
Cumulative Scheduling with Calendars and
Overtime

Samuel Cloutier
Claude-Guy Quimper
September 4th, 2024

1

RCPSP - Reminder

Resource Constrained Project Scheduling Problem

Schedule tasks subject to :
• Precedence constraints
• Resource usage constraints

Definition of task i ∈ I

• Si : Starting time variable
• pi : Processing time
• hi : Resource usage

2

RCPSP - Reminder

Resource Constrained Project Scheduling Problem

Schedule tasks subject to :
• Precedence constraints
• Resource usage constraints

Definition of task i ∈ I

• Si : Starting time variable
• pi : Processing time
• hi : Resource usage

2

Resource usage constraints

0 1 2 3 4 5 6 t

0

1

2

3

1

2

3

Tasks

Processing

time

Resource
consumption

Resource
capacity

Overload!

The CUMULATIVE constraint models this.

3

Resource usage constraints

0 1 2 3 4 t

0

1

2

3

1

2

3

The CUMULATIVE constraint models this.

3

Calendars with Scheduled Overtime

Motivation

• In practice, not all time points are worked the same
(such as weekends)

• Some time points may represent work hours that
are out of the regular work schedule.

Inspiration

A Constraint Programming Approach to Ship Refit Project
Scheduling, Boudreault et. al. (CP22) :
• Overtime is available to finish tasks earlier
• Every task follows some calendar periodic on weeks

4

Calendars with Scheduled Overtime

Motivation

• In practice, not all time points are worked the same
(such as weekends)

• Some time points may represent work hours that
are out of the regular work schedule.

Inspiration

A Constraint Programming Approach to Ship Refit Project
Scheduling, Boudreault et. al. (CP22) :
• Overtime is available to finish tasks earlier
• Every task follows some calendar periodic on weeks

4

Calendars with Scheduled Overtime

In our generalization, calendars are arbitrary.

Symbol definitions

• ZZZ : Closed time point

• : Regular time point

• : Overtime time point

Example of a calendar

A 8-16 work day with a 4 overtime hour time slot :

5

Calendars with Scheduled Overtime

In our generalization, calendars are arbitrary.

Symbol definitions

• ZZZ : Closed time point

• : Regular time point

• : Overtime time point

Example of a calendar

A 8-16 work day with a 4 overtime hour time slot :
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

5

Effects of calendars with overtime

New variables

• Ei : Elapsed time (actual duration)
• Oi : Amount of overtime used

Rules

• A task may not start nor end with an unworked hour
• Time worked in an execution window is exactly the
processing time of the task

• We cannot work more overtime than available in
the execution window

6

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (1, 9, 0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (1, 7, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (1, 6, 2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (3, 7, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (3, 5, 2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (4, 6, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (4, 9, 0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..8}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

(S,E,O) = (6, 7, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..6}, dom(E) = {0..8}, and dom(O) = {0..8}

7

Effects of calendars with overtime

Task of processing time 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

Domain variation

Initial domains :
dom(S) = {0..8}, dom(E) = {0..8}, and dom(O) = {0..8}

Filtered domain :
dom(S) = {1..6}, dom(E) = {5..7}, and dom(O) = {1..2}

7

First Contribution - The CALENDAROVERTIME constraint

Definition

CALENDAROVERTIME(S,E,O, p,Cal) def⇐⇒ Cal[S] ̸= ZZZ

∧ Cal[S + E − 1] ̸= ZZZ

∧ O = p − |{t ∈ [S, S + E) | Cal[t] = }|
∧ O ≤ |{t ∈ [S, S + E) | Cal[t] = }|
∧ |{t ∈ {S, S + E − 1} | Cal[t] = }| ≤ O

Context

• One constraint per task
• Does not deal with resource usages
• Its propagator applies bounds consistency

8

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1

0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0

0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0

0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0

1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1

1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1

4 7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4

7 9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7

9 12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9

12

9

Key data-structures for the propagator

• We want to perform fast propagation
• We precompute four arrays that permit performing various
computations in constant time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

9

Utility functions

Counting the regular time points in an interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[)

2− (−1) = 3

10

Utility functions

Counting the regular time points in an interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[)

2− (−1) = 3

10

Utility functions

Counting the regular time points in an interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[)

2− (−1) = 3

10

Utility functions

Counting the regular time points in an interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[)

2− (−1) = 3

10

Utility functions

Counting the regular time points in an interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[)

2− (−1) = 3

10

Utility functions

Finding the (non-strict) previous regular time point from
any point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

11

Utility functions

Finding the (non-strict) previous regular time point from
any point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

11

Utility functions

Finding the (non-strict) previous regular time point from
any point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

11

Utility functions

Finding the (non-strict) previous regular time point from
any point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

11

Utility functions

Finding the (non-strict) previous regular time point from
any point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

11

Utility functions

Finding the smallest end for an interval containing a given
amount of regular time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[

N = 3

+3

)

12

Utility functions

Finding the smallest end for an interval containing a given
amount of regular time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[

N = 3

+3

)

12

Utility functions

Finding the smallest end for an interval containing a given
amount of regular time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[

N = 3

+3

)

12

Utility functions

Finding the smallest end for an interval containing a given
amount of regular time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[

N = 3

+3

)

12

Utility functions

Finding the smallest end for an interval containing a given
amount of regular time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[

N = 3

+3

)

12

Utility functions

Finding the smallest end for an interval containing a given
amount of regular time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

X -1 0 0 0 1 1 1 2 2 3 3 3 4 4

Y 1 4 7 9 12

[

N = 3

+3

)

12

Propagation trace

Steps to create a minimal execution window for a given S

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

13

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

))

OkNot Ok

)[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[)

)

OkNot Ok

)[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

)

)

OkNot Ok

)[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

)

)

Ok

Not Ok

)[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

)

)

Ok

Not Ok

)[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

))

OkNot Ok

)

[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

))

Ok

Not Ok

)

[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[

))

Ok

Not Ok

)

[))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

OkNot Ok

)

[

))

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

OkNot Ok

)

[)

)

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

OkNot Ok

)

[

)

)

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

Ok

Not Ok

)

[

)

)

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

Ok

Not Ok

)

[

)

)

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

Ok

Not Ok

)

[

)

)

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

Ok

Not Ok

)

[

)

)

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8}

dom(E) = {3..6} dom(O) = {0..1}

[))

Ok

Not Ok

)

[

)

)

14

Propagation trace

Filtering the lower bound of S, for a task with p = 2

1. Add p non-closed time points
2. Adjust to reach the minimal duration (verify E)
3. Add any missing regular time (verify O)
4. Correct any potential unworked overtime tail
5. Verify E, O, and the unworked overtime head/tail

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

dom(S) = {0..8}

dom(S) = {4..8} dom(E) = {3..6} dom(O) = {0..1}

[))

OkNot Ok

)

[

)

)

14

Time-Tabling rule

Notation

• est : earliest starting time
• lst : latest starting time
• ect = est + p : earliest completion time
• lct = lst + p : latest completion time

15

The Time-Tabling rule

The compulsory part is the interval [lst, ect), if non-empty

0 1 2 3 4 5 6 7 8 9 10 11 t

0

1

2

Task i

esti ecti

lsti lcti

16

The Time-Tabling rule

The profile (the aggregation of compulsory parts) helps
deduce invalid values

0 1 2 3 4 5 6 7 8 9 10 11 t

0

1

2

Task j

estj ectj

lstj lctj

17

Second Contribution - The CUMULATIVEOVERTIME constraint

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

p = 4
dom(S) = {1..5} dom(E) = {4..7} dom(O) = {0..1}

lst

ect
Without calendars

lst

ect′
With calendars

18

Second Contribution - The CUMULATIVEOVERTIME constraint

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

p = 4
dom(S) = {1..5} dom(E) = {4..7} dom(O) = {0..1}

lst

ect
Without calendars

lst

ect′
With calendars

18

Second Contribution - The CUMULATIVEOVERTIME constraint

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

p = 3
dom(S) = {1..9}

dom(S) = {7..9}

dom(E) = {4..5} dom(O) = {0..1}

0
1
2

est ect

est ect′

19

Second Contribution - The CUMULATIVEOVERTIME constraint

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

p = 3
dom(S) = {1..9}

dom(S) = {7..9}

dom(E) = {4..5} dom(O) = {0..1}

0
1
2

est ect

est ect′

19

Second Contribution - The CUMULATIVEOVERTIME constraint

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t
ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ

p = 3

dom(S) = {1..9}

dom(S) = {7..9} dom(E) = {4..5} dom(O) = {0..1}

0
1
2

est ect

est ect′

19

Experimentation

Problem

We solve the RCPSP augmented with calendars and over-
time.
There are resource, release and deadline, precedence,
and calendar constraints.
We minimize overtime costs with a restrained horizon.

Instances

We use instances from PSPLIB, BL, and PACK
They are augmented with pseudo-realistic calendars.

20

Experimentation

The 3 MiniZinc models

• Decomposition model : Decomposes the calendar
constraints into ELEMENT constraints.

• CALENDAROVERTIME model : Uses our
CALENDAROVERTIME constraints.

• CUMULATIVEOVERTIME model : Uses both our new
constraints.

Implementation

Our constraints are implemented in the Chuffed solver
(which does lazy clause generation).

21

Results - Decomposition vs. CALENDAROVERTIME

0 150 300 450 6000

150

300

450

600

Decomposition model runtime (s)

CA
LE
ND
AR
OV
ER
TIM

E
m
od
el

ru
nt
im
e
(s
)

22

Results - Decomposition vs. CALENDAROVERTIME

0 100,000 200,000 300,000 400,0000

100,000

200,000

300,000

400,000

Decomposition model best solution

CA
LE
ND
AR
OV
ER
TIM

E
m
od
el

be
st
so
lu
tio
n

22

Results - CALENDAROVERTIME vs. CUMULATIVEOVERTIME

0 150 300 450 6000

150

300

450

600

CALENDAROVERTIME model runtime (s)

CU
MU
LA
TIV
EO
VE
RT
IM
E
m
od
el

ru
nt
im
e
(s
)

23

Results - CALENDAROVERTIME vs. CUMULATIVEOVERTIME

0 100,000 200,000 300,000 400,0000

100,000

200,000

300,000

400,000

CALENDAROVERTIME model best solution

CU
MU
LA
TIV
EO
VE
RT
IM
E
m
od
el

be
st
so
lu
tio
n

23

Conclusion

Contributions

• The CALENDAROVERTIME constraint (with a
propagator that applies bounds consistency of the
S, E and O variables in O(|dom(S)|)).

• The CUMULATIVEOVERTIME constraint (with a
propagator that incorporate calendars in the
Time-Tabling rule).

Advantages of the new constraints

• Make modeling with calendars simpler
• Lead to better resolutions

24

Conclusion

The new constraints could be used in other problems
than the RCPSP augmented with calendars.

25

Thank you for your attention

Link to the code, instances, and models :

26

