
An Efficient Bounds Consistency Algorithm for

the Global Cardinality Constraint

Claude-Guy Quimper, Alexander Golynski, Alejandro López-Ortiz, and
Peter van Beek

School of Computer Science
University of Waterloo

Waterloo, Canada

Abstract. Previous studies have demonstrated that designing special
purpose constraint propagators can significantly improve the efficiency
of a constraint programming approach. In this paper we present an ef-
ficient algorithm for bounds consistency propagation of the generalized
cardinality constraint (gcc). Using a variety of benchmark and random
problems, we show that on some problems our bounds consistency algo-
rithm can dramatically outperform existing state-of-the-art commercial
implementations of constraint propagators for the gcc. We also present
a new algorithm for domain consistency propagation of the gcc which
improves on the worst-case performance of the best previous algorithm
for problems that occur often in applications.

1 Introduction

Many interesting problems can be modeled and solved using constraint pro-
gramming. In this approach one models a problem by stating constraints on
acceptable solutions, where a constraint is simply a relation among several un-
knowns or variables, each taking a value in a given domain. The problem is then
usually solved by interleaving a backtracking search with a series of constraint
propagation phases. In the constraint propagation phase, the constraints are
used to prune the domains of the variables by ensuring that the values in their
domains are locally consistent with the constraints.

Previous studies have demonstrated that designing special purpose constraint
propagators for commonly occurring constraints can significantly improve the
efficiency of a constraint programming approach (e.g., [12, 16]). In this paper we
study constraint propagators for the global cardinality constraint (gcc). A gcc
over a set of variables and values states that the number of variables instantiating
to a value must be between a given upper and lower bound, where the bounds can
be different for each value. This type of constraint commonly occurs in rostering,
timetabling, sequencing, and scheduling applications (e.g., [2, 6, 14, 19]).

Two constraint propagation techniques for the gcc have been developed.
Régin [13] gives an O(n2d) algorithm for domain consistency of the gcc (where n
is the number of variables and d is the number of values) that is based on relating
the gcc to flow theory. As well, a gcc can be rewritten as a collection of “atleast”

and “atmost” constraints, one for each value, and constraint propagation can
be performed on the individual constraints [20]. However, on some problems the
first technique suffers from its cubic run-time and the second technique suffers
from its lack of pruning power. An alternative which was not explored with the
gcc is bounds consistency propagation, a weaker form of consistency than do-
main consistency. Bounds consistency propagation has already proven useful for
the alldifferent constraint [9, 15], a specialization of the gcc.

Independently to our work, Katriel and Thiel [7] enforce bounds consistency
by using the same technique as Régin but exploit the convexity of the graph to
obtain an O(t + n + d) algorithm where t is the time to sort n variable domains
by lower and upper bounds. Their algorithm also enforces bounds consistency
on the cardinality variables that restrict the number of variables that can be
assigned to a same value. Quimper et al. [11] proved that enforcing domain
consistency on the same variables is NP-Hard.

In this paper we present an efficient algorithm for bounds consistency prop-
agation of the gcc. The algorithm runs in time O(t + n), where t is the time to
sort the bounds of the domains of the variables and n is the number of vari-
ables. Using a variety of benchmark and random problems, we show that on
some problems our bounds consistency algorithm can dramatically outperform
existing state-of-the-art commercial implementations of constraint propagators
for the gcc. We also present a new algorithm for domain consistency propagation
of the gcc which improves on the worst-case performance of Régin’s algorithm
for problems that occur often in applications.

2 Background

A constraint satisfaction problem (CSP) consists of a set of n variables, X =
{x1, . . . , xn}; a set of d values, D = {v1, . . . , vd}, where each variable xi ∈ X
has an associated finite domain dom(xi) ⊆ D of possible values; and a collection
of m constraints, {C1, . . . , Cm}. Each constraint Ci is a constraint over some
set of variables, denoted by vars(Ci). Given a constraint C, the notation t ∈ C
denotes a tuple t—an assignment of a value to each of the variables in vars(C)—
that satisfies the constraint C. The notation t[x] denotes the value assigned to
variable x by the tuple t. A solution to a CSP is an assignment of a value to
each variable that satisfies all of the constraints.

We assume in this paper that the domains are integers. The minimum and
maximum values in the domain dom(x) of a variable x are denoted by min(dom(x))
and max(dom(x)), and the interval notation [a, b] is used as a shorthand for the
set of values {a, a + 1, . . . , b}.

CSPs are usually solved by interleaving a backtracking search with constraint
propagation. The constraint propagation phase ensures that the values in the
domains of the unassigned variables are “locally consistent” with the constraints.

Support Given a constraint C, a value a ∈ dom(x) for a variable x ∈ vars(C)
is said to have:

(i) a domain support in C if there exists a t ∈ C such that a = t[x] and
t[y] ∈ dom(y), for every y ∈ vars(C);

(ii) an interval support in C if there exists a t ∈ C such that a = t[x] and
t[y] ∈ [min(dom(y)), max(dom(y)], for every y ∈ vars(C).

Local Consistency A constraint C is said to be:
(i) bounds consistent if for each x ∈ vars(C), each of the values min(dom(x))

and max(dom(x)) has an interval support in C;
(ii) domain consistent if for each x ∈ vars(C), each value a ∈ dom(x) has a

domain support in C.

A CSP can be made locally consistent by repeatedly removing unsupported
values from the domains of its variables.

A global cardinality constraint (gcc) is a constraint which consists of a set of
variables X = {x1, . . . , xn}, a set of values D = {v1, . . . , vd}, and for each v ∈ D
a pair [lv, uv]. A gcc is satisfied iff the number of times that a value v ∈ D is
assigned to the variables in X is at least lv and at most uv.

Example 1. Consider the CSP with six variables x1, . . . , x6 with domains, x1 ∈
[2, 2], x2 ∈ [1, 2], x3 ∈ [2, 3], x4 ∈ [2, 3], x5 ∈ [1, 4], and x6 ∈ [3, 4] and a single
global cardinality constraint gcc(x1, . . . , x6) with bounds on the occurrences of
values,

v 1 2 3 4
lv 1 1 1 2
uv 3 3 3 3.

Enforcing bounds consistency on the constraint reduces the domains of the vari-
ables as follows: x1 ∈ [2, 2], x2 ∈ [1, 1], x3 ∈ [2, 3], x4 ∈ [2, 3], x5 ∈ [4, 4], and
x6 ∈ [4, 4].

3 Local Consistency of the gcc

A gcc can be decomposed into two constraints: A lower bound constraint (lbc)
which ensures that all values v ∈ D are assigned to at least lv variables, and an
upper bound constraint (ubc) which ensures that all values v ∈ D are assigned
to at most uv variables. We will show how to make both constraints locally
(bounds or domain) consistent and prove that this is sufficient to make a gcc
locally consistent.

3.1 The Upper Bound Constraint (ubc)

The ubc is a generalization of the well studied alldifferent constraint (in the
alldifferent constraint uv = 1, for each value v). Some previous algorithms for
bounds consistency of the alldifferent constraint have been based on the concept
of Hall intervals [4, 9, 10]. A Hall interval is an interval H ⊆ D such that there
are |H | variables whose domains are contained in H . The definition of a Hall

interval can be generalized to sets by using the notion of maximal capacity. Let
C(S), S ⊆ D, be the number of variables whose domains are contained in S.
The maximal capacity �S� of a set S is the maximum number of variables that
can be assigned to the values in S; i.e., �S� =

∑
v∈S uv.

Hall set A Hall set is a set H ⊆ D such that there are �H� variables whose
domains are contained in H ; i.e., H is a Hall set iff C(H) = �H�.

The values in a Hall set are fully consumed by the variables that form the
Hall set and unavailable for all other variables. Clearly, a ubc is unsatisfiable if
there is a set S such that C(S) > �S�. We show that the absence of such a set
is a sufficient and necessary condition for a ubc to be satisfiable.

Lemma 1. A ubc is satisfiable if and only if for any set S ⊆ D, C(S) ≤ �S�.

Proof. We reduce a ubc to an alldifferent constraint. We first duplicate uv times
each value v in the domain of a variable, using different labels to represent the
same value. For example, the domain {1, 2}with u1 = 3 and u2 = 2 is represented
by {1a, 1b, 1c, 2a, 2b}. Clearly, this alldifferent constraint is satisfiable iff the ubc
is satisfiable. In a ubc, the maximal capacity of a set S is given by �S�; in an
alldifferent constraint, it is given by the cardinality |S| of the set. Hall [4] proved
that an alldifferent constraint is satisfiable iff for any set S, C(S) ≤ |S|. Thus,
the result holds also for a ubc. ��

3.2 The Lower Bound Constraint (lbc)

Next we define some concepts that will be useful for constructing a propagator
for the lbc. Let I(S) be the number of variables whose domains intersect the set
S. The minimal capacity �S	 of a set S is the minimum number of variables that
must be assigned to the values in S; i.e., �S	 =

∑
v∈S lv.

Failure set A failure set is a set F ⊆ D such that there are fewer variables
whose domains intersect F than its minimal capacity; i.e., F is a failure set
if I(F) < �F 	.

Unstable set An unstable set is a set U ⊆ D such that there are the same
number of variables whose domains intersect U as its minimal capacity; i.e.,
U is an unstable set if I(U) = �U	.

Stable set A stable set is a set S ⊆ D such that there are more variables
whose domains are contained in S than its minimal capacity, and S does not
intersect any failure or unstable sets; i.e., S is a stable set if C(S) > �S	,
S ∩ U = ∅ and S ∩ F = ∅ for all unstable sets U and failure sets F .

In Example 1, the set {1, 4} is an unstable set since its lower capacity is 3
and only 3 variable domains (namely x2, x5, and x6) intersect it. The set {4} is
also an unstable set and {2, 3} is a stable set. There are no failure sets in the
example but removing variable x2 would create the failure set {1, 4}.

Failure, unstable, and stable sets are the main tools to understand how to
make an lbc locally consistent. Failure sets determine if an lbc is satisfiable,
unstable sets indicate where the domains have to be pruned, and stable sets
indicate which domains do not have to be pruned because all of their values
have supports.

Lemma 2. An lbc is satisfiable if and only if it does not have a failure set.

Proof. To satisfy an lbc, we must associate at least lv different variables to each
value v ∈ D such that every variable is assigned a single value from its domain.
For each value v ∈ D, we construct lv identical sets T i

v for i = 1, . . . , lv that
contain the indices of the variables that have v in their domain; i.e., T i

v = {j |
xj ∈ X ∧ v ∈ dom(xj)}. Let T be the set of all sets T i

v. To satisfy the lbc, we
must select one variable index from each set T i

v such that all selected indices
are different. The variables that are not selected can be instantiated to any
arbitrary value in their domain. This problem is known as the complete set of
distinct representatives problem and has been studied by Hall [4]. His main result
states that for any family of sets, a complete set of distinct representatives exists
if and only if the union of any k sets contains at least k elements. Formally the
problem is solvable if and only if |

⋃
t∈T t| ≥ |T | holds for any T ⊆ T . Applying

this theorem here, we have that an lbc is satisfiable if and only if for any set
S ⊆ D we have I(S) ≥ �S	. Hence, the absence of a failure set is a necessary
and sufficient condition for an lbc to be satisfiable. ��

Lemma 3 shows that a value in a domain that intersects an unstable set has
an interval/domain support only if the value also is in the unstable set.

Lemma 3. A variable whose domain intersects an unstable set cannot be in-
stantiated to a value outside of this set.

Proof. Let U be an unstable set and x a variable whose domain intersects U . If
x is instantiated to a value that does not belong to U then U becomes a failure
set and the lbc is no longer satisfiable by Lemma 2. ��

Lemma 4. A variable whose domain is contained in a stable set can be instan-
tiated to any value in its domain.

Proof. By definition, a stable set S does not intersect any unstable or failure set.
Thus, for any subset s of S, I(s) > �s	. If a variable whose domain is contained
in S is assigned a value, the function I(s) will decrease by at most one and
therefore s will either stay a stable set or become an unstable set. In both cases,
no failure set is created and the lbc is still satisfiable. ��

A satisfiable lbc has several interesting properties: (i) the union of two un-
stable sets gives an unstable set, (ii) the union of two stable sets gives a stable
set, and (iii) since stable and unstable sets are disjoint, there exists a stable set
S and an unstable set U that forms a bipartition of D. The bipartition prop-
erty implies that there are two types of variables: those whose domains are fully
contained in a stable set and those whose domains intersect an unstable set.

Lemma 5. If there are no failure sets, the union of two unstable sets gives an
unstable set.

Proof. Let U1 and U2 be two unstable sets. We have that,

I(U1 ∪ U2) = I(U1) + I(U2) − I(U1 ∩ U2) (1)
= �U1	 + �U2	 − I(U1 ∩ U2). (2)

Since there are no failure sets we have I(U1 ∪ U2) ≥ �U1	 + �U2	 − �U1 ∩ U2	.
We also have I(U1 ∩ U2) ≥ �U1 ∩ U2	. Substituting these two inequalities in
Equation 2 gives I(U1 ∪ U2) = �U1 ∪ U2	. ��

Lemma 6. If there are no failure sets, there exists a bipartition 〈U, S〉 of D
where U is an unstable set and S is a stable set.

Proof. Let U be the union of all unstable sets. By Lemma 5, U is also an unstable
set. Since there are no failure sets we have I(D) ≥ �D	. Suppose that I(D) =
�D	, then U = D and S = ∅. Now suppose that I(D) > �D	. We have that,

C(D − U) = |X | − I(U)
= |X | − �U	
> �D	 − �U	
> �D − U	.

The set S = D−U is disjoint from all unstable sets and contains more variables
than its minimal capacity. It is therefore a stable set. Thus there is always a
stable and an unstable set that forms a bipartition of D ��

3.3 An Iterative Algorithm for Local Consistency of the gcc

Suppose we have an algorithm A that makes a ubc locally consistent and suppose
that we have an algorithm B that makes an lbc locally consistent. To make a
gcc locally consistent we can decompose it, run A to prune the domains of the
variables, and then run B to further prune the domains. Since the domains can
potentially be pruned each time either algorithm is run, we alternatively run
each algorithm until no more modifications occur. In principle, we might need
to repeat this process a large number of times. Surprisingly, we prove that only
one iteration is sufficient.

The outline of the proof is as follows. We first prove that if a ubc is satisfiable
after running A, the ubc is still satisfiable after running B. We then prove that
the ubc is still locally consistent after running B.

Theorem 1. If B is run after A, B never creates a set s such that there are
more variables whose domains are contained in s than its maximal capacity �s�.

Proof. Suppose that algorithms A and B do not return a failure. Then there are
no failure sets and there is an unstable set U and a stable set S that form a
bipartition of D. Algorithm B does not modify the domains of the variables that
belong to a stable set. Therefore we know that for all s ⊆ S we have C(s) ≤ �s�
since the ubc is satisfiable according to A.

We will show that for any set E ⊆ U ∪S we have C(E) ≤ �E� and therefore
the ubc is still satisfiable after running B. Assume, by way of contradiction, there
is a set E that exceeds its capacity; i.e., C(E) > �E�. We divide this set into
two subsets: let L = U ∩ E be the unstable values in E and F = S ∩ E be the
stable values in E. We also define R = U −E as the unstable values that do not
belong to E. We know that �F � ≥ C(F) since F is a subset of a stable set and
we showed that the property holds for any such a set. We also know that R is
not a failure set and U is an unstable set. Therefore we have I(R) ≥ �R	 and
�L	 + �R	 = I(L ∪ R).

�F � + �L	 + �R	 ≤ �F � + �L�+ �R	
�F � + I(L ∪ R) < C(E) + �R	
�F � + I(L ∪ R) < |{x ∈ X | dom(x) ⊆ E ∧ dom(x) � F}|+ C(F) + �R	
�F � + I(L ∪ R) < |{x ∈ X | dom(x) ∩ L �= ∅ ∧ dom(x) ∩ R = ∅}|+ C(F) + �R	

�F � + I(R) < C(F) + �R	
�F � < C(F)

The last inequality is incompatible with the hypothesis hence the contradiction
hypothesis cannot be true. Notice that the proof holds for both bounds and
domain consistency. ��
Theorem 2. If B is run after A, the ubc is still locally consistent after B is
run.

Proof. Suppose that A and B make the constraints locally consistent and neither
returns a failure. To prove that the ubc is still locally consistent, we have to
show that all variables are still consistent with all Hall sets. By a variable being
consistent with a Hall set H we mean the following: for bounds consistency, the
domain of the variable must have either both or neither bounds in H ; and for
domain consistency, the domain of the variable must be either fully included in
or completely disjoint from H .

Since B did not return a failure, there is an unstable set U and a stable set
S that form a bipartition of D. Let H ⊆ D be a Hall set. We divide this Hall
set into two subsets: F = H ∩S contains the values of H that belong to a stable
set and L = H ∩ U contains the values of H that belong to an unstable set. We
also define R = U − L as the unstable values that do not belong to H . Using
these three sets, we will prove that all variables are consistent with H .

The unstable set U can be expressed as the union of L and R and therefore
we have �L	+ �R	 = I(L∪R). Similarly, H is the union of F and L and implies
�F �+�L� = C(H) = |{x ∈ X | dom(x) ⊆ H ∧dom(x) � F}|+C(F). Therefore,

�F � + �L	 + �R	 ≤ �F � + �L�+ �R	

�F � + I(L ∪ R) ≤ |{x ∈ X | dom(x) ⊆ H ∧ dom(x) � F}| + C(F) + �R	
�F � + I(L ∪ R) ≤ |{x ∈ X | dom(x) ∩ L �= ∅ ∧ dom(x) ∩ R = ∅}|+ C(F) + �R	

�F � + I(R) ≤ C(F) + �R	

By Theorem 1 we obtain C(F) ≤ �F � and since R is not a failure set, we have
I(R) ≥ �R	. Using these two inequalities, we find that R is an unstable set i.e.
I(R) = �R	 and F is a Hall set i.e. C(F) = �F �. Using this observation, we now
show that all variables whose domains are contained in S are consistent with
H . The Hall set F is a subset of S and since algorithm B does not modify any
variables whose domains are contained in S, algorithm A already identified F
as a Hall set and made all variables consistent with it. Since the variables whose
domains are contained in S were not modified by B they are still consistent with
F . A variable whose domain intersects an unstable set like U and R must have
both bounds in this set. Since U = L ∪ R, a variable whose domain intersects
U must have both bounds in either L or R and therefore be consistent with the
Hall set H . Similarly, one can show the result also holds for domain consistency.

We have shown that any variable whose domain is either contained in S or
intersects U is consistent with H . Thus all variables are consistent with any Hall
set and the ubc is still locally consistent after running B. ��

Finally, we show that making the ubc and the lbc locally consistent is equiv-
alent to making the gcc locally consistent.

Theorem 3. A value v ∈ dom(x) has a support in a gcc if and only if it has
supports in the corresponding lbc and ubc.

Proof. Clearly, if there is a tuple t that satisfies the gcc such that t[x] = v, this
tuple also satisfies the lbc and the ubc. To prove the converse, we consider a value
v ∈ dom(x) that has a support in the lbc and a (possibly different) support in the
ubc. We construct a tuple t such that t[x] = v that satisfies the gcc and therefore
prove that v ∈ dom(x) also has a support in the gcc. We first instantiate the
variable x to v. The lbc and ubc are still satisfiable since the value has a support
in both constraints. We now show how to instantiate the other variables.

If there is an uninstantiated variable x whose domain does not intersect
any unstable set and is not contained in any Hall set, then the domain of x is
necessarily contained in a stable set. By Lemma 4 we can instantiate x to any
value in its domain and keep the lbc satisfiable. We therefore choose a solution of
the ubc and instantiate x to the same value as it is instantiated in the solution.
This operation can create new unstable sets or new Hall sets but keeps both
the lbc and the ubc satisfiable. For all variables that intersect an unstable set U ,
we choose a solution of the lbc and assign the variables to the same values as
the solution. We perform the same operation for the variables whose domain is
contained in a Hall set H using a solution of the ubc. There will be exactly lv
or uv variables assigned to a value v depending if the value belongs to U or H ,
which in either case satisfies both the lbc and ubc. We repeat the above until all
variables are instantiated. The constructed tuple t satisfies the lbc and the ubc
simultaneously and therefore also satisfies the gcc. ��

4 Bounds Consistency

We present algorithms for making a ubc and an lbc bounds consistent.

4.1 The Upper Bound Constraint (ubc)

Finding an algorithm that makes a ubc bounds consistent is relatively straight-
forward if we already know such an algorithm for the alldifferent constraint that
uses the concept of Hall intervals. If there is a variable whose domain is [a, b] and
there is a Hall interval [c, d] such that c ≤ a ≤ d < b holds, the algorithm will
update the domain of the variable to [d + 1, b]. The algorithm introduced in [9]
detects Hall intervals by checking if there are d − c + 1 variables in an interval
[c, d]. We can adapt this algorithm to a ubc without altering its complexity by
finding a way to compute the maximal capacity of an interval in constant time.
We use a partial sum data structure, implemented as an array A containing the
partial sums of the maximal capacities A[i] =

∑i
j=0 uj. The maximal capacity

of an interval I ⊆ D can be computed by subtracting two elements in A since
we have �I� = A[max(I)] − A[min(I) − 1]. Initializing the array A takes O(D)
time to compute but this is done once and is reused for any future calls to the
propagator. The algorithm time complexity is O(t + |X |) where t is the time
required for sorting the variable domains by lower and upper bounds.

4.2 The Lower Bound Constraint (lbc)

We now present an algorithm (see Figure 1) that shrinks the lower bounds of the
variable domains received as input. The upper bounds can be updated symmet-
rically by a similar algorithm and consequently make the lbc bounds consistent.

The initialization step assigns to each value v ∈ D exactly lv empty buckets
corresponding to the minimal capacity to be filled for v and setting a failure flag
which indicates if v belongs to a failure set. The union-find data structure PS
covers all values in D and contains potential stable sets. If the greatest element
of a set S ∈ PS is in a stable set then S is fully contained in this stable set.
Stable sets are stored in the variable Stable.

Our algorithm processes each variable x ∈ X in nondecreasing order by upper
bound. Like the algorithm of Lipski et al. [8], it searches for the smallest value v ∈
dom(x) that has an empty bucket and fills it in with a token. If v > min(dom(x))
and v belongs to a stable set then the interval I = [min(dom(x)), v] is contained
in this stable set. The algorithm regroups all values in I in its variable PS. If
there are no empty buckets in dom(x) then max(dom(x)) belongs to a stable set
and so do all the values that belong to the same set in PS.

The algorithm initially assumes that all values belong to a failure set. When
processing variable x, an interval I = [a, max(dom(x))] with no empty buckets
contains the domains of a least �I	 variables and thus cannot be a failure set.
The algorithm unsets the failure flags for all values in I. If a value still has a
failure flag set after processing all the variables then the lbc is unsatisfiable.

Algorithm 1: Bounds consistency algorithm for the lbc
Let PS be a union-find data structure over the elements in D;
Let Stable = ∅;
for v ∈ D do

associate lv empty buckets to the value v;
if lv > 0 then mark v as a failure element;

D ← D ∪ {−∞,∞};
associate ∞ buckets to the values −∞ and ∞;
for xi ∈ X in nondecreasing order of max(dom(xi)) do

a ← min(dom(xi)); b ← max(dom(xi));
z ← min({v ∈ D | v ≥ a, a has an empty bucket});
if z > a then union (PS, a, a + 1, . . . , min(b, z));
if z > b then

S ←findSet (PS, b);
Stable ← Stable ∪ {S};

else
add a token in one of the empty buckets of z;
z ← min({v ∈ D | v ≥ a, a has an empty bucket});
NewMin[i] ← min({v ∈ D | v ≥ a, v has a failure flag});
if z > b then

j ← max({v ∈ D | v ≤ b, v has an empty bucket});
reset the failure flag for all elements in (j, b];

if |{v ∈ D | v has a failure flag}| > 0 then return Failure;
for xi ∈ X such that ∀S ∈ Stable, dom(xi) 	⊆ S do

dom(xi) ← dom(xi) − [min(dom(xi)), NewMin[i]);

return Success;

To shrink the domains, the algorithm stores in NewMin[i] the smallest value
v ∈ dom(xi) with a failure flag. If dom(xi) intersected an unstable set U , v would
be the smallest value in dom(xi)∩U . If no values in dom(xi) have a failure flag,
xi belongs to a stable set and NewMin[i] remains undefined. After processing all
variables, the algorithm assigns the new lower bound NewMin to the variables
that are not contained in a stable set.

Correctness. We wish to show that the algorithm returns Success if and only
if the lbc has a solution. From the construction of the algorithm’s solution it
follow trivially that it satisfies the lbc constraint.

For the converse, first we observe that a satisfiable lbc constraint remains
satisfiable if we enlarge the domain of any one variable, as the solution to the
original lbc is also a solution to the enlarged lbc.

Now assume that lbc has a solution L; that is, L is a set of assignments
of values to variables that satisfy the lbc constraint. We compare L with the
assignment computed by the algorithm as it proceeds by order of upper bound.
The algorithm processes x1, then x2 and so on. Every time the algorithm makes
an assignment (i.e., places a token in a bucket) we compare to see if L assigns
the same value to this variable, until we are at variable xi which is assigned a

value vi by the algorithm, but is assigned to variable xj by L. Now, since the
algorithm processed xi before xj we know that max(dom(xj)) ≥ max(dom(xi)).

Hence, L assigns vi to xj and assigns xi a larger value at a later time. The
algorithm instead assigns vi to xi and uses xj later. But since max(dom(xj)) ≥
max(dom(xi)), it follows that the remaining lbc is also satisfiable as enlarging
the domain leaves the lbc solvable. We now rename the variable xj to xi and the
algorithm continues. This situation is repeated for any other variables which are
assigned differently by the algorithm and L, until all variables are assigned and
hence our algorithm finds a solution if one exists.

Lastly, we shrink the domain of variables that intersect an unstable set.
Recall that, by Lemma 3, variables that intersect an unstable set cannot be
assigned to values outside this set. When we process a variable, we assume that
it intersects an unstable set and compute the new lower bound of the variable
domain. All variables that have their failure flag unset at the time of processing
of the variable already belong to a set S that contains at least as many variables
as its minimal capacity; i.e., C(S) ≥ �S	. Hence, if the algorithm processes a
variable x that intersects such a set, it is clear that S is not an unstable set and
that x is not required by S to satisfy the lbc. We therefore store in NewMin[x]
the first element in dom(x) that still has its failure flag set. Later on we test to
see if this variable now intersects an unstable set U and must be shrunk.

Example 2. Figure 1 shows a trace of the algorithm on the CSP introduced in
Example 1. Initially, all buckets are empty and all values are marked with a
failure flag. Figure 1 shows the data structures as the algorithm iterates through
the variables. The circles represent the buckets, a letter f symbolizes a failure
flag, and the state of the variables PS and Stable are also represented by the sets
of values. Upon completion of the algorithm, the new domains of the variables
are: x1 ∈ [2, 2], x2 ∈ [1, 2], x3 ∈ [2, 3], x4 ∈ [2, 3], x5 ∈ [4, 4], and x6 ∈ [4, 4].

A naive implementation of our algorithm has time complexity O(t+ |X | |D|),
where t is the complexity of sorting the intervals by upper bounds. Incremental
and linear time sorting algorithms have time complexity less than O(|X | log |X |).
We will show how to improve the complexity to O(t + |X |).

To obtain a complexity independent of |D|, we consider the variables as semi-
open intervals where xi = [ai, bi) and define the set D′ as the union of the lower
bounds ai and the open upper bounds bi of each variable. The size of D′ is
bounded by 2|X |. Let c and d be two consecutive values in D′ and let I = (c, d]
be a semi-open interval. We modify the algorithm to assign �I	 buckets to the
value d using a partial sum data structure (see Section 4.1). We then run the
algorithm as before using the set D′ instead of D. This modification improves
the time complexity to O(t + |X |2).

To get a linear complexity, we implement the buckets using a union-find data
structure and an array of integers that stores the number of empty buckets a
value v has. If all buckets of a value v are filled in, the algorithm merges the value
v with the next element in D′. Requesting n times the next value having a free
bucket is a linear time operation using the interval union-find data structure [3].

x1 = [2, 2] x2 = [1, 2] x3 = [2, 3]

−∞ 1f 2 3f 4f ∞
© © N © © ©
... ©

...
PS {1} {2} {3} {4}

Stable

−∞ 1 2 3f 4f ∞
© N N © © ©
... ©

...
PS {1} {2} {3} {4}

Stable

−∞ 1 2 3 4f ∞
© N N N © ©
... ©

...
PS {1} {2 3} {4}

Stable
NewMin[1] ← 2 NewMin[2] ← 1 NewMin[3] ← 3

x4 = [2, 3] x5 = [1, 4] x6 = [3, 4]

−∞ 1 2 3 4f ∞
© N N N © ©
... ©

...
PS {1} {2 3} {4}

Stable {2 3}

−∞ 1 2 3 4f ∞
© N N N N ©
... ©

...
PS {1 2 3 4}

Stable {2 3}

−∞ 1 2 3 4 ∞
© N N N N ©
...

N ...
PS {1 2 3 4}

Stable {2 3}
NewMin[5] ← 4 NewMin[6] ← 4

Fig. 1. Trace of Algorithm 1

The algorithm takes O(t+ |X |) steps using the interval union-find for the failure
flags, the stable sets Stable, and the potential stable sets PS.

Although the interval union-find data structure gives the best theoretical
time complexity, we found that it did not result in the fastest code in practice in
spite of our best efforts to optimize the code. In our experiments (see Section 6),
we use instead the tree data structure described in [9] to obtain an algorithm
with O(t + |X | log |X |) time complexity. This tree data structure even offers
slightly better performance than the standard union-find data structure which
runs in O(t + |X |α(|X |)) where α is the inverse of Ackermann’s function.

5 Domain Consistency

In this section we present a propagator that makes a gcc domain consistent. We
will use Régin’s propagator [12] for the alldifferent constraint as a black box
that has complexity O(|X |1.5|D|) to make the lbc and ubc domain consistent.

5.1 The Upper Bound Constraint (ubc)

The problem of making a ubc domain consistent can be reduced to the problem
of making an alldifferent constraint domain consistent. Consider the domain
dom(x) of a variable x as a multiset where the multiplicity of a value v ∈ dom(x)
is uv. One can represent a multiset as a normal set where different labels refer
to the same value. For instance, the domain of variable x2 in Example 1 can be
represented by {1a, 1b, 1c, 2a, 2b, 2c}. We apply Régin’s propagator with the new
domains and then merge back duplicates to their original value. Since there are
|X | variables and the largest domain is bounded by u|D| where u = maxv∈D uv,
we obtain a time complexity of O(u |X |1.5 |D|).

5.2 The Lower Bound Constraint (lbc)

The problem of making an lbc domain consistent can also be reduced to the
problem of making an alldifferent constraint domain consistent. We first dupli-
cate the values as we did in Section 5.1 according to the minimal capacities. Let
M be a |X | × |D| binary matrix such that Mij equals 1 if the value j belongs
to the domain of the variable xi and equals 0 otherwise. The transposed matrix
MT defines the dual problem. In a dual problem, the dual values D′ represent
the primal variables and the dual variables X ′ represent the primal values.

Theorem 4. Solving the alldifferent problem on the dual problem solves the
lower bound problem on the primal problem.

Proof. Since we have duplicated some values in the domains of the variables, the
minimal capacity of a set S is now equal to the size of the set; i.e., �S	 = |S|. Let
U be an unstable set in the primal problem. In the dual problem, the values in
U are represented by variables. There are |U | dual variables whose domains are
contained in a set of |U | dual values. Consequently, an unstable set in the primal
corresponds to a Hall set in the dual. A propagator for the alldifferent constraint
removes from a domain the values contained in a Hall set only if the domain is
not fully contained in this Hall set. If such a propagator is applied on the dual
problem, it would remove from the domains that intersect an unstable set the
values that do not belong to this unstable set. This operation is sufficient to make
the primal domain consistent. The alldifferent propagator would also return a
failure if the problem is unsolvable. A failure set in the primal corresponds to
a set of values in the dual that contains more variables than values. Such a set
makes the dual unsolvable and is detected by the alldifferent propagator. ��

We use Régin’s propagator to solve the dual problem and then merge back
the duplicated values in the domains to their previous value. Since in the dual
problem there are at most l|D| variables and the largest domain is bounded by
|X |, the total time complexity is O(l1.5|X ||D|1.5) where l = maxv∈Dlv.

The complete algorithm makes the ubc domain consistent and then makes the
lbc domain consistent. The total time complexity is O(u|X |1.5|D|+l1.5|X ||D|1.5).

That the complexity depends on the number of values in D can make the
filter inefficient for some problems. We identify two classes of problems that
occur often in applications and where our algorithm offers a better complexity
than existing algorithms. Our analysis assumes that the maximal capacity uv is
bounded by a constant for all values v. The first class consists of problems where
the minimal capacity lv is non-null. Since each value must be instantiated by at
least one variable, we necessarily have |D| ≤ |X | for a solvable problem. In this
case the algorithm runs in time O(|X |1.5|D|). The second class of problems is
the one where the minimal capacity lv is null for all values v. In this case we only
need to make ubc domain consistent which can be done in time O(|X |1.5|D|).
For either class, the complexity of the algorithm improves the previous best gcc
propagator [13] for domain consistency which runs in O(|X |2|D|).

5.3 Improving the gcc propagator

In the previous sections, we saw how one can use an alldifferent propagator as
a black box to enforce domain consistency on the gcc. In this section, we show
how to implement the black box in order to get a complexity of O(|X |1.5|D|) for
any class of problems.

For the ubc and lbc problems, we will need to construct a special graph.
Following Régin [12], let G(〈X, D〉 , E) be an undirected bipartite graph such
that nodes at the left represent variables and nodes at the right represent values.
There is an edge (xi, v) in E iff the value v is in the domain dom(xi) of the
variable. Let c(n) be the capacity associated to node n such that c(xi) = 1 for
all variable-nodes xi ∈ X and c(v) is an arbitrary non-negative value for all
value-nodes v in D. A matching M in graph G is a subset of the edges E such
that no more than c(n) edges in M are adjacent to node n. We are interested in
finding a matching M with maximal cardinality.

The following concepts from flow and matching theory (see [1]) will be useful
in this context. Consider a graph G and a matching M . The residual graph GM

of G is the directed version of graph G such that edges in M are oriented from
values to variables and edges in E − M are oriented from variables to values. A
node n is free if the number of edges adjacent to n in M is strictly less than its
capacity c(n). An augmenting path in GM is a path with an odd number of links
that connects two free nodes together. If there is an augmenting path p in GM ,
then there exists a matching M ′ of cardinality |M ′| = |M | + 1 that is obtained
by computing the symmetric difference M ⊕ p. A matching M is maximal iff
there is no augmenting path in the graph GM .

Hopcroft and Karp [5] describe an algorithm with running time O(|X |1.5|D|)
that finds a maximum matching in a bipartite graph when the capacities c(n)
are equal to 1 for all nodes. We generalize the algorithm to obtain the same
complexity when c(v) ≥ 0 for the value-nodes and c(xi) = 1 for variable-nodes.

The Hopcroft-Karp algorithm starts with an initial empty matching M = ∅
which is improved at each iteration by finding a set of disjoint shortest aug-
menting paths. An iteration that finds a set of augmenting paths proceeds in
two steps.

The first step consists of performing a breadth-first search [17] (BFS) on
the residual graph GM starting with the free variable-nodes. The breadth-first
search generates a forest of nodes such that nodes at level i are at distance i
from a free node. This distance is minimal by property of BFS. Let m be the
smallest level that contains a free value-node. For each node n at level i < m,
we assign a list L(n) of nodes adjacent to node n that are at level i + 1. We set
L(n) = ∅ for every node at level m or higher.

The second step of the algorithm uses a stack to perform a depth-first
search [17] (DFS). The DFS starts from a free variable-node and is only allowed
to branch from a node n to a node in L(n). When the algorithm branches from
node n1 to n2, it deletes n2 from L(n1). If the DFS reaches a free value-node,
the algorithm marks this node as non-free, clears the stack, and pushes a new
free variable-node that has not been visited onto the stack. This DFS generates

a forest of trees whose roots are free variable-nodes. If a tree also contains a free
value-node, then the path from the root to this free-value node is an augmenting
path. Changing the orientation of all edges that lie on the augmenting paths
generates a matching of greater cardinality.

In our case, to find a matching when capacities of value-nodes c(v) are non-
negative, we construct the duplicated graph G′ where value-nodes v are dupli-
cated c(v) times and the capacity of each node is set to 1. Clearly, a matching
in G′ corresponds to a matching in G and can be found by the Hopcroft-Karp
algorithm. We can simulate a trace of the Hopcroft-Karp algorithm run on graph
G′ by directly using graph G. We simply let the DFS visit c(n)−degM (n) times
a free-node n where degM (n) is the number of edges in M adjacent to node n.
This simulates the visit of the free duplicated nodes of node n in G. Even if we
allow multiple visits of a same node, we maintain the constraint that an edge
cannot be traversed more than once in the DFS. The running time complexity
for a DFS is still bounded by the number of edges O(|X ||D|).

Hopcroft and Karp proved that if s is the cardinality of a maximum car-
dinality matching, then O(

√
s) iterations are sufficient to find this maximum

cardinality matching. In our case, s is bounded by |X | and the complexity of
each BFS and DFS is bounded by the number of edges in GM i.e. O(|X ||D|).
The total complexity is therefore O(|X |1.5|D|). We will run this algorithm twice,
first with c(v) = uv to obtain a matching Mu and then with c(v) = lv to obtain
a matching Ml.

5.4 Pruning the Domains

Using the algorithm described in Section 5.3, we compute a matching Mu in
graph G such that capacities of variable-nodes are set to c(xi) = 1 and capacities
of value-nodes are set to c(v) = uv. A matching Mu clearly corresponds to an
assignment that satisfies the ubc if it has cardinality |X | i.e. if each variable is
assigned to a value.

Consider now the same graph G where capacities of variable-nodes are c(xi) =
1 but capacities of value-nodes are set to c(v) = lv. A maximum matching Ml

of cardinality |Ml| =
∑

lv represents a partial solution that satisfies the lbc.
Variables that are not assigned to a value can in fact be assigned to any value
in their domain and still satisfy the lbc.

Pruning the domains consists of finding the edges that cannot be part of a
matching. From flow theory, we know that an edge can be part of a matching iff
it belongs to a strongly connected component of the residual graph or lies on a
path starting from or leading to a free node.

Régin’s algorithm prunes the domains by finding all strongly connected com-
ponents and flagging all edges that lie on a path starting or finishing at a free
node. This can be done in O(|X ||D|) using a DFS as described in [17]. Using
Theorem 2 and 3, we remove unsupported edges in GMu and then in GMl

and
therefore enforce domain consistency in O(|X |1.5|D|).

Reusing matchings Mu and Ml, Régin shows how an incremental propagator
can maintain domain consistency in O(|X ||D|) steps. Incremental algorithms

are useful when variable domains are pruned by other constraints and domain
consistency needs to be reinforced on the gcc. Régin’s incremental algorithm can
also be used with our algorithm.

Our algorithm offers a better running time complexity. The advantage of our
method remains to be evaluated in practice.

6 Experimental Results

We implemented our new bounds consistency algorithm for the generalized cardi-
nality constraint (denoted hereafter as BC) using the ILOG Solver C++ library,
Version 4.2 [6]1. Following a suggestion by Puget [10] adapted to the gcc, the
range of applicability of BC can be extended by combining bounds consistency
with the removal of a value when the number of times it has been assigned
reaches its upper bound (denoted BC+). The ILOG Solver library already pro-
vides implementations of Régin’s [13] domain consistency algorithm (denoted
DC), and an algorithm (denoted CC) that enforces a level of consistency that is
equivalent to enforcing domain consistency on individual cardinality constraints,
where there is one cardinality constraint for each value [6, 20].

We compared the algorithms experimentally on various benchmark and ran-
dom problems. All of the experiments were run on a 2.40 GHz Pentium 4 with
1 GB of main memory. Each reported runtime is the average of 10 runs except
for random problems where 100 runs were performed. Unless otherwise noted,
the minimum domain size variable ordering heuristic was used in the search.

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000

tim
e

to
 fi

rs
t s

ol
ut

io
n

(s
ec

.)

number of variables (n)

DC
CC
BC

Fig. 2. Time (sec.) to first solution for Pathological problems.

We first consider problems introduced by Puget ([10]; denoted here as Patho-
logical) that were “designed to show the worst case behavior” of algorithms for
1 The code discussed in this section is available on request from vanbeek@uwaterloo.ca

the alldifferent constraint. Here we adapt the problem to the gcc. A Pathological
problem consists of a single gcc over 2n + 1 variables with dom(xi) = [i − n, 0],
0 ≤ i ≤ n, and dom(xi) = [0, i−n], n+1 ≤ i ≤ 2n and each value must occur ex-
actly once. The problems were solved using the lexicographic variable ordering.
On these problems, our BC propagator offers a clear performance improvement
over the other propagators (see Figure 2). Qualitatively similar results were ob-
tained for a generalization of these problems where each value must occur exactly
c times, where c is some small value.

Table 1. Time (sec.) to optimal solution for instruction scheduling problems; (left)
issue width = 2; (right) issue width = 2 + 2 = 4. A blank entry means the problem
was not solved within a 10 minute time bound.

n CC DC BC

69 0.01 0.12 0.00
70 0.00 0.07 0.00

111 0.03 0.75 0.01
211 0.51 9.24 0.07
214 0.60 9.29 0.09
216 2.67 124.07 0.31
220 5.09 285.91 0.52
690 1.34 493.15 1.67
856 471.16 3.84

1006 8.70

n CC DC BC

69 0.00 0.07 0.00
70 0.01 0.07 0.00

111 0.03 0.44 0.01
211 0.56 7.16 0.11
214 0.61 7.85 0.13
216 2.78 89.61 0.48
220 2.90 98.15 0.57
690 2.17 307.20 2.81
856

1006 307.00 14.44

We next consider instruction scheduling problems for multiple-issue pipelined
processors. For these problems there are n variables, one for each instruction to
be scheduled and latency constraints of the form xi ≤ xj +l where l is some small
integer value, and one or more gcc’s over all n variables (see [18] for more details
on the problem). In our experiments, we used ten hard problems that were taken
from the SPEC95 floating point, SPEC2000 floating point, and MediaBench
benchmarks. The issue width of a processor refers to how many instructions can
be issued each clock cycle. In our experiments we used the representative cases
of a processor with an issue width of two with two identical functional units,
and an issue width of four with two floating point units and two integer units
(see Table 1). Here, our BC propagator offers a clear performance improvement
over the other propagators.

We next consider car sequencing problems (see [6]). For these problems there
are n variables, n values, each configuration of five options is equally likely, and
there are approximately 4n gcc’s. Here, our BC+ propagator achieves almost the
same pruning power as DC and becomes faster than the other propagators as n
grows (see Table 2). We also consider sport league scheduling problems (see [19]
and references therein). For these problems there are n2 variables, n values, and
n/2 gcc’s. Here, our BC+ propagator is within 15% of the fastest propagator, DC,

Table 2. (left) Time (sec.) to first solution or to detect inconsistency for car sequencing
problems; (right) number of backtracks (fails).

n CC DC BC BC+

10 0.07 0.07 0.09 0.09
15 3.40 3.88 5.39 4.12
20 20.65 30.05 30.95 21.83
25 131.27 203.23 163.97 118.57

n CC DC BC BC+

10 437 321 460 429
15 13,849 9,609 19,958 13,565
20 55,657 52,581 105,436 55,580
25 255,690 250,042 520,519 255,653

Table 3. (left) Time (sec.) to first solution for sports league scheduling problems;
(right) number of backtracks (fails). A blank entry means the problem was not solved
within a 10 minute time bound.

n CC DC BC BC+

8 0.19 0.16 0.04 0.18
10 1.10 0.12 0.03 0.19
12 1.98 1.70 51.71 2.07
14 11.82 8.72 9.98

n CC DC BC BC+

8 1308 914 136 942
10 5767 428 54 689
12 6449 4399 149728 5356
14 33901 19584 22176

in terms of run-time and pruning power (see Table 3). The complexity or run-
time of the CC and DC propagators depends on the number of domain values,
whereas the BC/BC+ propagators do not. The car sequencing and sports league
scheduling problems illustrate that the number of domain values does not have
to be very large for this factor to lead to competitive run-times for our relatively
unoptimized BC/BC+ propagators.

Table 4. Time (sec.) to first solution or to detect inconsistency for random problems
where the bounds on number of occurrences of each value were (left) [0, 2]; (right)
chosen uniformly at random from {[0, 1], [0, 2], [1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [2, 4]}.
A blank entry means some problems could not be solved within a 10 min. time bound.

n DC BC

100 0.02 0.01
200 0.23 0.02
400 2.55 0.08
800 26.14 0.33

1600 266.80 1.24

DC BC
n d/2 d 2d d/2 d 2d

100 0.00 0.01 0.33 0.00 0.00 0.00
200 0.00 0.07 4.81 0.00 0.01 0.01
400 0.01 0.60 74.88 0.00 0.03 0.04
800 0.03 4.58 0.01 0.15 0.16

1600 0.20 34.78 0.02 0.70 0.62

To systematically study the scaling behavior of the algorithm, we next con-
sider random problems. The problems consisted of a single gcc over n variables

and each variable had its initial domain set to [a, b], where a and b, a ≤ b, were
chosen uniformly at random from [1, d = n/2] (chosen so that a mixture of con-
sistent and inconsistent problems would be generated). In these “pure” problems
nearly all of the run-time is due to the gcc propagators, and one can clearly see
the cubic behavior of the DC propagator and the nearly linear incremental be-
havior of the BC propagator (see Table 4). On these problems, CC (not shown)
could not solve some of the smallest problems within a 10 minute time bound.

We have also empirically compared our algorithm to Katriel and Thiel’s algo-
rithm [7] over the same problems reported above. The implementation of Katriel
and Thiel’s algorithm was written by those authors. Care was taken to, as much
as possible, compare the algorithms rather than the implementations. To this
end, both implementations used the same sorting code and the pruning of count
variables was disabled in Katriel and Thiel’s algorithm. Our algorithm was never
slower on the Pathological problems (the maximum speedup of our algorithm
over Katriel and Thiel’s algorithm was 75%, where the speedup is calculated
as the time saved divided by the original time), never slower on the instruc-
tion scheduling problems (maximum speedup was 13%), and never slower on
the car sequencing problems (maximum speedup was 26%). Katriel and Thiel’s
algorithm was never slower on the sports league scheduling problems (maximum
speedup was 8%) and never slower on the random problems (maximum speedup
was 13%).

7 Conclusions

We presented an efficient algorithm for bounds consistency propagation of the
gcc and showed its usefulness on a set of benchmark and random problems.
We also presented an algorithm for domain consistency propagation with an
improved worst-case bound on problems that arise in practice.

Acknowledgments. The authors thank the participants of the constraint pro-
gramming problem session at the University of Waterloo, Kent Wilken for pro-
viding the instruction scheduling problems used in our experiments and Irit
Katriel and Sven Thiel [7] for trying out our algorithm. Alexander Golynski is
partially supported by NSERC grant RGPIN8237 and Claude-Guy Quimper by
an NSERC Doctoral Scholarship.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, first edition, 1993.

2. Y. Caseau, P.-Y. Guillo and E. Levenez. A deductive and object-oriented approach
to a complex scheduling problem. In Deductive and Object-Oriented Databases,
pages 67–80, 1993.

3. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of
disjoint set union. In Proceedings of the Fifteenth ACM Symposium on Theory of
Computing, pages 246–251, 1983.

4. P. Hall. On representatives of subsets. J. of the London Mathematical Society,
pages 26–30, 1935.

5. J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal of Computing, 2:225–231, 1973.

6. ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.
7. I. Katriel and S. Thiel. Fast bound consistency for the global cardinality constraint.

In Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming, pages 437–451, Kinsale, Ireland, 2003.

8. W. Lipski and F. P. Preparata. Efficient algorithms for finding maximum matchings
in convex bipartite graphs and related problems. Acta Informatica, 15:329–346,
1981.

9. A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages
245–250, Acapulco, Mexico, 2003.

10. J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages
359–366, Madison, Wisconsin, 1998.

11. C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved algo-
rithms for the global cardinality constraint In Proceedings of the 10th International
Conference on Principles and Practice of Constraint Programming, Toronto, On-
tario, pages 542–556, September, 2004.

12. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence, pages 362–367,
Seattle, 1994.

13. J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages
209–215, Portland, Oregon, 1996.

14. J.-C. Régin and J.-F. Puget. A filtering algorithm for global sequencing constraints.
In Proceedings of the Third International Conference on Principles and Practice
of Constraint Programming, pages 32–46, Linz, Austria, 1997.

15. C. Schulte and P. J. Stuckey. When do bounds and domain propagation lead to
the same search space. In Proceedings of the Third International Conference on
Principles and Practice of Declarative Programming, pages 115–126, Firenze, Italy,
2001.

16. K. Stergiou and T. Walsh. The difference all-difference makes. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, pages 414–419,
Stockholm, 1999.

17. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1:146–160, 1972.

18. P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue
processors with arbitrary latencies. In Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming, pages 625–639,
Paphos, Cyprus, 2001.

19. P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Régin. Constraint programming
in OPL. In Proceedings of the First International Conference on Principles and
Practice of Declarative Programming, pages 98–116, Paris, 1999.

20. P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using
constraint logic programming. Artificial Intelligence, 58:113–159, 1992.

