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RCPSP - Reminder

Resource Constrained Project Scheduling Problem

Schedule tasks subject to :
• Precedence constraints
• Resource usage constraints

Definition of task i ∈ I

• Si : Starting time variable
• pi : Processing time
• hi : Resource usage

2



RCPSP - Reminder

Resource Constrained Project Scheduling Problem

Schedule tasks subject to :
• Precedence constraints
• Resource usage constraints

Definition of task i ∈ I

• Si : Starting time variable
• pi : Processing time
• hi : Resource usage

2



Resource usage constraints
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Calendars with Scheduled Overtime

Motivation

• In practice, not all time points are worked the same
(such as weekends)

• Some time points may represent work hours that
are out of the regular work schedule.

Inspiration

A Constraint Programming Approach to Ship Refit Project
Scheduling, Boudreault et. al. (CP22) :
• Overtime is available to finish tasks earlier
• Every task follows some calendar periodic on weeks
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Calendars with Scheduled Overtime

In our generalization, calendars are arbitrary.

Symbol definitions

• ZZZ : Closed time point

• : Regular time point

• : Overtime time point

Example of a calendar

A 8-16 work day with a 4 overtime hour time slot :
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Effects of calendars with overtime

New variables

• Ei : Elapsed time (actual duration)
• Oi : Amount of overtime used

Rules

• A task may not start nor end with an unworked hour
• Time worked in an execution window is exactly the
processing time of the task

• We cannot work more overtime than available in
the execution window

6



Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (1, 9, 0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}
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Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (1, 6, 2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7



Effects of calendars with overtime
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Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (4, 6, 1)
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Domain variation

Initial domains :
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(S,E,O) = (4, 9, 0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7



Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (6, 7, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..6}, dom(E) = {0..8}, and dom(O) = {0..8}

7



Effects of calendars with overtime

Task of processing time 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..6}, dom(E) = {5..7}, and dom(O) = {1..2}
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First Contribution - The CALENDAROVERTIME constraint

Definition

CALENDAROVERTIME(S,E,O, p,Cal) def⇐⇒ Cal[S] ̸= ZZZ

∧ Cal[S + E − 1] ̸= ZZZ

∧ O = p − |{t ∈ [S, S + E) | Cal[t] = }|
∧ O ≤ |{t ∈ [S, S + E) | Cal[t] = }|
∧ |{t ∈ {S, S + E − 1} | Cal[t] = }| ≤ O

Context

• One constraint per task
• Does not deal with resource usages
• Its propagator applies bounds consistency
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Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1

0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12
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Utility functions

Counting the regular time points in an interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[ )

2− (−1) = 3
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Utility functions

Finding the (non-strict) previous regular time point from
any point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12
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Utility functions

Finding the smallest end for an interval containing a given
amount of regular time
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Propagation trace

Steps to create a minimal execution window for a given S

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail
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Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

) )

OkNot Ok

)[ ) )
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Time-Tabling rule

Notation

• est : earliest starting time
• lst : latest starting time
• ect = est + p : earliest completion time
• lct = lst + p : latest completion time

15



The Time-Tabling rule

The compulsory part is the interval [lst, ect), if non-empty
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The Time-Tabling rule

The profile (the aggregation of compulsory parts) helps
deduce invalid values
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Second Contribution - The CUMULATIVEOVERTIME constraint
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Second Contribution - The CUMULATIVEOVERTIME constraint
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Experimentation

Problem

We solve the RCPSP augmented with calendars and over-
time.
There are resource, release and deadline, precedence,
and calendar constraints.
We minimize overtime costs with a restrained horizon.

Instances

We use instances from PSPLIB, BL, and PACK
They are augmented with pseudo-realistic calendars.
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Experimentation

The 3 MiniZinc models

• Decomposition model : Decomposes the calendar
constraints into ELEMENT constraints.

• CALENDAROVERTIME model : Uses our
CALENDAROVERTIME constraints.

• CUMULATIVEOVERTIME model : Uses both our new
constraints.

Implementation

Our constraints are implemented in the Chuffed solver
(which does lazy clause generation).
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Results - Decomposition vs. CALENDAROVERTIME
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Results - CALENDAROVERTIME vs. CUMULATIVEOVERTIME

0 150 300 450 6000

150

300

450

600

CALENDAROVERTIME model runtime (s)

CU
MU
LA
TIV
EO
VE
RT
IM
E
m
od
el

ru
nt
im
e
(s
)

23



Results - CALENDAROVERTIME vs. CUMULATIVEOVERTIME
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Conclusion

Contributions

• The CALENDAROVERTIME constraint (with a
propagator that applies bounds consistency of the
S, E and O variables in O(|dom(S)|)).

• The CUMULATIVEOVERTIME constraint (with a
propagator that incorporate calendars in the
Time-Tabling rule).

Advantages of the new constraints

• Make modeling with calendars simpler
• Lead to better resolutions
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Conclusion

The new constraints could be used in other problems
than the RCPSP augmented with calendars.
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Thank you for your attention

Link to the code, instances, and models :
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