there are δ units to fill after esti. Moving the task by one unit can free at most
hi units of energy (it can come from the overflow of either i or another task that will its
place). We need to move i by

⌈
δ
hi

⌉
to gain enough energy to satisfy the demand.

The second case occurs when τ > esti. In that case, we move i after the estj of the
task that overflowed, by an amount corresponding to the missing energy δ. This allows
j to take the place of i. The energy of i can then be used to fulfill the missing demand.

Example 2. Given two tasks 〈1, 0, 6, 3, 1〉 and 〈2, 0, 4, 3, 1〉 and a demand of 1 for each
time point in [0, 6), the overflow algorithm begins by filtering task 1. It temporarily fixes
task 1 such that lct1 = 3 before running the UnderloadCheck. Since the temporary
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lct1 is smaller than lct2 = 4, the UnderloadCheck starts by scheduling task 1 in [0, 3)
(see Figure 2). Then, it schedules task 2. There are 3 units of energy to schedule and the
task can only be scheduled in [0, 4). The algorithm schedules one unit at time 3 and the
two remaining units are wasted. All tasks are scheduled, but two units of demand are
not met (δ = 2), as shown on Figure 2. Since the UnderloadCheck fails, the overflow
algorithm filters task 1. As task 2 overflowed, we have τ = est2 = 0. The algorithm
filters est1 to τ +

⌈
δ
h1

⌉
= 0+ 2

1 = 2. Hence, the overflow algorithm increased the est1
by two units with a single call to UnderloadCheck.

The algorithm iteratively applies this rule until the UnderloadCheck passes (or
a failure is detected). Its worst-case complexity is as the naive algorithm’s but it
increments the esti by more than one unit, reducing the number of calls to the
UnderloadCheck.

6 Model with SoftCumulative

We show how to encode the MINCUMULATIVE using the SOFTCUMULATIVE. By do-
ing so, we can use the strong energetic reasoning rules from the algorithms introduced
by Ouellet and Quimper [20] for the SOFTCUMULATIVE.

Let I ′ be a set of fixed tasks that cover the horizon. For each interval [l, u) of
maximal length such that dj = dj+1 ∀j ∈ {l..u − 2}, we create a task i ∈ I ′ with
esti = l, lcti = u, pi = u− l, and hi = maxt(dt)− dl. We have this equivalence.

MINCUMULATIVE([Si | i ∈ I], [pi | i ∈ I], [hi | i ∈ I], d) ⇐⇒
SOFTCUMULATIVE([Si | i ∈ I ∪ I ′], [pi | i ∈ I ∪ I ′], [hi | i ∈ I ∪ I ′],

max
t

(dt),
∑
i

ei −
∑
t

dt)
(10)

Lemma 1. The MINCUMULATIVE can be encoded as a SOFTCUMULATIVE as in (10).

Proof. The SOFTCUMULATIVE is associated to a resource of capacity maxt(dt) over
a horizon hor. The constraint allows an overflow of at most

∑
i∈I ei −

∑
t dt units of

1

2

Unmet demand

0 1 2 3 4 5 6

Overflow

Fig. 2: Visual representation of the time line after the first call to the UnderloadCheck by the
overflow algorithm, when filtering task 1. Task 1 is scheduled in [0, 3). Task 2 has one unit
scheduled in [3, 4) and two units overflowed. Two units of demand are not met in [4, 6).



12 Y. Ouellet et C-G. Quimper

energy. So at most maxt(dt) ·hor+
∑
i∈I ei−

∑
t dt units of energy can be scheduled.

The energy of the tasks matches this bound meaning that the resource is fully used.∑
i∈I

ei +
∑
i∈I′

ei =
∑
i∈I

ei +
∑
l

(max
t

(dt)− dl) =
∑
i∈I

ei + hor ·max
t

(dt)−
∑
l

dl

Since the tasks in I ′ consume maxt(dt) − dl units of energy at time l, the tasks in I
consume the remaining dl (and can overflow) as required by the MINCUMULATIVE.
The converse holds using the same argument. ut

7 Comparing the rules

We compare the check rules of the Time-Tabling (TT), the Underload Check (UC),
and the Energetic Reasoning (ER). The Underload Check rule, as mentioned earlier, is
insufficient to enforce the MINCUMULATIVE constraint, as illustrated in Example 3.

Example 3. Consider an instance with two fixed tasks such that est1 = 0, est2 = 1,
lct1 = 2, lct2 = 3, p1,2 = 2, h1,2 = 1 and a demand d = [1, 1, 2]. The Underload
Check rule finds no underloaded set since it schedules the first unit of energy of task 1
at time point 1, the second unit at time point 2 and the two units of task 2 at time point
3. Even when the tasks are fixed, the Underload Check relaxes the heights of the tasks.
On the other hand, the Time-Tabling finds that there are not enough tasks at time point
3 to satisfy the demand of 2. Similarly, the energetic reasoning finds that the minimum
intersection in the interval [1, 3) is 3. Since the demand in the interval is 2, there is one
unit of overcost. The sum of the energy of the tasks is 4 and the sum of the demand is 4
so the SOFTCUMULATIVE allows no overcost, hence the detection of the failure.

While the weakness of the Underload Check is to relax the height of the tasks, the
weakness of the Time-Tabling is that it does not take the processing time of the tasks
into account, as demonstrated by Example 4

Example 4. Consider a task (est1 = 0, lct1 = 5, p1 = 1, h1 = 1) and a demand
d = [1, 1, 1, 1]. The Time-Tabling notices that task 1 can cover the demand of each
time point individually and passes. The Underload Check and the Energetic Reasoning
quickly find that there is not enough energy in task 1 to satisfy the overall demand.

Examples 3 and 4 show that the Underload Check and the Time-Tabling are incom-
parable when comes the time to detect infeasibility, as it is the case for the CUMULA-
TIVE. Lemma 2 shows that the energetic reasoning is stronger than the Time-Tabling.

Lemma 2. If the Time-Tabling checker fails, then the SOFTCUMULATIVE model using
the energetic reasoning checker also fails.

Proof. Suppose the Time-Tabling fails because the total height of the tasks at time t
is less than dt. Consider the partition T = [0, t) ∪ [t, t + 1) ∪ [t + 1, hor). From
Lemma 1, the resource is fully used. If it is underused in interval [t, t+1), it is overused
in [0, t)∪ [t+1, hor). The energetic reasoning will therefore detect an overflow greater
than

∑
i ei −

∑
t dt in the intervals [0, t) ∪ [t+ 1, hor) and thus, detect failure. ut
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Lemma 3. If the Underload Check fails, then the SOFTCUMULATIVE model using the
energetic reasoning checker also fails.

Proof. Suppose that the Underload Check returns a failure when checking the set U .
The same reasoning as with Lemma 2 applies; the intervals in T \ U have an overcost
greater than

∑
i ei −

∑
t dt. Thus the SOFTCUMULATIVE fails. ut

The SOFTCUMULATIVE with its energetic checker is stronger than the Underload
Check and Time-Tabling. In fact, it is strictly stronger, as shown in Example 5.

Example 5. Consider a demand d = [1, 3, 1] and two tasks: est1 = est2 = 0, lct1 = 2,
lct2 = 3, p1 = 2, p2 = 1, h1 = 2, and h2 = 1. The Time-Tabling passes since, when
considered individually, there can be three units of height at time points 0 and 1 and one
unit at time point 2. The Underload Check passes since the four units of energy of task
1 cover the demand of the first two time points and the single unit of task 2 covers the
demand of the last time point. However, the SOFTCUMULATIVE model fails. Indeed, we
haveMI(I, 0, 1) = 2, but the demand in [0, 1) is only 1. Hence, we have an overcost of
1 in that interval, but no overcost is allowed since

∑
i∈I ei−

∑
t dt = (4+1)− 5 = 0.

Hence the SOFTCUMULATIVE detects the failure.

8 Experiments

We tested our algorithm on two benchmarks. The first contains randomly generated in-
stances of a simple problem with one MINCUMULATIVE constraint. The tasks have a
variable height in {0, 1} indicating whether a task is activated or not. The goal is to
satisfy the demand while minimizing the number of activated tasks. The instances are
available on Github1 and upon request to the second author. The Work Shift Schedul-
ing Benchmark is an industrial benchmark introduced by [6]. The problem consists in
scheduling the work shifts of employees while satisfying the demand. The benchmark
has instances with up to 10 activities, but we only use the instances with one activity.
Employee e ∈ E can work between 6 to 8 hours. An employee e starts at time Se,1,
takes a 15-minute break, resumes at Se2 , takes a 1-hour lunch, resumes at Se,3, takes
a 15-minute break, and resumes at Se,4. The 4 work periods are at least one hour. The
demand can vary at each 15-minute time step. We minimize the number of employees.
The model for the decomposition of our constraint in smaller binary constraints is given
in (11)-(17). We replace (15) by the MINCUMULATIVE constraint for the other config-
urations. We break symmetries with (16) and (17). The upper limit on the number of
employees is set to |E| = 10. This gives two unsatisfiable instances, which allows us to
observe the behaviour of the algorithms on both satisfiable and unsatisfiable instances.
The search heuristic branches on the minimum value of He, then Pe, and finally Se,p.

minimize
∑
e∈E He subject to (11)

Se,p + Pe,p + δ = Se,p+1 ∀e ∈ E, (p, δ) ∈ {(1, 1), (2, 4), (3, 1)} (12)
Se,4 + Pe,4 + 4 ≤ |T | ∀e ∈ E (13)

1 https://github.com/yanickouellet/min-cumulative-paper-public

https://github.com/yanickouellet/min-cumulative-paper-public
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24 ≤
∑

p∈{1..4}

Pe,p ≤ 32 ∀e ∈ E (14)

∑
e∈E,p∈{1..4}

He · (Se,p ≤ t < Se,p + Pe,p) ≥ dt ∀t ∈ T (15)

He ≤ He−1 ∧ Se−1,2 ≤ Se,2 ∀e ∈ 1..|E| − 1 (16)
He = 0 =⇒ Se,p = s ∀e ∈ E, (p, s) ∈ {(1, 0), (2, 5), (3, 13), (4, 18)} (17)

We implemented our algorithms in Java using Choco solver version 4.10.6 [21]. We
ran the experiments on an Intel Xeon Silver 4110 (2.10Ghz). All models were imple-
mented in MiniZinc. Experiments for the random benchmark were done with a timeout
of 20 minutes. Since there are fewer instances, experiments for the Work Shift Schedul-
ing Benchmark were done with a timeout of 1 hour.

We report the time taken to solve instances of the Work Shift Scheduling Bench-
mark in Table 1. We experimented two versions of the problem, one with variable pro-
cessing time and one with processing times fixed to 6 periods. For solved instances,
the difference between the algorithms were similar, but we report only the latter since
few instances were solved to optimality in the former. We tested the following config-
urations: the Decomposition (D), Time-Tabling filtering (TT), Time-Tabling with Un-
derload Check (TT + UC), Time-Tabling with Underload Filtering (TT + UF), Time-
Tabling with Energetic Reasoning Check (TT + EC) and Energetic Filtering (EF). We
did not test the Underload algorithms alone since they are not sufficient to enforce the
MINCUMULATIVE. Note that instances 7 and 10 are unsatisfiable instances.

The decomposition (D) is the configuration with the slowest solving times and it
can solve to optimality only half of the instances within one hour. Time-Tabling alone
is faster, but worse than when it is combined with Underload Check or Underload Fil-
tering. The combination of Time-Tabling and Underload Check is clearly the best con-
figuration. It solves all instances to optimality and is faster on every instance than all
other configurations. The combination of Time-Tabling and Underload Filtering is the
second-best configuration. However, the added cost of filtering does not seem to be
worth the reduction in the search space it provides. Both Energetic Reasoning config-
urations are slower on this benchmark. They reduce the search space more than the
Underload Check configurations, but their high complexity is not worth it.

We report the results of the random benchmark in Table 2. The first number in the
name of each instance indicates the number of tasks. We report only instances for which
at least one configuration found the optimality within 20 minutes. We can see that the
Decomposition and Time-Tabling struggle on this benchmark, having difficulties solv-
ing instances of more than 20 tasks. On smaller instances, Time-Tabling combined with
Underload Check performs better than other configurations, while, on larger instances,
Time-Tabling combined with Energetic Check is better. The latter is the only configu-
ration able to solve all instances. We conclude that, as the problem becomes harder, the
combination of Time-Tabling and Energetic Checker becomes more interesting, even
with a slower complexity. However, as for the Work Shift Scheduling Benchmark, the
added cost of the Energetic Filtering is not worth the increased filtering.
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9 Conclusion

The MINCUMULATIVE enforces tasks to cover a minimum demand. It is NP-Complete
to test for feasibility. We proposed a checker algorithm, the UnderloadCheck, and
two filtering algorithms based on the checker: the Naive filtering algorithm, and the
Overflow filtering algorithm. MINCUMULATIVE can be encoded with a SOFTCUMU-
LATIVE. We compared the strength of the different checking rules. The combination of
Time-Tabling and Underload Check performs best in practice.

Instance D TT TT + UC TT + UF TT + EC EF
time (s) bt time (s) bt time (s) bt time (s) bt time (s) bt time (s) bt

1 3.7 5.5 0.8 6.3 0.7 3.3 0.8 1.6 1.6 3.3 3.3 2.3
2 729.8 139.9 45.4 1,528.2 4.4 128.9 15.6 86.7 39.2 93.3 131.7 54.6
3 - - 3,106.7 103,275.4 560.7 21,395.7 2,798.7 16.3 - - - -
4 - - 2,503.2 114,540.2 242.3 9,592.2 1,035.7 6,564.2 1,637.4 3,668.9 - -
5 542.3 1,083.1 32.0 1,154.5 6.7 221.0 23.7 145.1 54.6 146.8 188.3 77.2
6 - - 945.2 41,763.3 144.9 5,635.7 671.6 4,067.2 2,731,462.0 1.1 - -
7 - - - - 488.3 20,286.2 2,140.0 14,867.0 1,255.1 3,928.8 -
8 87.0 146.0 6.2 156.3 1.7 30.4 4.0 18.4 9.7 27.1 29.5 15.2
9 1.4 550.0 0.2 0.7 0.3 0.3 0.4 0.2 0.5 0.3 0.6 0.2
10 - - - - 28.8 1,113.0 114.5 649.9 44.7 144.4 181.2 57.5

Table 1: Time (s) and thousands of backtracks (bt) to optimally solve the work shift scheduling
problem. A dash (-) means that the optimal was not proved within 1 hour. Instances 7 and 10 are
unsatisfiable.

Instance D TT TT + UC TT + UF TT + EC EF
time (s) bt time (s) bt time (s) bt time (s) bt time (s) bt time (s) bt

20 1 87.4 3,776.6 125.5 12,900.0 0.3 12.6 0.9 12.6 1.3 8.7 3.9 8.4
20 2 0.5 0.9 0.4 7.9 0.1 2.4 0.4 2.4 0.2 1.3 1.3 1.2
20 3 0.3 0.3 0.2 1.1 0.1 1.0 0.3 1.0 0.2 0.8 0.9 0.8
20 4 31.8 1,463.6 248.0 20,035.1 0.2 6.2 0.5 6.3 0.4 3.7 2.3 2.8
20 5 512.9 2,1434.8 1,205.6 138,626.8 0.2 2.2 0.4 2.2 0.3 2.0 455.0 1,080.3
20 6 0.0 0.1 0.2 7.1 0.4 8.5 1.1 8.5 0.7 7.4 3.6 7.3
20 7 0.2 0.5 0.9 34.8 0.6 26.6 2.1 26.2 0.9 9.0 3.9 7.7
20 8 0.1 0.2 0.2 2.0 0.2 2.1 0.4 2.1 0.3 1.8 1.0 1.8
20 9 0.1 1.0 0.5 25.1 0.5 30.2 0.8 8.3 1.3 6.7 3.6 7.0
20 10 4.0 170.3 7.1 302.1 0.3 1.5 0.4 1.5 0.4 1.1 1.3 1.1
30 1 - - - - 3.6 309.4 29.0 285.1 8.4 5.4 119.3 52.7
30 2 - - - - 2.1 210.5 16.3 204.1 9.1 68.6 110.8 53.4
30 3 15.8 523.1 - - - - - - 3.5 25.6 44.1 19.7
30 4 - - - - 0.4 7.8 2.2 7.7 0.9 4.4 6.8 4.2
30 5 - - - - 0.8 27.7 4.2 27.7 0.5 2.3 4.3 2.3
30 6 - - - - 1,390.1 142,143.5 - - 213.8 2,340.3 43.7 23.6
30 7 - - - - 20.4 1,393.0 178.4 1,371.7 23.7 186.0 263.6 181.9
30 8 - - - - 2.1 116.4 16.1 115.9 13.3 97.1 178.4 94.1
30 9 - - - - 2.5 151.9 18.3 151.5 17.3 147.2 231.3 143.2
30 10 2.2 59.0 406.0 17,834.6 5.9 336.9 34.1 336.7 7.6 42.5 67.5 39.4
40 1 - - - - - - - - 668.9 3,028.2 - -
40 2 - - - - 724.1 35,924.8 - - 36.5 106.5 435.6 77.3
40 3 - - - - 1,973.2 191,817.2 - - 1,423.0 6,603.5 - -
40 4 - - - - - - - - 4.1 11.6 59.0 10.1
40 5 - - - - 1,312.8 127,012.2 - - 1,112.2 4,452.5 - -
40 6 - - - - - - - - 9.7 33.6 108.3 21.3
40 7 - - - - - - - - 2,573.3 8,849.2 - -
40 8 - - - - - - - - 2,899.0 12,032.3 - -

Table 2: Time (s) and thousands of backtracks (bt) to optimally solve random instances. (-)
means the optimal solution was not proved within 20 minutes. The first number in the name of
the instance is the number of tasks.
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