
Dealing with User’s Preferences
in Mixed-Initiative Systems for Linear Optimization

Alexis Gauthier
Department of Computer Science and

Software Engineering
Université Laval
Québec, Canada

Jonathan Gaudreault
Department of Computer Science and

Software Engineering
Université Laval
Québec, Canada

jonathan.gaudreault@ift.ulaval.ca

Claude-Guy Quimper
Department of Computer Science and

Software Engineering
Université Laval
Québec, Canada

Abstract—Mixed-Initiative Systems (MIS) are hybrid decision
systems where collaboration is possible between humans and
machines. However, current systems sometimes override user
preferences when provided with new ones. We studied linear
optimization problems, where the decision maker is specifying
preferences for variable values through an iterative process.
We proposed a goal programming framework to deal with
hierarchies of preferences. Two reoptimization algorithms were
evaluated: sequential simplex and lexicographic simplex. Com-
pared with the sequential simplex, the lexicographic simplex
algorithm demonstrated greater speed and numerical stability.

Keywords—mixed-initiative systems, MIS, optimization, reop-
timization, preference, real-time, performance, man-machine
interaction, user experience, UX.

1. Introduction

When designing an optimization system, it is often
impossible to capture all decision maker (DM) preferences
as s/he will only discover some preferences as they are
being violated by a solution [1]. Traditional decision support
systems only provide the user with one solution. When the
DM does not like the resulting solution, s/he adds a new
constraint to the original problem and reruns the algorithm
with the risk of obtaining a completely different solution;
thus, discovering new violated preferences.

Mixed-Initiative Systems (MIS) [2], [3], [4] are hybrid
systems whereby, instead of allocating full control to either
a machine or a human, a mechanism is provided for col-
laboration between humans and machines. MIS has many
applications, such as addressing scheduling problem [5],
transportation problem [2], [6], medical conciliation [7],
even task planning for NASA’s Mars Rover [8], [9].

MIS allow solution modification, what if analysis [10],
dynamic addition of constraints [4], and guided search pro-
cesses. These can be viewed as iterative processes where a
series of exchanges occur between the DM and the system;
permitting access to computational power, as well as the
DM’s judgment.

During this iterative process, the DM learns about the
solution space and expresses preferences (e.g., for the values
of some variables). Normally, a good system permits the
DM, at each intervention, to get closer to a satisfying
solution. However, if the DM intervenes in the value of a
first variable, and then again for a second variable, then
the second intervention might also affect the value of the
first variable. It is sometime inevitable, but often the system
could have adjusted other variables differently to preserve
the value of the first variable as closely as possible to the
DM’s preferred value.

Mixed-Initiative Systems for linear optimization prob-
lems (like [11]) do not bound very tightly to previous
preferences. Therefore, we propose a goal programming-
inspired framework to deal with a hierarchy of user prefer-
ences in real time through a reoptimization process. This
framework was supported by two alternative algorithms
that we compared in this paper: sequential/iterative simplex
algorithm [12], [13], [14] and the lexicographic simplex
algorithm [15].

The remainder of this article is structured as follows.
SECTION 2 presents preliminary notions about reoptimiza-
tion approaches for linear optimization systems. In SEC-
TION 3, the problem is presented formally. In SECTION 4,
our framework is described and the two supporting algo-
rithms are presented. They are evaluated in SECTION 5.
SECTION 6 concludes this paper.

2. Preliminary Notions

2.1. Iterative Reoptimization Process

Meignan et al. [4] defines interactive reoptimization as
an iterative process with two phases. First, the user specifies
changes to be made to the current solution. Second, a
reoptimization procedure is applied to perform the changes
and to optimize the remainder of the solution accordingly.
The process is iterated until a satisfying solution is obtained.

FIGURE 1 illustrates a more general scheme. Step 1
represents problem modeling. The model is initially solved

(2) in order to obtain an initial solution (3) that must be
analyzed by the DM (4). If it is satisfying, then the process
stops. Otherwise, the DM requests a modification, stating a
preference for a variable value (5). From that preference,
the machine modifies the model and performs again an
optimization (or a reoptimization) in (6). The process cycles
again until the DM is satisfied or exhausted.

t

Problem
formulation

Initial
optimization Solution Solution analysis

Preference expressionReoptimization

1.

2. 3. 4.

5.6.

Figure 1: Reoptimization process

2.2. Characteristics that Facilitate the
Reoptimization Process

Hamel et al. [1] define two criteria, also described in [4],
that can be used to measure the quality of a MIS used for
linear optimization: responsiveness and stability.

Responsiveness refers to the computation time needed
to obtain a new solution each time the DM modifies a
variable. Kept low, it allows the DM to follow a cognitive
path without temporal disruption.

Stability is the property of computing a new solution that
is as close as possible to the current solution. It can be mea-
sured using the Euclidian distance between two solutions.
According to Meignan et al. [4], minimizing this distance
favors the convergence toward a satisfying solution for the
DM. Actually, if a system shows very bad stability, each
modified solution will be very different from the previous
one, preventing the DM to progress in a coherent way, to
converge toward a satisfying solution.

To maintain stability, some systems try minimizing the
number of modified variables since the previous solution.
The advantage of this technique is that it can be used for
non-linear problems; however, it may lead to a suboptimal
solution [16]. Moreover, at some point, the user may prefer
small modifications to many variables instead of a large
modification to a single variable.

Hamel et al. [1] directly attempts to minimize the Euclid-
ian distance. They also propose a method, named triangular
heuristics, to dynamically generate linear combinations of
solutions. It is faster than the Euclidian approach (respon-
siveness) while demonstrating good stability between two
consecutive solutions.

2.3. Optimization Using the Simplex Algorithm

The simplex algorithm is used as a backbone by
most MIS for linear optimization. The original simplex

algorithm [17] (a.k.a. two-phase simplex) was developed
by Dantzig in 1947 [18]. The Dantzig’s simplex is a
single-objective optimization algorithm that performs a path
through the solution space vertices along the edges. An
evaluation is performed at every vertex encountered; to
look at the possible directions (the pivot step). The chosen
direction is the one that leads to the best improvement of the
objective-function. In a convex space that can be modeled
with a linear structure, the simplex algorithm might be used
and run generally in polynomial time [19].

A drawback of using it in a MIS context is that we can
face numerical instability problems. Since it was observed
in the experiment (see for instance the last paragraph of
SECTION 5.1), we briefly introduce the problem in the
following.

2.4. Numerical Instability

There are many ways to define numerical instability [20].
Here, we reserve the use of this expression to describe errors
linked to the execution of a theoretically valid algorithm that
might lead to an incorrect solution.

The main source of errors is the floating-point represen-
tation of real numbers on a finite number of bits, which often
leads to rounding errors. With contemporary computers,
where information is encoded in 64 bits, precision is in the
order of 10−16.

Let x be a real value and y = f(x) the value of a func-
tion applied to x. If the encoded value of x is not exact, then
the value of the applied function becomes ŷ = f (x+ δx)
where δx is the rounding error on x. All subsequent opera-
tions risk to accumulate the error.

When the algorithm makes choices based on these erro-
neous values, it might lead to even greater errors. According
to Higham [20], it is in linear algebra that the effects of
rounding errors are most important. Readers interested in
learning more about numerical instability should refer to the
literature [20], [21], [22] and to publications with specific
attention to the simplex algorithm [23], [24], [25].

3. Problematic

Methods proposed by Hamel et al. and others for MIS
with linear optimization may lead to good stability between
two consecutive solutions, but not necessarily to conver-
gence over time as previous preferences are overridden by
new ones.

For instance, the DM might originally request that
x = k1 (Step 5, FIGURE 1). Then, the reoptimization pro-
cess occurs and, after the new solution analysis (Step 4,
FIGURE 1), the DM expresses a new preference and requests
that y = k2 (cycling again through Step 5, FIGURE 1).
Although the new solution (Step 6, FIGURE 1) may min-
imize the differences with the previous solution, it does not
necessarily take into account the first request (x = k1). This
might lead the next solution to return x = k3 with k1 6= k3.

Actually, despite the control over the Euclidian distance
of a solution over the previous one, and despite the control

over the number of affected variables, this problem still
happens. This problem is due to the reoptimization step
(Step 6, FIGURE 1), where every variable holds the same
level of importance, and that is without consideration for
the preferences requested by the DM.

In the next section, we proposed an approach to over-
come this, using a multi-objective approach while taking
into account the issue of numerical stability.

4. Proposed Approach

We propose a multi-objective framework aiming to
maintain, as much as possible, DM’s specifics requests (Step
5 of FIGURE 1). Each of his/her interventions will turn to be
an additional objective encoded as the minimization of the
distance (min |xi − ki|) between a DM’s target value ki and
the actual value of a specific variable xi. The given priority
level of a newer intervention will be judged more important
than the reach of the targeted value by a previous request.

TABLE 1 shows an example of objective hierarchy for
a problem to be solved (Step 6, FIGURE 1) after the DM
issues an n-th preference. Since a DM’s request must never
reduce the value of the objective-function from the initial
problem, this objective must always stay in primary position.
Then, to maintain the priority of a new intervention (an
n-th preference) over previous interventions, the objective
related to this new intervention will be inserted in secondary
position. In doing so, other objectives are relegated a level
further.

Objectives (Level)
max f(x) (1)

New objective −→ min |xn − kn| (2)
min |xn−1 − kn−1| (3)
min |xn−2 − kn−2| (4)

...
min |x1 − k1| (n+ 1)

TABLE 1: Multi-Objective Problem After n Preferences

After each DM intervention, the whole problem can be
solved using goal programming techniques [12], [14], [26].
Each user request is considered as a soft constraint encoded
as an objective.

4.1. Comparison with Previous Approach

To illustrate what it means for the DM, the problem (1)
is used as a small example.

Objective : max x1 + x2 + x3

s.t.

{
x1 + x2 + x3 ≤ 9

x1, x2, x3 ≥ 0
(1)

Suppose that the DM received as initial solution from the
system (x1, x2, x3) = (3, 3, 3), but that s/he would prefer to

get x1 = 5 and x2 = 1. An example of the resulting interrac-
tions between the DM and a MIS is given in TABLE 2. The
first section shows the interractions using the minimization
of the Euclidean distance between the previous solution and
the new one, and the second section using the proposed
approach which deals with user’s preferences.

Interactions using the minimization of Euclidean distance
Previous Solution User Request New Solution Iteration
(x1, x2, x3) xi = ki (x1, x2, x3) (#)

(3, 3, 3) x1 = 5 (5, 2, 2) (1)
(5, 2, 2) x2 = 1 (5.5, 1, 2.5) (2)
(5.5, 1, 2.5) x1 = 5 (5, 1.25, 2.75) (3)

...
...

...
...

Interactions using the proposed approach
Previous Solution User Request New Solution Iteration
(x1, x2, x3) xi = ki (x1, x2, x3) (#)

(3, 3, 3) x1 = 5 (5, 3, 1) (1)
(5, 3, 1) x2 = 1 (5, 1, 3) (2)

TABLE 2: Comparison Between Approaches for the User

Clearly, this simple example shows that the minimization
of the Euclidean distance1 allows the user to converge to-
ward his/her prefered solution, but also that s/he theoriticaly
needs an infinite number of iterations to obtain it, going back
and forth asking for x1 = 5 and x2 = 1. In contrast, our
approach leads the DM to what s/he was aiming in only two
iterations2.

The following subsection presents two different algo-
rithms that can be used to solve this hierarchy of objectives.

4.2. Sequential Algorithm

It is possible to solve a multi-objective problem, for which
a priority order of objectives is given, by using a sequential
approach [12], [13], [14]. If the DM gives n preferences,
then the multi-objective problem to solve has n+ 1 objec-
tives (TABLE 1). We then sequentially solve n+ 1 single-
objective problems: The initial optimization corresponds to
the original optimization problem. Then, a new optimization
seeks to achieve the optimal value of the second (under the
constraint of not reducing the value of the first objective).
This method goes on until the optimal value relative to the
(n+ 1)-th objective is obtained.

Hence, there is a concern that the sequential algorithm
might be too slow to reach the responsiveness needed for
real-time interactive reoptimization. However, this method
can potentially be used with most commercial solvers for
linear problems and might also be extended to non-linear
problems.

1. Similar results would arise with the triangular heuristic.
2. Note that the new solution obtained at the end of the first iteration

might be different depending on the implementation. Still x1 = 5 would
be output there.

Preferences 1 2 10 20 30 40 50 1 2 10 20 30 40 50

Replications 10,300,000 1,060,000 87,000 97,000 10,800 10,000 11,300 10,300,000 10,600,000 8,700,000 970,000 1,080,000 1,000,000 1,130,000

Av. Res. Time 0.03936 0.0777 0.9534 4.828 14.90 35.49 72.77 0.06149 0.06712 0.11215 0.1659 0.2213 0.2756 0.3321

95% CI ± 0.00028 ± 0.0006 ± 0.0068 ± 0.037 ± 0.13 ± 0.31 ± 0.57 ± 0.00042 ± 0.00047 ± 0.00114 ± 0.0013 ± 0.0021 ± 0.0022 ± 0.0025

Fails 95 18 1773 289 37 32 48 0 0 1 0 1 0 0

Fail rate < 0,00001 0.00002 0.02038 0.00298 0.00343 0.00320 0.00425 0 0 < 0,00001 0 < 0,00001 0 0

Replications 119,000 85,000 9,700 1,040 920 97 92 11,900 8,500 9,700 10,400 9,200 9,700 9,200

Av. Res. Time 3.121 6.404 55.06 221.1 609.3 1,257 2,484 12.98 13.17 14.34 15.82 17.31 18.78 20.07

95% CI ± 0.022 ± 0.053 ± 0.54 ± 4.2 ± 14.9 ± 98 ± 164 ± 0.16 ± 0.17 ± 0.16 ± 0.18 ± 0.29 ± 0.24 ± 0.23

Fails 13 10 1224 150 137 13 12 0 0 0 0 0 0 0

Fail rate 0.00011 0.00012 0.12619 0.14423 0.14891 0.13402 0.13043 0 0 0 0 0 0 0

Sequential Algorithm Lexicographic Simplex Algorithm

1
0

 V
ar

ia
b

le
s

1
0

0
 V

ar
ia

b
le

s

TABLE 3: Factorial Design Experiment

Av. Res. Time, average resolution time (measured in milliseconds); CI, confidence interval.

4.3. Lexicographic Simplex Algorithm

Instead of running the simplex once for each objective, we
can run a modified version of the simplex dealing with all
objectives in a single run. The lexicographic simplex, which
also recalls the multiphase simplex [13], was proposed in
1982 by Isermann [15]. It was developed to be used in multi-
objective problems where a strict priority order is given
between different objectives.

The lexicographic simplex algorithm differs from the
original simplex algorithm at the pivot step (see SEC-
TION 2.3). Instead of only identifying a single direction
that gives the best improvement to the objective, it builds
a list of every direction that would improve as much this
objective. Among these directions, only those that allow the
best improvement for the second objective are retained, etc.
Therefore, we expect it to be much faster than the sequential
approach.

5. Experiments

We would like to identify which algorithm should be
used within the MIS framework proposed in SECTION 4. The
closest benchmark that we have found goes back to 1979
with a comparison of the sequential algorithm and the multi-
phase simplex [12]. The results showed better performances
for the sequential algorithm. However, this experiment used
only nine problems and does not give much informations on
them. In particular, there are no details about the number of
preferences used. So we aimed to measure performances3

of the sequential and lexicographic algorithms.
To obtain a good representation of the performance of

the algorithms, experiments were performed over a wide
set of instances. Therefore, a random instance generator
was designed. An instance comprised a given number of
variables, a number of constraints, and a main objective-
function. Since the generator was used to simulate the reop-
timization process (Step 6, FIGURE 1), which happens after

3. For these experiments, we implemented the algorithms in C# on a
Lenovo Ideapad 700, with an i7-6700HQ processor @ 2.60 GHz and 12
GB of RAM.

a given number of interventions by the DM, the generator
also produces an ordered set of preferences.

The number of variables in the problem (n) was first
chosen, then the number of constraints was fixed at n+ 1.
The constraints showed this structure :

a1x1 + a2x2 + ...+ anxn ≤ k, (k > 0, ai > 0 ∀i)

Then, the objective-function was randomly generated :

max a1x1 + a2x2 + ...+ anxn, (ai ≥ 0 ∀i)

where, on average, only 30% of ai were non-zeros. Thus,
not all variables were all included in the objective-function.

Preferences (i.e., subsequent objectives) had the same
structure as the objective-function, but on average only 10%
of ai were non-zeros.

5.1. Factorial Design Experiment

The impact of the number of preferences (1, 2, 10, 20,
30, 40, and 50) over computation time was first measured4

for different sizes of instances (10 variables / 11 constraints
and 100 variables / 101 constraints).

TABLE 3 reports the average computation time with
confidence interval for both algorithms. Results were ex-
cluded when the solver stated that there was no solution to
the generated instance, or when the simplex algorithm was
stalling, or cycling5. After 15 seconds of pivoting (within a
single call to the pivoting function), the problem resolution
was interrupted and considered unrealizable.

While holding constant the number of variables and the
number of constraints, the sequential algorithm demonstrates
for the 10-variables case (FIGURE 2a) that the resolution
time increases cubically with the number of preferences.

4. As resolution times are often too short for computer’s timer precision
(10 ms) [27] we measured computation time for batches of instances. Thus,
each observation was an average of individual times. Batch sizes were
chosen for having them solved within 1 to 10 seconds. Those batches
were composed from 1 to 100,000 instances depending of the size of the
problems in it.

5. Cycling may occur when a sequence of pivots leads to bring back a
previous state of the problem. Although in practice pure cycling does not
frequently occur, long sequences of pivots without increase in the objective-
function may lead to stalling [25].

(a) Sequential Algorithm

Observations = 714, p value ≤ 0.05 for all coefficients except
the constant, R2 adj. = 0.999878, CI : Confidence Interval.

(b) Lexicographic Simplex Algorithm

Observations = 714, p value ≤ 0.0001 for all coefficients,
R2 adj. = 0.999963, CI : Confidence Interval.

Figure 2: Experiment with 10 Variables

(a) Sequential Algorithm

Observations = 686, p value ≤ 0.0001 for all coefficients,
R2 adj. = 0.999912, CI : Confidence Interval.

(b) Lexicographic Simplex Algorithm

Observations = 986, p value ≤ 0.0001 for all coefficients,
R2 adj. = 0.999461, CI : Confidence Interval.

Figure 3: Experiment with 100 Variables

As for the 100-variables case (FIGURE 3a), the sequential
algorithm demonstrates an exponential growth. In contrast,
the lexicographic simplex algorithm (FIGURE 2b for the 10-
variables case and FIGURE 3b for the 100-variables case)
demonstrates a linear structure in function of the number
of preferences. Even more, the scale is of another order of
magnitude in comparison with the sequential algorithm. For
100 variables and 50 preferences, the lexicographic simplex
algorithm requires approximately 20 milliseconds, whereas
the sequential algorithm requires approximately 2.5 seconds
for calculations.

Although not an original aim of this study, an interesting
result regarding numerical instability emerged from these

experiments. TABLE 3 presents the fail rate—the ratio of
failed resolutions to attempted executions. For the sequential
algorithm, the fail rate exceeded 2% for problem size of 10
variables and 10 preferences, and varied from 12% to 15%
for problems of 100 variables. Furthermore, preliminary
experiments not reported here showed that the fail rate
could explode to 50% with problems of 200 constraints, 199
variables and 20 preferences. Conversely, the lexicographic
simplex algorithm, in the worst case scenario, had a failed
rate of 0.00009%. Results for the sequential algorithm were
in agreement with the observations of Jones and Tamiz [26]
which stated that there is a consensus for which no more
than 5 priority levels must be used. In contrast, results from

(a) Sequential Algorithm - Average Resolution Time

Observations = 1145, p value ≤ 0.0001 for all coefficients,
R2 adj. = 0.996512

(b) Lexicographic Algorithm - Avr. Resolution Time

Observations = 1169, p value ≤ 0.0001 for all coefficients,
R2 adj. = 0.997083

Figure 4: Space-filling Design Experiment

the lexicographic simplex algorithm showed that it could
tolerate a great number of priority levels.

5.2. Space-filling Design Experiment

A second experiment was conducted in order to describe,
as a surface-response, the resolution time in function of the
number of constraints (varying from 10 to 200) and the
number of preferences (varying from 1 to 50). Problems
parameters were generated using a space-filling design [28]
from a uniform distribution over the number of constraints
and the number of preferences.

The surface responses6 are shown in FIGURE 4A (se-
quential algorithm) and FIGURE 4B (lexicographic algo-
rithm) and were consistent with previous experiments. For
problems with 200 constraints (199 variables) and 50 pref-
erences, the sequential algorithm required approximately
13,000 milliseconds while the lexicographic simplex algo-
rithm could solve them in 150 milliseconds. Moreover, the
number of preferences had almost no effect on the resolution
time of the lexicographic simplex algorithm. FIGURE 4B
shows an increase of approximately 25 milliseconds for
going from 1 preference to 50 for problems of 200 con-
straints. Where, conversely, FIGURE 4A shows an explosion
of resolutions time for the sequential algorithm when an
increase in the number of preferences arises. Therefore, a
reoptimization system utilizing the lexicographic simplex
algorithm would enable the DM to issue a greater number
of new preferences without any perceptible slowdown of
the system. In contrast, the sequential algorithm would have
greater impact on problem solving time of a reoptimization

6. Surfaces responses are computed using regressions analysis with JMP
Software from SAS.

system. Indeed, it would be difficult to see real-time adjust-
ments to new preferences as the system would exponentially
slow down with each new preference issued by the DM.

6. Conclusion

Mixed-Initiative Systems (MIS) enables collaboration
between man and machine, and is being increasingly used
in decision-support systems that exploit linear optimization
problems (e.g., supply chain optimization [11]). However,
classical iterative MIS for linear problems do not deal well
with multiple levels of user preferences.

To overcome this, an approach that deals with a hierar-
chy of preferences was proposed. It requires a transforma-
tion from a single-objective to a multi-objective problem,
where every preference is representing a new objective to
reach, although the most recent preference prevails.

Performances of two algorithms supporting this ap-
proach were compared; namely a sequential algorithm and
the lexicographic simplex algorithm. These experiments
demonstrated the superiority of the lexicographic simplex
algorithm over the sequential algorithm, in terms of speed
and numerical stability.

These experiments show that a reoptimization process
that uses the lexicographic simplex algorithm handles a
greater number of preferences without impacting the speed
of the system. On the contrary, the sequential algorithm
exponentially increases the resolution time, which has a
detrimental impact on real-time applications.

Acknowledgments

The authors would like to thank Georghia Michael for
her precious advice.

References

[1] S. Hamel, J. Gaudreault, C.-G. Quimper, M. Bouchard, and P. Marier,
“Human-machine interaction for real-time linear optimization,” in
2012 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC). IEEE, 2012, pp. 673–680.

[2] J. F. Allen, L. K. Schubert, and G. M. Ferguson, “Planning in complex
worlds via mixed-initiative interaction,” in ARPI 1996 Proceedings,
AAAI. Rome Laboratory Planning Initiative, 1997, pp. 53–60.

[3] M. A. Hearst, “Mixed-initiative interaction - trends & controversies,”
IEEE Intelligent Systems and their Applications, vol. 14, no. 5, p. 14,
1999.

[4] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud, “A
review and taxonomy of interactive optimization methods in opera-
tions research,” ACM Transactions on Interactive Intelligent Systems
(TiiS), vol. 5, no. 3, pp. 17–43, 2015.

[5] E. Horvitz, “Principles of mixed-initiative user interfaces,” in Pro-
ceedings of the SIGCHI conference on Human Factors in Computing
Systems. ACM, 1999, pp. 159–166.

[6] G. Ferguson, J. F. Allen, B. W. Miller et al., “Trains-95: Towards a
mixed-initiative planning assistant.” in AIPS, 1996, pp. 70–77.

[7] L. Piovesan and P. Terenziani, “A mixed-initiative approach to the
conciliation of clinical guidelines for comorbid patients,” in Confer-
ence on Artificial Intelligence in Medicine in Europe. Springer, 2015,
pp. 95–108.

[8] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J.-J. Hsu, A. Jonsson,
B. Kanefsky, P. Morris, K. Rajan, J. Yglesias et al., “Mapgen: mixed-
initiative planning and scheduling for the mars exploration rover
mission,” IEEE Intelligent Systems, vol. 19, no. 1, pp. 8–12, 2004.

[9] J. L. Bresina and P. H. Morris, “Mixed-initiative planning in space
mission operations,” AI magazine, vol. 28, no. 2, pp. 75–88, 2007.

[10] F. D. Davis and J. E. Kottemann, “User perceptions of decision sup-
port effectiveness: Two production planning experiments,” Decision
Sciences, vol. 25, no. 1, pp. 57–76, 1994.

[11] J. Gaudreault, C.-G. Quimper, P. Marier, M. Bouchar, F. Chéné, and
J. Bouchar, “Designing a generic human-machine framework for real-
time supply chain planning,” Journal of Computational Design and
Engineering, vol. 4, no. 2, pp. 69–85, 2017.

[12] J. P. Ignizio and J. H. Perlis, “Sequential linear goal programming:
implementation via mpsx,” Computers & Operations REsarch, vol. 6,
pp. 141–145, 1979.

[13] J. P. Ignizio, Linear programming in single-& multiple-objective
systems. Prentice Hall, 1982.

[14] S. Greco, M. Ehrgott, and J. R. Figueira, Multiple Criteria Decision
Analysis, State of the Art Surveys. Springer, 2016.

[15] H. Isermann, “Linear lexicographic optimization,” OR Spectrum,
vol. 4, no. 4, pp. 223–228, 1982.

[16] D. Meignan, “An experimental investigation of reoptimization for
shift scheduling,” in Proceedings of the 11th Metaheuristics Inter-
national Conference, 2015, pp. 1–10.

[17] G. B. Dantzig, “Linear programming and extensions,” 1963.

[18] ——, “Origins of the simplex method,” DTIC Document, Tech. Rep.,
1987.

[19] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time,” Journal
of the ACM, vol. 51, pp. 385–463, 2004.

[20] N. J. Higham, Accuracy and stability of numerical algorithms, 2nd ed.
SIAM, 2002.

[21] P. Ping-Qi, Linear programming computation. Springer, 2014.

[22] A. Fortin, Analyse numérique pour ingénieurs. Presses interna-
tionales Polytechnique, 2011.

[23] R. H. Bartels, “A numerical investigation of the simplex method,”
DTIC Document, Tech. Rep., 1968.

[24] P. E. Gill and W. Murray, “A numerically stable form of the simplex
algorithm,” Linear Algebra and Its Applications, vol. 7, no. 2, pp.
99–138, 1973.

[25] A. Koberstein, “The dual simplex method, techniques for a fast
and stable implementation,” Unpublished doctoral thesis, Universität
Paderborn, Paderborn, Germany, 2005.

[26] D. Jones and M. Tamiz, Practical goal programming. Springer,
2010, vol. 141.

[27] Microsoft Developper Network, “DateTime.UtcNow Property,”
https://msdn.microsoft.com/en-us/library/system.datetime.utcnow,
accessed:2017-05-18.

[28] T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis
of computer experiments, ser. Springer series in statistics. Springer
Science & Business Media, 2003.

