
Local Alterations of the Lagrange Multipliers for
Enhancing the Filtering of the AtMostNValue

Constraint

Frédéric Berthiaume and Claude-Guy Quimper[0000−0002−5899−0217]

Université Laval, Québec, Canada
frederic.berthiaume.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Abstract. The reduced cost filtering is a technique that consists in
filtering a constraint using the reduced cost of a linear program that
encodes this constraint. Sellmann [16] shows that while doing a La-
grangian relaxation of a constraint, suboptimal Lagrange multipliers can
provide more filtering than optimal ones. Boudreault and Quimper [5]
make an algorithm that locally altered the Lagrange multipliers for the
WeightedCircuit constraint to enhance filtering and achieve a speedup
of 30%. We seek to design an algorithm like Boudreault and Quimper, but
for the AtMostNValue constraint. Based on the work done by Cam-
bazard and Fages [7] on this constraint, we use a subgradient algorithm
which takes into consideration the reduced cost to boost the Lagrange
multipliers in the optimal filtering direction. We test our methods on the
dominating queens and the p-median problem. On the first, we record
a speedup of 71% on average. On the second, there are three classes of
instances. On the first two, we have an average speedup of 33% and 8%.
On the hardest class, we find up to 13 better solutions than the previous
algorithm on the 30 instances in the class.

Keywords: Global constraint · Lagrangian relaxation · N values.

1 Introduction

Global constraints contributed to the success of constraint programming. These
constraints involve a non-fixed number of variables [2]. A filtering algorithm
prunes the values from the variable domains. To aid the filtering process, Foc-
caci et al. [9] introduced a technique called reduced cost filtering. It studies the
variation of the objective function after a consistent variable change of values.
There is also Lagrangian relaxation, which is a technique to rewrite the problem
without some constraints while penalizing when they are violated. During the
process of Lagrangian relaxation, Sellmann [16] showed that the suboptimal La-
grange multipliers can provide better filtering than the optimal ones. Boudreault
and Quimper [5] proposed an algorithm for the WeightedCircuit constraint
where they locally alter the Lagrange multipliers to enhance the filtering.

Cambazard and Fages [7] treated the Lagrangian relaxation of the sub con-
straint AtMostNValue. We propose to augment their algorithm based on a

2 F. Berthiaume et C.-G. Quimper

Lagrangian relaxation by locally altering the Lagrangian multipliers to enhance
the filtering. We use the dominating queens problem and the facility location
problem in order to test our algorithm.

Section 2 introduces the notation and defines the NValue constraint leading
to the starting point of this paper, the filtering algorithm of theAtMostNValue
constraint based on a Lagrangian relaxation. Section 2.5 proposes an addition
to the previous algorithm. Section 3 presents this addition along with the theo-
retical justification. Section 4 presents the experiments.

2 Background

2.1 Notation

We note column and row vectors with the symbols v and v⊤. The vectors 0 and
1 are the vectors with only zeros and ones. The columns and rows of a matrix
A are noted acj and ari

⊤ respectively. So, ari is the column vector that, when
transposed, gives the i-th row of A. The components of A are written aij .

We note the gradient of a function f : Rn → R with ∇f . For a piece-wise
continuous linear function f : Rn → R, we note one of its subgradient with
∇̃f . Briefly, a subdifferential is the generalization of a derivative. For example,
the function f(x) = |x| is differentiable everywhere except at x = 0. Although,
the function f(x) = |x| does not admit a derivative at x = 0, it admits a
subdifferential at x = 0 labeled ∂f(0). ∂f(x0) is the set of all v that satisfies
f(x) − f(x0) ≥ v(x − x0); for f(x) = |x|, ∂f(0) = [−1, 1]. One may view an
ordinary derivative as a subdifferential with a unique value. The subdifferential
of f(x) at x0, ∂f(x0), is the set of all vectors v, the subgradients, that satisfies
f(x) − f(x0) ≥ v⊤(x− x0). The symbol ∇̃f(x) represents an element of this
set. If there is ambiguity on which variables the gradient (or subgradient) is
taken, we specify them with ∇x (or ∇̃x).

We use two types of variables that are fundamentally different while related.
There are constraint satisfaction problem (CSP) variables, written in uppercase
(X), and each has a set of values, called a domain (dom(X)). There are linear
program (LP) variables that we write as vectors (x).

2.2 The NValue constraint

Definition 1. The NValue constraint bounds the number of distinct values
taken by a set of variables. It is written NValue([X1, . . . , Xn], N), where N is
the cardinality variable. The constraint is satisfied when N = |{X1, . . . , Xn}|.

Enforcing domain consistency on the NValue constraint is NP-hard [4]. The
constraint can be decomposed into two other constraints: AtLeastNValue and
AtMostNValue. Enforcing domain consistency on the former can be done in
polynomial time [4, 14]. Enforcing domain consistency on the AtMostNValue
is NP-hard [4]. We will only consider this constraint. The AtMostNValue
constraint is satisfied when |{X1, . . . , Xn}| ≤ N .

Local Alterations Algorithm for the AtMostNValue Constraint 3

2.3 The LP of the AtMostNValue constraint

Bessiere et al. [4] present three approaches to propagate the NValue constraint.
The first one, an algorithm proposed by Beldiceanu [1], enforces bounds consis-
tency and is based on interval graphs. The second approach is based on the
independence number of a graph. The third approach is a LP formulation of the
AtMostNValue constraint. Bessiere et al. show that the LP formulation offers
a better estimation of the lower bound of N .

In the CSP, each value j ∈
⋃n

i=1 dom(Xi) = {1, ...,m} is paired with a
Boolean variable Yj . The CSP variable Yj encodes whether the value j belongs
to {X1, ..., Xn}. In the LP that encodes the AtMostNValue constraint, each
of the CSP variable Yj has an analog LP variable yj . If Yj is instantiated, then
yj takes the same value as Yj . Otherwise, the LP variables y are free and are
assigned while solving the LP of the AtMostNValue constraint:

min
y

h(y) = 1⊤y, s.t. Ay ≥ 1, y ≤ 1, y ≥ 0, (1)

where aij = 1 if j ∈ dom(Xi) and aij = 0 otherwise. The i-th row ari encodes
in a vector the set dom(Xi). These constraints ensure that for every variable Xi,
there is at least one value j ∈ dom(Xi) for which yj = 1.

2.4 The propagator of the AtMostNValue constraint

Cambazard and Fages [7] designed a propagator for the AtMostNValue con-
straint. The algorithm takes as input the domains of the following CSP variables:
the integer variables {X1, ..., Xn}, the Boolean variables {Y1, ..., Ym} and the car-
dinality variable N . This algorithm is based on a Lagrangian relaxation [8,
11, 13] of the LP (1) and estimates a lower bound on N .

A Lagrangian relaxation is a twofold process. First, there is a transfor-
mation from an initial constrained optimization problem P into another P ′. The
relaxed problem P ′ is defined on a subset of constraints C ′ ⊂ C. Each constraint
ci ∈ C \C ′ is paired with a Lagrange multiplier in the new objective function, a
Lagrangian function, f ′(x,λ). The Lagrangian function depends on the original
objective function f(x) and each relaxed constraint weighted by its Lagrange
multipliers. The transformation of (1), done by Cambazard and Fages, is

min
y

h′(y,λ) = 1⊤y + λ⊤(1−Ay), s.t. y ≤ 1, y ≥ 0, λ ≥ 0. (2)

The constraints that are relaxed in (2) are those that ensure that at least one
value from every domain dom(Xi) is selected.

The Lagrange multiplier λi associated to the i-th constraint must be positive
to penalize the function when the constraint ari

⊤y ≥ 1 is violated. Constraints
violation result in an increase of the Lagrangian function, which is opposite to
the original objective of minimization.

The second phase of a Lagrangian relaxation is the optimization of the La-
grangian function, where one tries to solve maxλ(miny h′(y,λ)). This translates

4 F. Berthiaume et C.-G. Quimper

into trying to find the greatest lower bound of h′(y,λ). Before addressing this
phase, we must clarify what happens with miny h′(y,λ).

The LP (2) is solved when the LP variables yj are fixed. We first need the
coefficients qj coupled with the LP variables yj . After rewriting the function

h′(y,λ) as h′(y,λ) =
(
1−A⊤λ

)⊤
y + λ⊤1, the coefficient vector is :

q(λ) = 1−A⊤λ. (3)

The coefficient qj(λ) is the reduced cost of yj , the next section explains the
meaning of the reduced cost. The LP variables yj can be fixed either from their
CSP variables counterpart Yj or the value of their coefficient in h′(y,λ):

if |dom(Yj)| = 1 then yj = Yj else, yj(λ) =

{
1 if qj(λ) < 0
0 otherwise

(4)

The LP variables y associated with unfixed CSP variables Yj can be viewed as
functions of λ, because they depend on the sign of qj(λ). Afterwards the problem
miny h′(y,λ) is considered solved for the current λ. To enhance that the LP
variables y are fixed, we write the current solution as h′′(λ) = miny h′(y,λ).

The initial Lagrange multipliers λ generally need improvement to give the
greater relaxed lower bound on N and to respect the relaxed constraints. The λ
must be updated with care because ∇h′′(λ) is not continuous.

Definition 2. Lc(f) = {x | f(x) = c} is the level set c of function f .

Lemma 1. h′′(λ) is continuous ∀λ, but not ∇h′′(λ).

Proof. h′′(λ) = q(λ)
⊤
y + 1⊤λ. The LP variables y depend on λ (4) and are

discontinuous functions of λ. The term qj(λ)yj is similar to a RELU function
(max{0, x}), which has no derivative at x = 0 (from the left the derivative is
0 and 1 from the right). The term qj(λ)yj has no derivative on L0(qj) (Defini-

tion 2). So each term in q(λ)
⊤
y has no derivative on its L0(qj). Thus, h

′′(λ) is
not derivable, but continuous, on

⋃m
j=1 L0(qj). ⊓⊔

Hence the Lagrange multipliers are updated according to the subgradient of
h′′(λ) instead of the traditional gradient. For a given λ, ∇̃h′′(λ) = 1−Ay is a
subgradient of h′′(λ) [10]. Then step-sizes αk are carefully chosen to update the
λ with the following equation

λ
(k+1)
i = max(0, λ

(k)
i + αk[∇̃h′′(λ)]i), (5)

Studies of step-sizes rules are listed here [3, 6, 10, 15]. The max operator in (5)
ensures that λ ≥ 0. Here [∇̃h′′(λ)]i, which is equal to 1 − ari

⊤y, represents
the i-th constraint satisfaction. If the i-th component is 1, it means that the
CSP variable Xi has no value in its domain. This procedure is repeated until
the optimal solution is found or some other convergence criterion is satisfied.

Reduced cost filtering (introduced by Focacci et al. [9]) is a technique
to filter values from CSP variable domains based on their contribution in the

Local Alterations Algorithm for the AtMostNValue Constraint 5

Harmonic Geometric Newton

αk = 1/k αk = 103(0.95)k αk = 5

2⌊k/10⌋
max(dom(N))−h′′(λ)k∑n

i=1 γi(∇̃h′′(λ)i)2

γi =

{
1 if λi > 0 ∨ ∇̃h′′(λ)i = 1
0 otherwise

Table 1: The three step-size rules and their parameters used in [7]. The denom-
inator in the Newton column is an analog of the squared norm of ∇̃λh(y,λ).

current state of the solution. In the LP (2), the contribution of the LP variable
yj to the solution is its coefficient qj(λ). When

h′′(λ) + |qj(λ)| = h′′(λ) + |1− acj
⊤λ| > max(dom(N)) (6)

the complementary value of the LP variable yj , 1− yj , can be filtered from the
domain of the CSP variable Yj . This is because the LHS of (6) is the relaxed
lower bound on N , if the LP variable yj was fixed to the value 1− yj . If, (6) is
satisfied, it means that 1− yj leads to min(dom(N)) > max(dom(N)), which is
impossible. The |qj(λ)| is the reduced cost of the LP variables yj .

Algorithm 1, designed by Cambazard and Fages [7], filters the constraint
AtMostNValue. To perform the transformation from (1) to (2), the LP vari-
ables y (not the CSP variables Yj) and λ are initialized at line 1 of Algorithm 1.
On lines 2-14, the problem miny h′(y,λ) is solved by fixing the LP variables yj
according to (4). The relaxed lower bound on N , h′′(λ), is computed at line 8. On
lines 9-10 the reduced cost filtering phase is performed for each non-instantiated
LP variable yj . Line 10 flags the value for future filtering. As Sellman [16] explains
in Section A disturbing example, filtering values during a Lagrangian relaxation
lead to inconsistencies because the current problem, miny h′(y,λ), might change
too much between consecutive iterations k → k + 1. Thus, they are filtered at
the end of the Algorithm (line 16). Finally, the Lagrangian optimization is ended
if the maximum number of iterations is reached or if the change of λ between
two consecutive iterations is too small. This last condition represents a situation
where the algorithm converges to an optimal λ, for the current state of the CSP
variables at the start of Algorithm 1. Cambazard and Fages compared three
types of step-size (Table 1) to update the Lagrange multipliers in (5).

2.5 Which Lagrange multipliers are the most effective?

Sellmann [16] presents a dichotomy between getting the best lower bound on LP
like (2) and filtering many values from the variables’ domain. The main result is
the Filtering Penalties theorem which justifies checking between iteration steps
of (5) for inconsistent values (Algorithm 1 lines 9-10).

From this result, Boudreault and Quimper [5] presented a new algorithm
for the WeightedCircuit constraint, where they model the constraint as a
LP, relax it using a Lagrangian relaxation, and locally modify the Lagrange
multipliers to augment the filtering. Their algorithm filters more values and is
faster than the state-of-the-art algorithm for this constraint.

6 F. Berthiaume et C.-G. Quimper

Algorithm 1: AtMostNValue LR-based propagator ({X1, . . . , Xn},
{Y1, . . . , Ym}, N , IterMax)

1 y ← [0, . . . , 0]︸ ︷︷ ︸
m

, λ← [0.0, . . . , 0.0]︸ ︷︷ ︸
n

, q ← [0.0, . . . , 0.0]︸ ︷︷ ︸
m

, k ← 0

2 repeat

3 q ← 1−A⊤λ
4 for j ← 1 to m do
5 if (min(dom(Yj)) = 1) or ((max(dom(Yj)) = 1) and (qj < 0)) then
6 yj ← 1
7 else yj ← 0

8 h′′(λ)← q⊤y + 1⊤λ
9 for j ← 1 to m do

10 if (h′′(λ) + |qj | > max(dom(N))) then Flag value 1− yj in dom(Yj)

11 ∇̃h′′(λ)← 1−Ay
12 Update αk // With Table 1

13 λ′ ← λ, λ← max(0,λ+ αk∇̃h′′(λ)), k ← k + 1

14 until k = IterMax or max1≤i≤n |λi − λ′
i| ≤ 0.0001

15 // The local alterations algorithm (Algorithm 2) is called here
16 Filter out all the flag values

3 Improving the filtering of AtMostNValue

We present how Lagrange multipliers can be altered to increase the level of
filtering. First, we write the quantity h′′(λ) + |qj(λ)| as a function.

Definition 3. The forced lower bound function, associated with the LP
variable yj, is given in (7) and its (sub)gradient with respect to λ in (8)

ρj(λ) = h′′(λ) + |qj(λ)| = h′′(λ) + |1− acj
⊤λ|, (7)

∇̃ρj(λ) = ∇̃h′′(λ) + ∇̃|qj(λ)| = 1−Ay − sgn(qj(λ))acj . (8)

We introduce Algorithm 2 that locally alters the Lagrange multipliers in a
way to enhance the filtering of Algorithm 1 for the AtMostNValue constraint.
It performs several short Lagrangian optimization processes. Each Lagrangian
optimization process has a different forced lower bound function ρj(λ) as the
objective function. Only a subset of forced lower bound functions are chosen
for this second optimization process. The choice is based on how close ρj(λ) is
from max(dom(N)). If the difference is under a threshold τ , the algorithm is
triggered. We optimize the local Lagrange multipliers λ̄ with these steps

λ̄(k+1) = max(0, λ̄(k) + βk∇̃ρj(λ̄
(k))), (9)

βk = ωk
(max(dom(N))+η)−ρj(λ̄

(k))

||∇̃λ̄ρj(λ̄
(k))||2

, ωk ∈ (0, 2), η > 0. (10)

We chose a Newton type for the step size βk with a constant coefficient ωk as
opposed to the variable coefficient of Table 1 where ωk = 5

2⌊k/10⌋ . The second pa-
rameter η prevents a null step size βk at the start of the optimization. It happens

Local Alterations Algorithm for the AtMostNValue Constraint 7

Algorithm 2: Algorithm to enhance filtering

1 for j = 1..m if | dom(Yj)| ̸= 1 and max(dom(N))− ρj(λ) < τ) do
2 y′ ← y, λ̄← λ, q′ ← q, h′′(λ)′ ← h′′(λ), k ← 0

3 ∇̃ρj(λ̄)← 1−Ay − sgn(qj(λ))acj

4 repeat
5 Update βk // With equation (10)

6 λ̄′ ← λ̄, λ̄← max(0, λ̄− βk∇̃ρj(λ̄))
7 if (max |λ̄i − λ̄′

i| > 0.0001) then

8 q′ ← 1−A⊤λ̄
9 for j′ ← 1 to m do

10 if (dom(Yj′) = {1}) or ((| dom(Yj′)| ̸= 1) and (qj′ < 0)) then
11 y′

j′ ← 1

12 else y′
j′ ← 0

13 h′′(λ̄)← q⊤y′ + 1⊤λ̄
14 if (ρj(λ̄) > max(dom(N))) then Flag the value 1− yj in dom(Yj)

15 ∇̃ρj(λ̄)← 1−Ay′

16 if ρj(λ̄) < max(dom(N)) then ∇̃ρj(λ̄)← ∇̃ρj(λ̄)− sgn(qj(λ))acj

17 k ← k + 1

18 until k = numberOfSteps or max1≤i≤n |λ̄i − λ̄′
i| ≤ 0.0001 or

ρj(λ̄)) > max(dom(N))

whenever ρj(λ̄
(k)) = max(dom(N)). A certain number of steps (numberOfSteps)

is allowed to optimize the local Lagrange multipliers. Otherwise, Algorithm 2 is
very similar to Algorithm 1. The order of some operations is different because
we want to start by updating the λ̄. The other difference is the line 16 of Al-
gorithm 2. Here there is a choice of subgradient used to guide the search. The
details are explained in section 3.1.

3.1 The theory

This section justifies the process used in Algorithm 2. The algorithm overcomes
many difficulties and particularities of the problem. The forced lower bound
functions (7) are neither convex nor concave. The first term, h′′(λ), is concave
and the second term, |qj(λ)|, is convex. This is a problem because subgradient
methods converge to a local optimum. In Algorithm 1, the concavity of h′′(λ)
saved the situation; here the situation requires some creativity because ∇ρj(λ)
might not lead to a global optimal solution. Algorithm 2 overcomes this major
issue by choosing between two directions for the optimization of λ̄ (Algorithm 2
lines 15-16). To understand why this change overcomes the concavity issue, we
start by analyzing some propriety of ρj(λ) and |qj(λ)|.

Theorem 1. ρj(λ) is concave on both side of L0(qj).

Proof. Given two concave functions f1(x) and f2(x), the function f(x) = f1(x)+
f2(x) is concave. The function |qj(λ)| is a convex function, but on each side of

8 F. Berthiaume et C.-G. Quimper

L0(qj) it is a linear function, which is both convex and concave. Since the sum
of two concave function is concave, ρj(λ) is concave on each side of L0(qj). ⊓⊔

Theorem 1 alone is not enough to justify the optimization of ρj(λ) with a sub-
gradient. From the perspective of Rn, there still exist two regions that provide
local maxima of ρj(λ), one on each side of L0(qj). But if a value can be filtered
from dom(Yj), then one of the two local optimal regions is a global maximum of
ρj(λ). The rest of this section is dedicated to explaining how the properties of
ρj(λ) and Theorem 1 can be used to find a global maximum of ρj(λ) and justify
a subgradient method on ρj(λ). In the following, we assume that it is possible
to filter one value from dom(Yj).

Before studying how to find a global maximum of ρj(λ), we introduce some
concepts. Since we consider both sides of L0(qj) and we assume that we can
filter one of the values from dom(Yj), we need to define a side of L0(qj) where
yj has the correct value and a side where it does not. We say that a vector λ
generates y if y is obtained from λ using (4).

Definition 4. y∗ is an optimal solution of the LP (1), given the current state
of the CSP variables at the start of Algorithm 1, but without insurance that y∗

can be generated by some λ in the LP (2).

In Definition 4, the optimal solution is optimal with regard to the original func-
tion h(y) and the current state of the CSP variables Yk. Meaning y∗ minimizes
the number of values used to cover the integer variables X1, ..., Xn. The following
lemmas show why there is no certainty, yet, that y∗ can be generated.

Lemma 2. Given y∗, if there is y∗j = 1 and there exists another j′ ̸= j with
acj′ = acj , then y∗j′ = 0.

Proof. If acj′ = acj , with j ̸= j′, it means that for every CSP variable Xi with
j in its domain, Xi also has j′. Because y∗j = 1, the value j is used to cover a
subset of {X1, . . . , Xn}, and every variable with j and j′ in their domain will
either be fixed to j or another value in their domain, but never j′. Choosing j′

and j only increases the number of values used in the solution. Thus y∗j′ = 0. ⊓⊔

Lemma 3. If in y∗, there is y∗j = 1 and there exists another j′ ̸= j with acj′ =
acj , then there exists no λ that generates this solution.

Proof. From Lemma 2, y∗j′ = 0. Suppose there exist a λ that generates y∗. Then

for qj and qj′ the equations that generate y∗j = 1 and y∗j′ = 0 are 1−acj
⊤λ < 0

and 1− acj′⊤λ ≥ 0. Since acj′ = acj , the system has no solution. ⊓⊔

From Lemma 3, if we remove duplicated columns, we ensure that an optimal
solution y∗ can be generated by some λ. In practice, we did not observe that
phenomena often. From now on, we assume that the columns are unique and
that the optimal solution y∗ can be generated by some Lagrange multipliers λ∗.
We can compute the gradient of h′′(λ) in the region that produces y∗. We use
this gradient to explain why we can change the search direction in Algorithm 2
(line 16) and eventually get to a global maximum of ρj(λ).

Local Alterations Algorithm for the AtMostNValue Constraint 9

Definition 5. The vector ∇h′′(λ∗) = 1−Ay∗ is the gradient of h′′ for y∗.

Normally the gradient of a function at an extremum is zero, but because of how
we assign values to the LP variable yk (4), it is not always the case.

Lemma 4. ∇h′′(λ∗) is not always 0.

Proof. Whenever a variableXi has in its domain more than one value in common
with the values of the optimal solution |dom(Xi) ∩ {j | y∗j = 1}| = ari

⊤y∗ > 1,

then the gradient at that index is non-zero [∇h′′(λ∗)]i = 1− ari
⊤y∗ < 0. ⊓⊔

Once the CSP variables X1, . . . , Xn are all fixed to a value, then ∇h′′(λ∗) =
0, but until that moment, it is not. We have all the information from the con-
tribution of h′′(λ) to ρj(λ). We analyze the last part of ρj(λ), which is |qj(λ)|.

Lemma 5. |qj(λ)| has no derivative on L0(qj) because for λ and λ′ on two
different sides of L0(qj) we have ∇|qj(λ)| = −∇|qj(λ′)|.

Proof. First, we note that ∀ λ′′ /∈ L0(qj), ∇|qj(λ′′)| = sgn(qj(λ
′′))∇(1 −

acj
⊤λ′′) = − sgn(qj(λ

′′))acj . Let qj(λ) < 0 and qj(λ
′) > 0. Then, we have

∇|qj(λ)| = +acj and ∇|qj(λ′)| = −acj , which completes the proof. ⊓⊔

From Lemmas 1 and 5, ρj(λ) inherits the same set of points as h′′(λ) where
∇ρj(λ) does not exist, namely

⋃m
j′=1 L0(qj′). Now we have all the tools to justify

the use of a subgradient method for ρj(λ).
Theorem 1 ensures that each gradient of ρj(λ) on either of the two sides of

L0(qj) points toward the local maximum of ρj(λ) of that side. On the side of
L0(qj) where yj = y∗j , the optimal region of h′′(λ) is present. From the definition
of ρj(λ), for any λ we have the following relation ρj(λ) ≥ h′′(λ). Which means
that for any λ∗ in the optimal region of h′′(λ), we have ρj(λ

∗) ≥ h′′(λ∗). In fact,
for any λ∗ /∈ L0(qj) we have ρj(λ

∗) > h′′(λ∗) which means filtering whenever
h′′(λ∗) = max(dom(N)). The gradient of ρj(λ) on this side of L0(qj) points
toward a λ that maximizes ρj(λ) > h′′(λ∗).

For the case where yj ̸= y∗j , we need two other theorems to explain how we
can find a direction to leave this local maximum of ρj(λ) and move toward a
global maximum. We show that there exist a region on the side where yj ̸= y∗j of
L0(qj), for which the gradient of ρj(λ) is equal to the gradient ∇h′′(λ∗). This
region corresponds to the set of global maxima on this side of L0(qj).

Theorem 2. Given y∗, let λ∗ be one of the vectors that generates y∗, let λ be
one of the vectors that generates y where ∀k ̸= j, yk = y∗k and yj ̸= y∗j . Then
∇ρj(λ) = ∇h′′(λ∗).

Proof. We can write the vector y generated as y = y∗ + sgn(qj(λ
∗))ûj , where

ûj is a unit vector with only the j-th entry equal to one and the other entries
equal to zero. For λ, the gradient of h′′ is

∇h′′(λ) = 1−A(y∗ + sgn(qj(λ
∗))ûj) = 1−Ay∗ − sgn(qj(λ

∗))acj ,

= ∇h′′(λ∗) +∇|qj(λ∗)| = ∇h′′(λ∗)−∇|qj(λ)|

10 F. Berthiaume et C.-G. Quimper

where we change the last term of the second equation into a more intuitive
object. We use Lemma 5 to change the last term to −∇|qj(λ)|. The gradient of
ρj for λ is

∇ρj(λ) = (∇h′′(λ∗)−∇|qj(λ)|) +∇|qj(λ)| = ∇h′′(λ∗). ⊓⊔

Theorem 2 justifies when should Algorithm 2 change the subgradient on
line 16. From Theorem 1, ρj(λ) is concave on either side of L0(qj), therefore for
each of these two regions, the subgradient method converges to an optimal in
each region. If y∗j can only be 0 or only be 1 in all possible optimal solutions,
then the value 1 − y∗j must be filtered. The region of Lagrange multipliers that
generates y from Theorem 2 is the local optimal region of ρj(λ) on the side of
L0(qj) where yj ̸= y∗j . In the next theorem, we formally explain why Algorithm 2
uses two subgradients.

Theorem 3. If value 1−y∗j needs to be filtered from dom(Yj), then in the region
where λ generates yj = 1− y∗j but every other yk = y∗k, following ∇h′′(λ) bring
the next λ′ in the optimization closer to L0(qj) and the filtering zone.

Proof. The direction that brings yj ̸= y∗j to a sate yj = y∗j is −∇|qj(λ)|,
Lemma 5. Since h′′(λ) is concave then every region that is not the optimal

region points toward this zone. So (−∇|qj(λ)|)⊤(∇h′′(λ)) ≥ 0. Hence the next
λ in the optimization is closer to L0(qj) and the optimal region. The optimal
region is in the filtering zone because, ∀λ we have ρj(λ) ≥ h′′(λ), we can con-
clude that for any λ∗ which generates y∗ we have filtering. ⊓⊔

Algorithm 2 can alternate between the two sides of L0(qj). This situation is due
to a step-size that is to big in (9). Eventually, when the step-size is small enough,
the algorithm stops cycling. We conclude that Algorithm 2 always approaches
the filtering zone.

4 Experimentations and results

We implemented Algorithm 1, denoted LR0, based on the code that Cambazard
and Fages [7] shared to us. We implemented our approach which we denote LR+.
It consists of the implementation of Algorithms 1 and 2. The code is accessible
on GitHub1. We fixed the threshold to 0.4 and the number of steps to 40. The
experiments ran on a MacBook Pro with M2 chip and with 8 Gb of RAM.

We test the algorithms on two problems: the dominating queens problem
and the p-median problem. The instances for the second problem come from
the discrete locations problem library [12] ”instances with a large duality gap”.
There are three classes of instances (easier to harder): A, B and C. There are
thirty instances within each class.

For all the experiences, we have chosen our constant step-size for our exper-
iment: ωk = 1.97 and η = 0.0001 to determine the step size βk in equation (10).

1 https://github.com/frbert3/LocalAlterationsAlgorithmAtMostNValue.git

Local Alterations Algorithm for the AtMostNValue Constraint 11

Harmonic Geometric Newton
n/v F NodesFails Iters Time NodesFails Iters Time NodesFails Iters Time

7/4 Y LR0 142 112 170k 0.165 166 135 84k 0.089 176 145 19k 0.026
LR+ 31 4 19k 0.024 31 4 6k 0.011 31 4 2k 0.005

8/5 Y LR0 267 225 329k 0.301 362 320 186k 0.197 283 241 33k 0.045
LR+ 41 6 26k 0.040 76 41 24k 0.028 41 6 3k 0.007

8/4 N LR0 2k 2k 2.4M 3.497 3k 3k 1.6M 2.461 2k 2k 279k 0.765
LR+ 1.2k 1.2k 1.5M2.066 1k 1k 698k 1.177 1k 1k 146k 0.362

9/5 Y LR0 1k 953 1.1M 2.188 1k 969 544k 1.315 956 909 113k 0.443
LR+ 490 443 576k 0.880 561 514 304k 0.556 441 394 57k 0.167

10/5 Y LR0 113k 113k 133M 300 195k 195k 107M 300 944k 944k 91M 300
LR+ 9.4k 9.4k 11M 26.9 761 725 471k 3.711 844 808 121k 2.59

11/5 Y LR0 32k 32k 38M 102.2 54k 54k 30M 83.1 83k 83k 7.34M 37.4
LR+ 4k 4k 5.6M 28.7 3.4k 3.4k 2.1M 11.6 4k 4k 461k 9.61

Table 2: Dominating queens instances on n × n chessboards with v queens. If
the instance is feasible we wrote Y and if not N. The time is in seconds.

4.1 The Dominating Queens problem

The dominating queens problem consists of placing the minimal number v of
chess queens on a chessboard of dimensions n×m in order that every square is
occupied or attacked by at least one queen. We focus on the case where n = m
which has more symmetries and is harder to solve.

We generate a chessboard with squares numbered from 1 to n2 from the
top-left corner to the bottom-right corner. We associate each square i with an
integer variable Xi whose domain is the set of squares a queen would be able to
attack from position i. We also associate a boolean variable Yi to each square,
representing whether there is a queen on the i-th square. The variable N has
for domain {0, . . . , v}. There are 2n2 + 1 variables in total. The objective is to
minimize N . Therefore the model is

Minimize N (11)

AtMostNValue(X ,Y, N) (12)

(Yj = 1 ⇔ ∃Xi ∈ X | Xi = j) ∀j ∈ {1, . . . , n2}, (13)

(12) ensures that all squares are covered by the N queens. (13) ensures that if
Yj = 1 then there is at least one variable with Xi = j. Branching on the variables
in X is performed lexicographically. A timeout of 300 seconds is fixed.

Table 2 contains the results of 6 instances of the dominating queens problem,
five are feasible and one is not. The 4 metrics are Nodes, the numbers of explored
nodes; Fails, the failures during the filtering, Time, the solving time in seconds;
and Iters, the number of iterations done in the Lagrangian relaxation.

LR0 does not find the solution for the 10/5 instance within the time limit.
This instance is excluded from the next averages. LR+ explores 71.8% fewer
nodes, does 77.7% fewer failures, does 73.3% fewer iterations in the Lagrangian

12 F. Berthiaume et C.-G. Quimper

relaxation, and is 71.2% faster than LR0. The local alterations algorithm sig-
nificantly reduces the number of explored nodes. For the three-step size rules,
the algorithm seems to reduce the nodes and fails metrics by closely the same
amount for a given instance. We use a Newton type of step size, so it is not
surprising that the additional filtering reduces those metrics in a similar way.

4.2 The p-median problem

The p-median problem is a variant of the facility location problem which consists
of opening at most p facilities on a territory to deserve n clients at a minimal
cost. In this variation, the problem focuses on disposing the p facilities in a way
to minimize the total transportation cost from the facilities to the clients.

We use the same model as Cambazard and Fages [7]. There are m candidate
facility locations. Each client Xi can be served by a subset of facilities, noted
P (i) ⊂ {1, . . . ,m}. We associate a Boolean variable Yj to each facility location
j to represent if we open the facility j or not. The transportation cost of the
client Xi for the facility j is contained in the matrix Cn×m, with entries ∞ if
j /∈ P (i). The variables TCi represent the transportation costs for the clients Xi.
Their values are subject to an Element(Index, table, V alue) constraint, where
Index and V alue are variables and table are constants. This constraint ensures
that V alue = table[Index].

Minimize
∑n

i=1TCi (14)

AtMostNValue(X ,Y, N) (15)

Element(Xi, [ci1, ..., cim], TCi) ∀i ∈ {1, . . . , n} (16)∑m
j=1Yj = N (17)

if ((cia < cib) ∨ ((cia = cib) ∧ (a < b)) then Ya = 1 ⇒ Xi ̸= b (18)

Xi ∈ P (i), TCi ≥ 0 ∀i ∈ {1, . . . , n}, N ∈ [1, p] (19)

The constraints (18) (there is one for each facility) help to choose which clients
are served by which facility: the cheapest facility. We fix a timeout of 300 seconds.

We use two search heuristics : standard and cost. Both heuristics branch on
the facilities Yj first, because once these variables are fixed, the constraints (18)
filter the variables Xi. The heuristic branch on the client variables Xi second
applying the first fail principle, starting with the smallest value in the domains.

The standard heuristic follows the first fail principle for the facilities variables
starting with the smallest domain size.

The cost based heuristic, introduced by Cambazard and Fages [7], is also
based on the first fail principle. It branches on the facility variable Yj which
belongs to the client Xi who is served by the smallest number of facilities, the
minimum domain size. It breaks ties with the cheapest facility j in average,∑

i|j∈dom(Xi)
cij

|{i|j∈dom(Xi)}| .

Table 3 shows the results for the p-median problem. The column Optimal
reports the number of times the value of the optimal solution is found, without

Local Alterations Algorithm for the AtMostNValue Constraint 13

necessarily proving that the solution is optimal. The optimal value is given in
the benchmark. The column Proof optimal is the number of times the solution is
proven optimal. The column # of better solutions is the number of times that the
algorithm finds a solution with a smaller objective value than other algorithm
finds. The column Av. time gain of LR+ on LR0 is the average percentage
speedup by LR+ over LR0 for the instances proven optimal. The column Av.
node reduction from LR0 to LR+ is the average percentage of nodes not explored
by LR+ compared to LR0 for the instances on which we prove the optimality.

We see in Table 3 that for the easy instances class A, only LR+ achieves
to find all the optimal solutions. It is also on this class of instances that we
record the greatest speedup on instances for which both algorithms prove the
optimality. For class A, the speedups of the standard and cost-based heuristics
are 28.4% (in average 18 seconds) and 33.2% (in average 17 seconds).

Figure 1 presents a visual comparison of LR0 and LR+ on the time to solve
the instances from the classes A and B. Figure 1a shows the instances that LR0

and LR+ achieve the proof of optimality. Figure 1b displays all instances.

Figure 1a shows that for class A, LR+ is always faster than LR0. We stress
that LR+ finds solutions faster and with fewer nodes than LR0.

For instances of class B, both LR0 and LR+ find the same number of optimal
solutions and achieve, on the same instances, the proof of optimality. With the
standard heuristic, LR+ finds two better solutions than LR0 when neither can
find the optimal solution. The average speedup for the standard and cost-based
heuristics are 15.6% (in average 20 seconds) and 8.10% (in average 9 seconds).

Figure 1b shows that when using a more accurate search heuristic, as the
cost based heuristic, LR+ becomes less effective. In other words, LR+ wastes
time at filtering values for which the heuristic has no intention to branch on.
Nevertheless, LR+ is still faster than LR0 and explores 72.6% fewer nodes with
the standard heuristic (in average 94764 fewer nodes) and 71.3% fewer nodes
with the cost based heuristic (which represents in average 85251 fewer nodes).

Problem Heuristics Optimal Proof
optimal

of
better

solutions

Av. time gain of
LR+ on LR0∗

Av. node
reduction from
LR0 to LR+∗

LR0 LR+ LR0 LR+ LR0 LR+ [%] [%]

A standard 27 27 27 27 0 1 28.4 71.5
cost 29 30 27 27 0 1 33.2 72.0

B standard 28 28 18 18 0 2 15.6 72.6
cost 28 28 18 18 0 0 8.10 71.3

C standard 5 6 0 0 0 8 − −
cost 8 12 0 0 0 13 − −

Table 3: Results of the three classes of problem of the facility location problem.
Each class has 30 instances and the solutions are known.
∗ On the instances for which we were able to prove the optimality.

14 F. Berthiaume et C.-G. Quimper

0 50 100 150

0

50

100

150

LR0 time [s]

L
R

+
ti
m
e
[s
]

standard
cost

(a) P-MGAP A

0 100 200 300

0

100

200

300

LR0 time [s]

L
R

+
ti
m
e
[s
]

standard
cost

(b) P-MGAP B

Fig. 1: Time comparison of LR0 and LR+

On the hardest instances in class C, no algorithms are able to prove the
optimality within the time limit. Although, with both search heuristics, LR+

finds the optimal solution of more instances than LR0. Furthermore, LR+ finds
better solutions than LR0 for 8 and 13 instances.

Difference between the problems The main difference between the re-
sults on the dominating queens problem and the p-median problem is the average
speedup. The speedup is less significant in the latter. The p-median problem is
more complex than the dominating queen problem because there are more con-
straints and more variables. Also, those are instances randomly generated, the
matrix A has no structure. In contrast with the very structured matrix A in the
dominating queens problem. This might affect the convergence of the algorithm.

4.3 Determining parameters

Experimental data helped us fix the parameters’ values. Figure 2 shows the
solving time and number of nodes of four instances of the p-median problem
(A7, A25, B11 and B31) in function of the threshold and number of steps.

The solving time curves (Figure 2a) follow the same trend. When the thresh-
old lies in [0, 0.25], the solving time diminishes because LR+ starts filtering
values. In [0.25, 0.5], LR+ filters even more values, but beyond 0.5 it considers
too many values and wastes time. All curves share a minimum around 0.50.

In Figure 2b, we see that when the threshold augments, the number of ex-
plored nodes decreases almost exponentially until it stops to a value. After 0.40,
the number of explored nodes starts to decrease much slowly.

In Figure 2c, we see that the solving time stops decreasing after 40 steps.
The variation in time induced by the number of steps between LR0 (the first
point) and LR+ is less than the variation induced by the threshold. It is not
surprising. The threshold dictates when to trigger LR+ and the number of steps
dictates how much time is spent in LR+. We see that for a number of steps
between 1 and 15, the time increases, because we are not converging fast enough
to a maximum. We lose time by trying to filter values without enough steps.

Local Alterations Algorithm for the AtMostNValue Constraint 15

0 0.5 1 1.5 2

0

50

100

150

Threshold [−]

T
im

e
[s
]

A7

A25

B11

B31

(a) Variation of the threshold

0 0.5 1 1.5 2

0

2

4

6

8

·104

Threshold [−]

N
o
d
es

[−
]

A7

A25

B11

B31

(b) Variation of the threshold

0 50 100

0

50

100

150

Number of steps [−]

T
im

e
[s
]

A7 A25

B11 B31

(c) Variation of the number of steps

0 50 100

0

2

4

6

8

·104

Number of steps [−]

N
o
d
es

[−
]

A7 A25

B11 B31

(d) Variation of the number of steps

Fig. 2: Variation of the threshold and number of steps parameters

In Figure 2d, we see a tendency similar to the variation of the threshold.
Again the variation, induced by the number of steps, of the number of explored
nodes is less than the variation induced by the threshold. Nevertheless, we can
infer that a greater number of steps helps filtering more values.

5 Conclusion

We conceived a Lagrangian relaxation based algorithm for the AtMostNValue
constraint that uses local alterations of the multipliers to enhance the filtering.
This new filtering algorithm leads to an average speedup of 71% on the domi-
nating queens problem and average speedups of 33% and 8% on the instances of
class A and class B of the p-median problem.

Acknowledgement We thank Hadrien Cambazard for sharing with us his code
for the AtMostNValue. It served as a thorough guide for the present work.

16 F. Berthiaume et C.-G. Quimper

References

1. Beldiceanu, N.: Pruning for the minimum constraint family and for the number
of distinct values constraint family. In: Principles and Practice of Constraint Pro-
gramming. pp. 211–224 (2001)

2. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog (2010)
3. Bertsekas, D.P.: On the goldstein-levitin-polyak gradient projection method. IEEE

Transactions on automatic control 21(2), 174–184 (1976)
4. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms

for the nv alue constraint. Constraints 11, 271–293 (2006)
5. Boudreault, R., Quimper, C.G.: Improved cp-based lagrangian relaxation approach

with an application to the tsp. In: IJCAI. pp. 1374–1380 (2021)
6. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods. lecture notes of EE392o,

Stanford University, Autumn Quarter 2004, 2004–2005 (2003)
7. Cambazard, H., Fages, J.G.: New filtering for atmostnvalue and its weighted vari-

ant: A lagrangian approach. Constraints 20(3), 362–380 (2015)
8. Fisher, M.L.: An applications oriented guide to lagrangian relaxation. Interfaces

15(2), 10–21 (1985)
9. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: International

conference on principles and practice of constraint programming. pp. 189–203
(1999)

10. Fumero, F.: A modified subgradient algorithm for lagrangean relaxation. Comput-
ers & Operations Research 28(1), 33–52 (2001)

11. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math-
ematical programming 6(1), 62–88 (1974)

12. Kochetov, Y., Ivanenko, D.: Computationally difficult instances for the uncapac-
itated facility location problem. Metaheuristics: Progress as real problem solvers
pp. 351–367 (2005)

13. Lemaréchal, C.: Lagrangian relaxation. Computational combinatorial optimiza-
tion: optimal or provably near-optimal solutions pp. 112–156 (2001)

14. Petit, T., Régin, J.C., Bessiere, C.: Specific filtering algorithms for over-constrained
problems. In: Principles and Practice of Constraint Programming. pp. 451–463
(2001)

15. Polyak, B.T.: Minimization of unsmooth functionals. USSR Computational Math-
ematics and Mathematical Physics 9(3), 14–29 (1969)

16. Sellmann, M.: Theoretical foundations of cp-based lagrangian relaxation. In: Prin-
ciples and Practice of Constraint Programming. pp. 634–647 (2004)

