Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi Douence, Ramiz Gindullin, Claude-Guy Quimper

ABSTRACT

To automate the discovery of conjectures on combinatorial objects, we introduce the concept of a map of sharp bounds on characteristics of combinatorial objects, that provides a set of interrelated sharp bounds for these combinatorial objects. We then describe a Bound Seeker, a CP-based system, that gradually acquires maps of conjectures. The system was tested for searching conjectures on bounds on characteristics of digraphs: it constructs sixteen maps involving 431 conjectures on sharp lower and upper-bounds on eight digraph characteristics.

PART I: CONTEXT AND QUESTIONS

COMBINATORIAL OBJECTS AND THEIR CHARACTERISTICS

DIGRAPHS
- \(a = 16 \)
- \(v = 4 \)
- \(c = 8 \)
- \(\) \(a = \) number of arcs
- \(v = \) number of vertices
- \(c = \) number of connected components

FORESTS
- \(f = 3 \)
- \(t = 1 \)
- \(\) \(f = \) number of leaves
- \(t = \) number of trees

QUESTIONS

How to acquire from data representing instances of combinatorial objects:

1. Sharp bounds of characteristics?
2. Relations between sharp bounds?
3. And organise (1) and (2) into a map?

Illustrating the questions wrt digraphs

1. Sharp bounds:
 - \(a \leq (c - (c - 3))^2 + (c - 1) \)
 - \(\) \(f = 6 \)
 - \(t = 2 \)
 - \(v = 3 \)
 - \(z = 3 \)

2. Relation:
 - If \(a = v^2 \) then \(a = 1 \)

3. A map:

PART II: DEFINITION OF A MAP OF CONJECTURES

Given a finite set of input characteristics \(P \) and an output characteristic \(o \in P \), a map of sharp upper bounds \(\Delta P \) is defined as a digraph where:

- Each node of the map is associated with a subset \(P \subseteq P \) of input characteristics and corresponds to a maximum conjecture of the form \(o \leq f(P) \), where \(f \) is a function of \(P \).

This inequality is tight, i.e. there exist values that can be given to the parameters \(P \) in order to reach the equality.

- Each arc from conjecture \(o \leq f_i(P \cup \{q\}) \) to conjecture \(o \leq f_j(P) \) corresponds to a projection from a subset \(P \subseteq P \cup \{q\} \) of input characteristics to a subset \(P \) of input characteristics, by eliminating a characteristic \(q \).

The equality \(q = g(P) \) is called a maximality conjecture.

ILLUSTRATING THE DEFINITION OF A MAP

\[o \leq f_1(P \cup \{q\}) \rightarrow q = g(P) \rightarrow o \leq f_2(P) \]

- Maximum conjecture 1
- Maximality conjecture
- Maximum conjecture 2

\[(A) \quad \rightarrow \quad (B) \quad \rightarrow \]

\[v = 3 \quad \Rightarrow \quad q = 3 \quad \Rightarrow \quad o = 9 \]

\[f_1 = \text{upper bound of } q \text{ wrt } P \cup \{q\} \]

\[f_2 = \text{upper bound of } o \text{ wrt } P \]

\[q = \text{linking characteristic} \]

\[g = \text{a function of } P \]

PART III: RESULTS

Comparison between the Bound Seeker (BS) and the bounds of the Global constraints catalog (GCC)

<table>
<thead>
<tr>
<th>Number of bounding characteristics</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent sharp bounds retrieved by BS</td>
<td>22</td>
<td>14</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Sharper bounds than the GCC found by BS</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Generalised sharp bounds found by BS</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Erroneous bounds found in the GCC by BS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Bounds in the GCC not retrieved by BS</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Total bounds of the GCC for each column</td>
<td>24</td>
<td>24</td>
<td>12</td>
<td>60</td>
</tr>
</tbody>
</table>

Map of 16 sets of bounding characteristics used to bound the characteristic \(\zeta \)

- \(\zeta \leq v \quad \Rightarrow \quad v = 3 \quad \Rightarrow \quad o = 9 \)
 - \(\zeta \leq v - c + 1 \)
 - \(\zeta \leq v - c \quad \Leftrightarrow \quad v - c \)
 - \(\zeta \leq v - c \quad \Rightarrow \quad v - c \)
 - \(\zeta = v - c + 1 \quad \Rightarrow \quad v - c \quad \Rightarrow \quad o = 9 \)
 - \(\zeta = v + c \quad \Rightarrow \quad v + c \quad \Rightarrow \quad o = 9 \)
 - \(\zeta = v + c \quad \Rightarrow \quad v + c \quad \Rightarrow \quad o = 9 \)
 - \(\zeta = v + c \quad \Rightarrow \quad v + c \quad \Rightarrow \quad o = 9 \)
 - \(\zeta = v + c \quad \Rightarrow \quad v + c \quad \Rightarrow \quad o = 9 \)

- \(v = \) number of vertices
- \(c \) : number of connected components
- \(s \) : number of strongly connected components
- \(\zeta \) : size of the smallest connected component
- \(\delta \) : size of the largest strongly connected component
- \(g \) : size of the smallest strongly connected component

- \(\zeta \leq v - c + 1 \)
- \(\zeta \leq v - c \quad \Rightarrow \quad v - c \)
- \(\zeta \leq v - c \quad \Rightarrow \quad v - c \)
- \(\zeta = v - c + 1 \quad \Rightarrow \quad v - c \quad \Rightarrow \quad o = 9 \)
- \(\zeta = v + c \quad \Rightarrow \quad v + c \quad \Rightarrow \quad o = 9 \)
- \(\zeta = v + c \quad \Rightarrow \quad v + c \quad \Rightarrow \quad o = 9 \)
- \(\zeta = v + c \quad \Rightarrow \quad v + c \quad \Rightarrow \quad o = 9 \)