
Learn, Compare, Search: One Sawmill’s Search
for the Best Cutting Patterns Across And/or

Trees

Marc-André Ménard1,2,3[0000−0002−8776−5166],
Michael Morin1,2,4[0000−0002−1008−4303],

Mohammed Khachan5[0000−0001−7402−3991],
Jonathan Gaudreault1,2,3[0000−0001−5493−8836], and

Claude-Guy Quimper1,2,3[0000−0002−5899−0217]

1 FORAC Research Consortium
2 CRISI Research Consortium for Industry 4.0 Systems Engineering

3 Department of Computer Science and Software Engineering
4 Department of Operations and Decision Systems

Université Laval, Québec, QC, Canada
5 FPInnovations, Québec, QC, Canada

marc-andre.menard.2@ulaval.ca

Abstract. A sawmilling process scans a wood log and must establish a
series of cutting and rotating operations to perform in order to obtain
the set of lumbers having the most value. The search space can be ex-
pressed as an and/or tree. Providing an optimal solution, however, may
take too much time. The complete search for all possibilities can take
several minutes per log and there is no guarantee that a high-value cut
for a log will be encountered early in the process. Furthermore, sawmills
usually have several hundred logs to process and the available computing
time is limited. We propose to learn the best branching decisions from
previous wood logs and define a metric to compare two wood logs in
order to branch first on the options that worked well for similar logs.
This approach (Learn, Compare, Search, or LCS) can be injected into
the search process, whether we use a basic Depth-First Search (DFS)
or the state-of-the-art Monte Carlo Tree Search (MCTS). Experiments
were carried on by modifying an industrial wood cutting simulator. When
computation time is limited to five seconds, LCS reduced the lost value
by 47.42% when using DFS and by 17.86% when using MCTS.

Keywords: Monte Carlo search · And/or trees · Tree search algorithms
· Sawmilling · Learning.

© 2023 The Authors.
This version of the contribution has been accepted for publication, after peer review (when
applicable) but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-031-44505-7_37. Use of this Accepted Version is subject to the
publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

1 Introduction

In North America, softwood lumber is a standardized commodity. Different di-
mensions and grades are possible and the hardware in the mill, thanks to embed-

https://doi.org/10.1007/978-3-031-44505-7_37
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Fig. 1: A basket of products obtained from the log at the exit of the sawmill
represented in a virtual log.

ded software, optimize cutting decisions for each log in order to maximize profit.
Each lumber type has a specific value on the market, and the equipment aims to
maximize the total basket value given a log. Processing a log leads to a basket of
these standardized lumber products (and byproducts such as sawdust). Figure 1
shows an example of cut for a given log leading to a specific basket of lumber
products. Two different combinations of cutting decisions (e.g., differences in
trimming, edging and/or sawing) can lead to two baskets of different values.

The optimizer of sawmills’ equipment can be used offline to measure the im-
pacts related to changes in the configuration. This can also be done using sawing
simulators such as Optitek [11], RAYSAW [30], and SAWSIM [14]. Providing an
optimal cutting solution may take too much time, whether it is for a real-time
cutting decision purpose, or to get a suitable forecast for decision-making.

The cutting decision optimization problem has been addressed in the litera-
ture in several ways (optimization, simulation, prediction by neural networks or
other ML approaches) [16]. In this paper, we are concerned with a specific case
where the problem is solved by an algorithm enumerating all possible cuts.

Obtaining the best cuts for a given log implies that all log cutting possibilities
must be tested according to the possible cutting choices of each machine. This
complete search for all possibilities can take several minutes per log. In practice
we need to use a time limit for the search and therefore the sawmill lose value
as there is no guarantee that a good cut for a log will be encountered early in
the process. In this paper, we address this challenge.

To get the best possible solution according to the computation time limit, we
need to test first the most promising cut choices. Although the past is no guar-
antee of the future in many cases, when sawing similar logs at the same sawmill,
it might as well be. Based on this observation, we suggest an informed search
algorithm which learns from the previous similar logs to guide the search process
for the actual log. The assumption being that for two similar logs the cutting
decisions leading to the best value will be the same or at least similar enough,
it makes sense to guide the search with our knowledge of the best decisions for
these logs.

The rest of the paper is divided as follows. First, we describe the problem
more thoroughly. Second, we present the preliminary concepts. Third, we present
our method for learning from the optimal cutting decision of already cut logs.
Fourth, we present our results and finally we conclude.

2 Problem Description

In many sawing optimization systems, such as Optitek, logs are represented
by a surface scan: a point cloud of the log’s surface structured as a sequence
of circular sections (see Figure 1 where the points of each section have been
interpolated). A sawmill is defined as a set of machines. Each machine can make
different transformations on the log. A machine that cuts the log into several
parts creates different cutting sub-problems. Each part of the resulting log can go
through the same or a different sequence of machines. At the end of the machine
sequence, the sum of the values of each part of the initial log gives the value of
the log. The value of a product is assessed through a value matrix according to
the size and grade of the product. It is therefore not possible to know the exact
value of the log before different cutting alternatives are explored.

The type of decisions varies from one machine to another. First, there are
different sets of cutting patterns that can be applied by some machines. Second,
for some machines, it is possible to rotate or to do a translation of the log before
it passes through the machine. Each rotation or translation can greatly affect
the basket of products obtained from the log.

The set of all decision sequence for a given log can be represented as a search
tree. The root of the tree corresponds to the log at the entrance of the sawmill
where no transformation has been done yet. Each level of the tree corresponds
to a cutting decision taken on a part of the log by a machine. The decision can
be a rotation, a translation or the choice of a cutting pattern. Each node of a
level corresponds to a value for the decision at this level. A leaf corresponds to a
solution, i.e., a basket of products for which a complete sequence of decisions has
been made. To make sure we find the optimal solution, we have to go through
the whole search tree (an exhaustive search is needed to prove the optimality).

The search tree can be represented by an and/or tree. When a decision cutting
a log in more than one piece is made, we end up with several sub-problems.
Each sub-problem (log part) then goes through different machines and cutting
decisions. The sub-problems correspond to the "and" of an and/or tree. The
subtree corresponding to each sub-problem must be searched to obtain a solution.
Cutting decisions correspond to the "or" of an and/or tree. For an "or" node,
we have a decision to make, whereas for an "and" node we have no choice but
to solve the sub-problem, i.e., explore the subtree.

The width of the tree depends on the values to be tested for each cutting de-
cision. Its maximum depth is bounded by the machine sequence and the number
of unique types of cutting decisions to be tested. In our experiments and in prac-
tice, there are generally more cutting decisions to test than there are machines.
The search tree is therefore wide and shallow.

Figure 2 shows a small search tree example. The log at the top of the tree
enters the sawmill. Each circular node represents a decision that is possible to
choose. For example, from the incoming log (root), we have the choice between
two decisions. Each decision can then create sub-problems (rectangular nodes)
by cutting the log until it reaches a leaf of the search tree. The sum of the leaves

Fig. 2: Example of a search tree. The log at the top of the tree enters the sawmill.
Decisions are made (circular nodes, "or") that can create new sub-problems
(rectangular nodes, "and") by cutting the log.

corresponding to the best decisions for each sub-problem forms a product basket
and the best product basket is returned.

Figure 3 shows an example of a (virtual) sawmill in the Optitek software. The
rectangles are machines where cutting decisions can be optimized. The flow is
generally from left to right (from the Feed to the Sort and Chip nodes), although
there might be loops such as it is the case for the Slasher in our example. Each
machine—except Feed, Sort and Chip—has inputs (left-hand side) and outputs
(right-hand side). Products are routed from one machine to the other depending
on their characteristics.

Fig. 3: A sawmill configuration. The rectangles are machines where cutting deci-
sions can be optimized. The branches are the possible routes between a machine’s
output and another machine’s input.

3 Preliminary Concepts

In this section, we present tree search algorithms from the literature. We will
use them as a baseline of comparison for our approach we call Learn, Compare,

Search, or LCS. Each algorithm without LCS will be compared to a version
where we injected LCS into the search process. We also review and/or trees and
related works on learning to guide a search tree traversal and adaptive search.

3.1 Depth-First Search (DFS)

DFS starts at the root node and always branches on the leftmost node of the pos-
sible choices until it reaches a leaf in the tree. Then it backtracks until there is an
unexplored child node and it resumes its exploration on the leftmost unexplored
child. DFS visits the leaves of the tree from left to right.

DFS is the fastest way to test all decisions, but it has the disadvantage of not
finding good solutions quickly if they are on the right-hand side of the search
tree. For example, if we have a rotational optimization on the first machine
and we want to test all degrees between 0 and 180 degrees, DFS will test the
degrees in ascending order (0, 1, 2, 3, . . .). If the quality of a solution increases
with rotation, DFS will find the optimal solution only at the end of the search
and most of the time will be spent finding bad solutions.

3.2 Limited Discrepancy Search (LDS)

Harvey and Ginsberg [15] introduced the concept of discrepancy. A discrepancy is
when the search heuristic is not followed and another node is visited instead. For
example, in the DFS search algorithm, the heuristic is to branch left whenever
possible. By branching right when we should have branched left in a binary tree,
we deviate from the left-first heuristic of DFS, this is counted as one deviation (or
discrepancy). If a node contains several children, there are two ways to count the
deviations. First, the number of deviations can be the number of nodes skipped
from left to right. For example, taking the first node counts as 0 deviation, taking
the second counts as 1 deviation, taking the third counts as 2, and so on. The
other method, and the one we use in this paper, is to count 1 deviation only
whenever the first node is not taken.

The LDS [15] search algorithm explores the search tree iteratively. Each iter-
ation visits the nodes that have less than k deviations. Starting from k = 0, the
value of k is incremented at each iteration. In this article, we take the improved
version of LDS (ILDS) presented by Korf [21] which avoids visiting a leaf of the
search tree more than once.

3.3 Depth-Bounded Discrepancy Search (DDS)

DDS [31] is a search algorithm also based on deviations. At each iteration, DDS
follows the DFS search algorithm until it reaches a node on level k where k is
the iteration number. It then visits all the nodes on the next level, except the
first node on the left, and continues the exploration by visiting only the nodes on
the left for the remaining levels of the search tree. The idea of DDS is that the
search heuristic is more likely to make a wrong choice at the top of the search
tree than at the bottom.

3.4 Monte Carlo Tree Search (MCTS)

MCTS is a tree search algorithm using a compromise between exploration and
exploitation [6]. MCTS works by iteration. Each iteration contains four phases:
selection, expansion, simulation and backpropagation. There are several ways to
implement MCTS. Our implementation is inspired by Antuori et al. [2]

Selection The selection phase starts at the root of the tree and ends when
we reach a node that has not yet been visited in a previous iteration. When
we are at a node, the next node to visit is chosen according to the formula (1)
where A(σ) represents a set of actions that can be done from the current node
σ. Each action is represented by a branch in the search tree. Given node σ, σ|a
represents the child node reached by taking the action a. Ṽ (σ|a) is the expected
value of the node if the action a is chosen and corresponds to the exploitation
term. U(σ|a) corresponds to the exploration term. Finally, c is a parameter to
balance the exploitation and the exploration (i.e., Ṽ (σ|a) and U(σ|a)).

argmax
a∈A(σ)

Ṽ (σ|a) + c · U(σ|a) (1)

There are different ways to compute an expected value Ṽ (σ|a) for a node
σ|a. For example, it is possible to take the average of the solutions found so
far for the node. Instead, we use the best value found so far for this node as
expected value. Keeping the best value is better in our case, because many of
the solutions have a null value, i.e., the cutting decisions lead to a null value
for one of the output products. The values of the different Ṽ (σ|a) must be
normalized to be compared with the exploration term U(σ|a). We normalize
this value between [−1, 1] using the formula (2) where N(σ) is the number of
visits to the node σ, V + = max{V (σ|a)|a ∈ A(σ), N(σ|a) > 0} and V − =
min{V (σ|a)|a ∈ A(σ), N(σ|a) > 0} [2] which corresponds to the maximum and
minimum value for the children nodes of the parent node.

Ṽ (σ|a) =

{
2V +−V (σ|a)

V +−V − − 1 if N(σ|a) > 0

0 otherwise
(2)

The exploration term (U(σ)) is computed with the formula (3) where Pr(σ)
corresponds to the priority probability biases, p(σ) corresponds to the parent
node of the current node σ, and N(σ) corresponds to the number of visits to the
current node.

U(σ) = Pr(σ)

√
N(p(σ))

N(σ) + 1
(3)

Expansion The expansion phase creates a child node σ|a for each action a ∈
A(σ). For each child node σ|a, we initialize the number of visits N(σ|a) to 0 and
the expected objective value V (σ|a) to 0. We also initialize the prior probability
biases Pr(σ|a) to a value if available and if not, we initialize Pr(σ|a) according
to a uniform distribution 1

|A(σ)| .

Simulation The simulation phase, also called rollout, aims at finding a possible
expected value for the node. The simulation phase must then visit at least one
leaf of the search tree from the current node. The simulation can be done by
making a random choice of nodes to visit at each level of the tree. It is also
possible to make a weighted random choice with the different probabilities of
each node Pr(σ) if these probabilities are available.

Backpropagation The backpropagation phase will update the nodes visited
during the selection phase. The number of visits N(σ) is incremented by 1 and
the expected value V (σ) is updated if a better solution is found during the
simulation phase.

3.5 Searching AND/OR Trees

The representation of the problem as an and/or tree allows having a search tree
with less depth. The search algorithms can be adapted to the and/or tree.

For DFS, there is no change. For the LDS search algorithm, the algorithm
must be modified. Larrosa et al. [22] presents the limited discrepancy and/or
search (LDSAO) algorithm. This algorithm uses the LDS search algorithm, but
for and/or trees. The difference between LDS and LDSAO is in the handling of
the "and" nodes. For the "and" nodes, we have to find and solve these subprob-
lems to get a solution. These nodes do not cause any discrepancy. For the "or"
nodes, we do not cause any discrepancy if we follow the search heuristic. For the
same number of discrepancies, Larrosa et al. [22] have shown that each iteration
of LDSAO includes the search space of LDS on the original tree and more.

The same logic for going from LDS to LDSAO can be applied for DDS where
we do not cause discrepancy when going through an "and" node, but only when
we do not follow the search heuristic to go through an "or" node.

For the MCTS algorithm, in selection mode, we visit all the "and" nodes
(subproblem) for a given level, but we visit only one "or" node (decisions). It is
also the same principle in simulation mode, we visit all the "and" nodes (sub-
problem) for a given level, but we select only one of the decisions ("or" node).

3.6 Learning for Search Tree Traversal and Adaptative Search

Learning to guide a search tree traversal for search efficiency purposes is not a
new concept. There are several adaptive search algorithms for variable choice
heuristics and value choice heuristics such as dom/wdeg [5], solution counting
based search [33], and activity-based search [25]. In this family of algorithms,
we also find Impact-Based Search [27], Adaptive Discrepancy Search (ADS) [12],
and the RBLS algorithm [3]. There is also Solution-guided multipoint construc-
tive search (SGMPCS) [4] that guides the search from multiple solutions found
during the search of the current instance. Our approach has some similarities to
SGMPCS, but it starts with solutions found offline. MCTS [6], we described in
Section 3.4, is also an adaptive algorithm. At the difference of the LCS approach,

these algorithms, in their original form, tend to adapt at runtime. They do not
use prior knowledge of the problem.

The alternative is to guide the search with known solutions. Loth et al. [24]
presented Bandit-Based Search for CP (BASCOP), an adaptation of MCTS
using Reinforcement Learning (RL) to know where to branch next. They use a
reward function based on the failure depth. This approach is interesting to keep
the learning from one problem instance to another. In our problem, however, the
search tree is determined by the order of the machines and the cutting decisions.
There are no failures.

Other approaches are specific to Constraint Programming (CP). Chu and
Stuckey [8], for instance, have presented a value ordering approach to tree search.
When branching, a score is assigned to each value in the domain of the variable
using domain-based features and machine learning.

There is also a whole literature on learning in the context of a branch and
bound for Mixed-Integer Linear Programming which leads to search trees where
branching splits the problem into subproblems instead of assigning a value to a
variable (as it is usually the case in CP branch and bounds). In their literature
review on learning to improve variable and value selection, Lodi and Zarpel-
lon [23] define two categories of approaches: (1) incorporating learning in more
traditional heuristics [13,18,10], and (2) using machine learning [1,19,20].

Finally, LCS is closer to informed search methods with a priori information
than to adaptive search methods that learn at runtime. The idea of informed
search is to add domain-specific knowledge to help the search algorithm [9,29].
Recent examples of informed search includes the work of Silver et al. [28], On-
tanón [26], and Yang et al. [32]. Silver et al. [28] introduced AlphaGo, a sys-
tem using MCTS along with a neural network trained by supervised learning
on human expert movements, and improved through self-play RL. Ontanón [26]
presents Informed MCTS for real-time strategy (RTS) games. The approach con-
sists of using several Bayesian models to estimate the probability distribution of
each action played by an expert or search heuristics. It then initializes the prior
probabilities of the possible actions in the MCTS search. Yang et al. [32] present
the Guiding MCTS which uses one or more deterministic scripts based on the
human knowledge of the game to know which node to visit first for a RTS game.
Our approach is similar to these approaches since we rely on past decisions to
initialize the prior probabilities of actions.

4 Learning from Past Decisions in LCS

To find the best solution faster, we propose to first learn from past instances/logs.
This allows us to know which decisions are more promising and should be visited
first. In the context of sawing, a decision is considered more promising than
another if it is more often found in the optimal cutting decisions of previously
cut logs. The assumption is that for similar logs, the same cutting decisions will
be made to find the best log value.

It is possible to get information on the decisions made for previous logs,
because the structure of the search tree is similar from one log to another. Indeed,
the order of the machines and the cutting decisions remain the same. However,
the best choices may differ according to the characteristics of the logs. Even
in the case where two logs (therefore their search trees) differ substantially, a
knowledge transfer might still be possible between the two.

4.1 Adaptation of Search Algorithms to Learning

Each search algorithm presented in Section 3 can make use of past optimal
cutting decisions of already cut logs. For DFS, LDS and DDS, we ordered the
"or" child nodes representing a decision of an "and" node in descending order of
the number of times that decision is made to obtain a solution of a previously cut
log. We name this value for a node Q(σ) where σ represent the node. The first
node is therefore the decision that is most often in a solution of the previously
cut logs compared to the other possible decisions, i.e., maxa∈A(Q(σ|a)). For the
algorithms using discrepancy, no discrepancy is caused when we take the node
that is most often in a solution of the previously cut logs.

For the MCTS search algorithm, the prior probability biases Pr(σ|a) are
initialized according to Equation (4) representing the number of times a decision
is chosen to obtain a solution from a previously cut log versus the number of
times the parent decision is.

Pr(σ|a) = Q(σ|a)
Q(σ)

(4)

It may not be ideal to rely on the decisions made for all log sawed. Two logs
that are very different may have different optimal cutting decisions. Therefore,
it is best to rely only on the X decisions that led to the best cutting decisions
for the logs most similar to the simulated log where X is a hyper-parameter.
The following section presents the method for finding similar logs.

4.2 Finding Similar Logs

We assume each log is represented by a 3D point cloud. The point cloud is
separated into sections and each section represents a part of the log. This is a
standard representation for the logs in the industry.

Finding logs similar to the current log could be done by comparing the point
clouds. For instance, by first using the iterative closest point (ICP) algorithm
to align two point clouds, we could extract the alignment error and use it as
a dissimilarity measure [7]. This, however, would be computationally intensive.
The ICP algorithm is polynomial in the number of points [17], but each new log
would need to be compared to every known log and log point clouds can have
more than 30 thousand points. Our logs, for instance, have an average of 19326
points and the maximum number of points is 32893. To keep runtimes low, we
compare the logs using a set of features that are easily computed. In fact, the

Table 1: Features of a log, calculated from a surface scan
Features Description

Length Length of the log
Small-end diameter Diameter of the log at the top end
Large-end diameter Diameter of the log at the stump end
Diameter at 25% Log diameter at 25% of length from the stump end
Diameter at 50% Log diameter at 50% of length from the stump end
Diameter at 75% Log diameter at 75% of length from the stump end
Max sweep Maximum value of the curvature of the log
Location max sweep Percentage of length at which curvature is greatest
Thickness Thickness of the log calculated from the point cloud
Width Log width calculated from the point cloud
Volume Volume of the log
Volume homogeneity Average volume difference from section to section
Taper Difference between the diameters of the two ends

features we use can be computed offline before the search. Table 1 shows the
features used to represent a log.

To calculate the similarity between two logs, we first apply a MinMax nor-
malization (Equation (5)) before comparing features.

bc =
bc −min(bc)

max(bc)−min(bc)
∀c ∈ C (5)

This ensures two features that do not have the same order of magnitude have the
same weight when computing the similarity, for example the length and diameter
of a log. Then, we calculate the distance of the logs by taking the sum of their
squared differences using Equation (6) where C is the set of features, bc1 is the
value of the feature c of the first log and bc2 is the value of the feature c of the
second log.

S(b1, b2) =
∑
c∈C

(bc1 − bc2)
2 (6)

5 Experiments

To demonstrate the potential of LCS on our log sawing problem, we implemented
it—along with the DFS, LDS, DDS, and MCTS tree search algorithms—in a
state-of-the-art commercial sawing simulator (Optitek). We have eight different
sawmill configurations which allows testing the approach on eight different in-
dustrial contexts. For each sawmill we proceed as follows. We virtually cut one
hundred logs, each time exploring the search tree completely thus finding the
max/optimal value.

Then, we randomly separate the hundred logs into two datasets. Fifty logs
will be used as a training dataset to find the best hyper-parameter values for

each algorithm. The other fifty logs constitute the dataset used to compare the
algorithms.

For these two datasets, another separation must be made. Thirty logs among
the fifty are used to know the paths that most often led to the best solution
for the methods that learn on the already simulated logs. The other twenty logs
among the fifty will be used to compare the results obtained by each of the
search algorithms. As the random separation impacts the method to learn on
the already simulated logs, five replications of this separation are made to get
an average of the results.

The hyper-parameters for MCTS are: the c ∈ {1, 2} coefficient, used to bal-
ance exploitation and exploration; the number of simulations performed during
the simulation phase, selected in {1, 2, 3, 4}; and the number of nodes visited for
each level during the simulation, selected in {1, 2, 3}. If at a level, the number of
child nodes is less than the number of child nodes to visit, we visit all of them.

When processing a new log, we tested with 10, 20, and 30 as the number of
similar logs we will use to guide the search.

6 Results

Figure 4 presents the results obtained on the 8 sawmill configurations according
to the search algorithm. Figure 5 presents the averaged for the 8 sawmill con-
figurations. For each sawmill configuration and search algorithm, we plotted the
percentage of optimality attained on average on the 20 test logs (y-axis) against
the solving time in seconds (x-axis). Each curve represents an average over five
replications. At a given point in time, a search algorithm at 100% optimality has
found all the optimal solutions for the 20 logs.

MCTS is better than DFS, LDS and DDS except for the sawmill configura-
tions #7 and #8 where DFS is slightly better. By comparing each search algo-
rithm with or without learning (with or without LCS), we see that the results are
always better except for DFS for the sawmill configuration #1 and LDS for the
sawmill configuration #3. However, there is little difference between MCTS and
MCTS with learning. The fact that MCTS learns and adapt during the search,
balancing exploitation and exploration, should reduce the gains obtained with
learning on decisions made on previous logs.

For each search algorithm, Table 2 shows the percentage of improvement
(reduction of the lost value, in percentage) provided by LCS after n seconds
(with n ∈ {1, 2, . . . , 5}) according to the search algorithm. After 1 second, the
improvement is 23.58% for MCTS, the best search algorithm, whereas it is 23.2%
for DFS, the simplest search algorithm. After 5 seconds, the improvement is
17.86% for MCTS and 47.42% for DFS. In our experiments, completing the
search took 1 hour and 42 minutes per log on average. For industrial decisions,
the “ideal” time limit depends on the hardware configuration of the sawmill and
the available time to wait for a solution. With a time limit of one second, a
thousand logs will take about 16.67 minutes whereas a time limit of 5 seconds
would lead to a waiting time of 83.3 minutes.

(a) Sawmill #1 (b) Sawmill #2

(c) Sawmill #3 (d) Sawmill #4

(e) Sawmill #5 (f) Sawmill #6

(g) Sawmill #7 (h) Sawmill #8

Fig. 4: Percentage of optimality against solving time (in seconds) for each algo-
rithm and sawmill configurations; average of 5 replications on 20 logs.

Fig. 5: Percentage of optimality against solving time (in seconds) for each tree
search algorithm; averaged on all sawmill configurations.

Table 2: Reduction of the lost value when using LCS depending on the search
algorithm according to the time in seconds.

Elapsed time

Search algorithms 1 sec. 2 sec. 3 sec. 4 sec. 5 sec.

DFS vs DFS with learning 23.2% 29.47% 42.45% 47.58% 47.42%
LDS vs LDS with learning 31.08% 44.55% 46.05% 46.62% 47.94%
DDS vs DDS with learning 35.22% 47.62% 47.79% 48.56% 48.63%
MCTS vs MCTS with learning 23.58% 23.73% 24.03% 22.44% 17.86%

7 Conclusion

We compared four search algorithms, namely DFS, LDS, DDS, and MCTS with
and without learning (a total of eight variants). We showed how to improve each
of them by learning from the best cutting decisions on previous logs, introducing
a framework called LCS. In the context of our application, LCS, when injected in
the search process, improved the cut quality obtained within the first 5 seconds of
the search—a requirement for enabling better industrial decisions. Considering
the thousands logs to process in sawmills and the need to forecast the impact of
a decision, our approach has the potential to translate to tangible gains for the
forest-product industry.

Although we applied LCS in the particular context of wood log cutting de-
cision optimization, the framework is general and could be applied to other
problems where the search space is represented as a tree. Learning from previ-
ous runs using a framework such as LCS, as long as the instances share sufficient
similarities, appear to be a promising avenue for further research on combining
learning and optimization.

References

1. Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approxima-
tion of strong branching. INFORMS Journal on Computing 29(1), 185–195 (2017)

2. Antuori, V., Hébrard, E., Huguet, M.J., Essodaigui, S., Nguyen, A.: Combining
monte carlo tree search and depth first search methods for a car manufacturing
workshop scheduling problem. In: International Conference on Principles and Prac-
tice of Constraint Programming (CP) (2021)

3. Bachiri, I., Gaudreault, J., Quimper, C.G., Chaib-draa, B.: Rlbs: An adaptive back-
tracking strategy based on reinforcement learning for combinatorial optimization.
In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence
(ICTAI). pp. 936–942. IEEE (2015)

4. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling.
Journal of Artificial Intelligence Research 29, 49–77 (2007)

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI). vol. 16 (2004)

6. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in games
4(1), 1–43 (2012)

7. Chabanet, S., Thomas, P., El Haouzi, H.B., Morin, M., Gaudreault, J.: A kNN ap-
proach based on ICP metrics for 3D scans matching: an application to the sawing
process. In: 17th IFAC Symposium on Information Control Problems in Manufac-
turing (INCOM) (2021)

8. Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In:
International Conference on Integration of Constraint Programming, Artificial In-
telligence, and Operations Research (CPAIOR). pp. 108–123. Springer (2015)

9. Drake, P., Uurtamo, S.: Move ordering vs heavy playouts: Where should heuristics
be applied in monte carlo go,”. In: Proceedings of the 3rd North American Game-
On Conference. pp. 171–175. Citeseer (2007)

10. Fischetti, M., Monaci, M.: Backdoor branching. In: International Conference
on Integer Programming and Combinatorial Optimization (IPCO). pp. 183–191.
Springer (2011)

11. FPInnovations: Optitek 10. In: User’s Manual (2014)
12. Gaudreault, J., Pesant, G., Frayret, J.M., D’Amours, S.: Supply chain coordination

using an adaptive distributed search strategy. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 42(6), 1424–1438 (2012)

13. Glankwamdee, W., Linderoth, J.: Lookahead branching for mixed integer program-
ming. In: Twelfth INFORMS Computing Society Meeting. pp. 130–150 (2006)

14. HALCO: Halco software systems ltd (2016), http://www.halcosoftware.com
15. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the

Fourteenth International Joint Conference on Artificial Intelligence (IJCAI). vol. 1,
pp. 607–615 (1995)

16. Hosseini, S.M., Peer, A.: Wood products manufacturing optimization: A survey.
IEEE Access 10, 121653–121683 (2022)

17. Jost, T., Hügli, H.: Fast icp algorithms for shape registration. In: Pattern Recog-
nition. pp. 91–99. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

18. Karzan, F.K., Nemhauser, G.L., Savelsbergh, M.W.: Information-based branching
schemes for binary linear mixed integer problems. Mathematical Programming
Computation 1(4), 249–293 (2009)

http://www.halcosoftware.com

19. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in
mixed integer programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 30 (2016)

20. Khalil, E.B.: Machine learning for integer programming. In: Proceedings of the
Twenty-fifth International Joint Conference on Artificial Intelligence (IJCAI). pp.
4004–4005 (2016)

21. Korf, R.E.: Improved limited discrepancy search. In: Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI). vol. 1, pp. 286–291 (1996)

22. Larrosa Bondia, F.J., Rollón Rico, E., Dechter, R.: Limited discrepancy and/or
search and its application to optimization tasks in graphical models. In: Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI). pp. 617–623. AAAI Press (Association for the Advancement of Artificial
Intelligence) (2016)

23. Lodi, A., Zarpellon, G.: On learning and branching: a survey. Top 25(2), 207–236
(2017)

24. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for con-
straint programming. In: International Conference on Principles and Practice of
Constraint Programming (CP). pp. 464–480. Springer (2013)

25. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint pro-
gramming solvers. In: Integration of AI and OR Techniques in Contraint Program-
ming for Combinatorial Optimzation Problems (CPAIOR). pp. 228–243. Springer
(2012)

26. Ontanón, S.: Informed monte carlo tree search for real-time strategy games. In:
2016 IEEE Conference on Computational Intelligence and Games (CIG). pp. 1–8.
IEEE (2016)

27. Refalo, P.: Impact-based search strategies for constraint programming. In: Inter-
national Conference on Principles and Practice of Constraint Programming (CP).
pp. 557–571. Springer (2004)

28. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529(7587),
484–489 (2016)

29. Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J.: Monte carlo tree search:
A review of recent modifications and applications. Artificial Intelligence Review pp.
1–66 (2022)

30. Thomas, R.E.: Raysaw: A log sawing simulator for 3d laser-scanned hardwood logs.
In: Proceedings, 18th Central Hardwood Forest Conference. vol. 117, pp. 325–334
(2012)

31. Walsh, T.: Depth-bounded discrepancy search. In: Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI). vol. 1, pp. 1388–
1393 (1997)

32. Yang, Z., Ontanón, S.: Guiding monte carlo tree search by scripts in real-time
strategy games. In: Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AAAI). vol. 15, pp. 100–106 (2019)

33. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14(3), 392–413 (2009)

	Learn, Compare, Search: One Sawmill’s Search for the Best Cutting Patterns Across And/or Trees

