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Speeding up the 
modelling process

• Challenge: Models differ from one medical team to 
another

• Observation: There are few differences between 
each model.

• Opportunity: For legal reasons, hospitals keep a 
history of their schedules.

• Goal: To learn the models from historical data.
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How to learn a constraint?

• Do we have a limit of: 

• 2 night-shifts per week? 

• 1 night-shift every 3 days?
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Problem Definition
• Consider a random assignment     with

• The probability of observing      is

• Consider the constraint

• The probability that a random assignment satisfies C is 

• Finding     consists in solving:

~X P [Xi = v] = pv

~X P ( ~X) = ⇧n
i=1pXi

C([X1, . . . , Xn],[↵1, . . . ,↵m])

GC(~↵) =
X

~X|C( ~X,~↵)

P ( ~X)

min
~↵

GC(~↵)

C( ~X, ~↵) 8 ~X 2 Examples

~↵



How to compute          ?
• Enumerating and summing the probability of all 

solutions of a constraint is slow. 

• We mainly developed two techniques to compute 
or bound this probability 

• Using Markov chains 

• Using dynamic programming

GC(~↵)



Markov Chains
• Some constraints can naturally be encoded with an 

automaton.

1 = a night shift

at least 0

at most 2
every 3 days

Sequence([X1, . . . , Xn], {1}, 0, 2, 3)
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Sequence Markov Chain
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Computing 
• Let       be the transition matrix of the Markov chain 

for the constraint with parameters   .  

• One can compute the probability of reaching the 
reject state after reading n characters by computing 
      . 

• For every combination of     , compute       and 
evaluate           .  

• Keep    that minimizes           .

GSequence(~↵)

~↵

~↵

Mn
~↵

M~↵

~↵

Mn
~↵

GC(~↵)

GC(~↵)



When parameters are sets
• If the parameter contains a set, there is an 

exponential number of combinations to explore.

Among([X1, . . . , Xn], l, u, ~z)

Sequence([X1, . . . , Xn], l, u, w, ~z)

SubSetFocus([X1, . . . , Xn], l,m, ~z)
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Experiments
14 E. Picard-Cantin, M. Bouchard, C.-G. Quimper, J. Sweeney

Rank of
initial constraint

Num. of examples 1 2 3 1 Num. of instances
1 8 46 1 545 600
2 42 119 0 439 600
3 78 148 0 374 600
4 105 172 0 323 600
5 139 170 0 291 600
10 261 117 0 222 600

Table 1: Results for SubsetFocus. Number of instances for which the initial
constraint was ranked first, second, third or was not found.

We generated instances with d 2 {10, 30}, w 2 {5, 6, 7}, u 2 {1 + 3k |
1+3k  w^k 2 N}, and n 2 {100, 200, 300}. The vectors z and p are generated
such that

P
v pv = 1 and

P
v:zv=1 pv 2 {0.2, 0.8}. Finally, for each instance

defined by (d, z, p, u, w, n), we generate ten (10) solutions that satisfy Sequence
with parameters u,w, z and whose task occurrences are proportional to their
probabilities p.

Figure 4 shows the computation times. We can separate the instances into
two subsets according to the number of values d 2 {10, 30}. When the number
of values is small, the brute force algorithm is faster because it does not have
to keep track of partial problems like the branch-and-bound does. When the
number of values is large, the brute force algorithm has too many combinations
to test and the branch-and-bound is faster. Therefore, the branch-and-bound
algorithm for Sequence is more useful when the problem to solve is large.
Figure 5 explains why the branch-and-bound is faster on larger instances as it
shows that the number of probability computations is smaller for the branch-
and-bound algorithm. Figure 6 shows how many times the algorithms correctly
predict the parameters given the number of examples that are provided. As for
SubsetFocus, we give more information about the prediction quality of the
algorithm in Table 2. For Sequence, we observe that the correct constraint is
returned by the learning algorithm among the first two choices 59.5% of the time
when we consider ten examples.

Rank of
initial constraint

Num. of examples 1 2 3 1 Num. of instances
1 19 7 0 58 84
2 29 7 0 48 84
3 32 8 0 44 84
10 48 2 0 34 84

Table 2: Results for Sequence. Number of instances for which the initial con-
straint was ranked first, second, third or was not found.
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Conclusion

• We were able to make a recommander system that 
helps experts to determine the parameters of 
certain constraints.

• The system is not used!

• It could have saved hundreds of hours in expert 
time.


