Enforcing Domain Consistency on the Extended Global Cardinality Constraint is NP-hard

Claude-Guy Quimper
School of Computer Science
University of Waterloo
Waterloo, Canada

1 Introduction

We consider a set of variables \(X = \{x_1, \ldots, x_n\} \) and a set of values \(D \). Each variable \(x_i \) is associated to a domain \(\text{dom}(x_i) \subseteq D \) and each value \(v \in D \) is associated to a cardinality set \(K(v) \). An assignment satisfies the extended global cardinality constraint (extended-GCC) if each variable \(x_i \) is instantiated to a value in its domain \(\text{dom}(x_i) \) and if each value \(v \in D \) is assigned to \(k \) variables for some \(k \in K(v) \). Extended-GCC differs from normal GCC by its sets of cardinality \(K(v) \) that can be any set of values. In normal GCC, as introduced by Régis [2], these cardinality sets are restricted to intervals.

Enforcing domain consistency consists in verifying for each value \(v \) in a variable domain \(\text{dom}(x_i) \) if there is an assignment satisfying the extended-GCC such that \(x_i = v \). This is equivalent to determining if the extended-GCC is satisfiable when the domain of the variable is bounded to a single value, i.e. \(\text{dom}(x_i) = \{v\} \). We show that determining if the extended-GCC is satisfiable is NP-complete by reduction to the SAT problem and therefore enforcing domain consistency on the extended-GCC is NP-hard.

2 Extended-GCC as a Matching in a Graph

As demonstrated by Régis [1], an extended-GCC instance can be represented by a bipartite graph \(G = (L \cup R, E) \). Let the left-nodes of the bipartite graph be \(L = X \) the variables of the problem. Let the right-nodes of the bipartite graph be \(R = D \) the values of the problem. There is an edge \((x_i, v) \in E \) if and only if \(v \in \text{dom}(x_i) \).

A generalized matching [4] \(M \) is a subset of \(E \) such that all variables \(x_i \in L \) is adjacent to one edge in \(M \) and each node \(v \in R \) is adjacent to \(k \) edges in \(M \) for some \(k \in K(v) \).

A generalized matching \(M \) represents a solution of the extended-GCC. There is obviously a matching \(M \) if and only if the extended-GCC is satisfiable. In the next section, we show that determining if a generalized matching exists is NP-complete.
3 Reduction to the SAT problem

Consider a 3-SAT problem defined by a list of variables \(X = \{ X_1, \ldots, X_n \} \), a list of literals \(\mathcal{L} = \{ x_i, \neg x_i \mid x_i \in X \} \) and a list of clauses \(C = \{ C_1, \ldots, C_m \} \) where \(C_i \subseteq \mathcal{L} \) are the set of literals of the clause. We want to assign the value true or false to the literals in \(\mathcal{L} \) such that all clauses have at least one literal assigned to true.

From a SAT problem, we construct the bipartite graph \(G = (L \cup R, E) \) as follows. For each literal \(l_j \) in a clause \(C_i \), we create one left-node \(S(C_i, l_j) \in L \) and one right-node \(d(C_i, l_j) \in R \). For each clause \(C_i \) we create a left-node \(C_i \in L \) and for each variable \(X_i \) we create another left-node \(X_i \in L \). Finally, we add to the graph a right-node \(l_i \in R \) for each literal \(l_i \).

We connect the left-nodes in \(L \) to the right-nodes in \(R \) as follows. We start with an empty set of edges \(E = \emptyset \). For each clause \(C_i \) and each literal \(l_j \in C_i \), we add the edges \((C_i, d(C_i, l_j)) \), \((S(C_i, l_j), d(C_i, l_j)) \) and \((S(C_i, l_j), l_j) \). For each variable \(x_i \in X \) we add the edges \((X_i, x_i) \) and \((X_i, \neg x_i) \). Finally, we set the cardinality of each right-node in \(L \) as follows: \(K(d(C_i, l_j)) = \{ 0, 1 \} \) and \(K(l_i) = \{ 0, k_i + 1 \} \) where \(k_i \) is equal to the number of clauses containing the literal \(l_i \) or more formally \(k_i = |\{ C_j \in C \mid l_i \in C_j \}| \). Figure 1 shows the part of graph \(G \) that is related to variable \(X_i \).

The intuition of the reduction is simple. A generalized matching in \(G \) corresponds to a solution to the SAT problem. If \((X_i, x_i) \in M \) then \(x_i = \text{true} \) and if \((X_i, \neg x_i) \in M \) then \(x_i = \text{false} \). All clause nodes \(C_i \) must be matched to another node. They can only be matched with an edge \((C_i, d(C_i, l_j)) \) if \(l_j = \text{true} \).

Lemma 1. Let \(l_i \in \{ x_i, \neg x_i \} \), the edge \((X_i, l_i) \) belongs to \(M \) if and only if \(S(C_j, l_i) \in M \) for all \(C_j \).

Proof. The nodes \(S(C_j, l_i) \in E \) and the node \(X_i \) are the only nodes connected to node \(l_i \). Since we have \(K(l_i) = \{ 0, k_i + 1 \} \) and \(k_i + 1 \) is equal to the number of nodes connected to \(l_i \), either all edges adjacent to \(l_i \) belong to \(M \) or no edges adjacent to \(l_i \) belong to \(M \). Therefore for all nodes \(S(C_j, l_i) \) we have \((X_i, l_i) \in M \iff S(C_j, l_i) \in M \). \(\square \)

Lemma 2. Let \(l_j \in \{ x_j, \neg x_j \} \). If the edge \((C_i, d(C_i, l_j)) \) belongs to a generalized matching then \((X_j, l_j) \) also belongs to this generalized matching.

Proof. Suppose the edge \((C_i, d(C_i, l_j)) \) belongs to the generalized matching \(M \). Since the cardinality of node \(d(C_i, l_j) \) is \(\{ 0, 1 \} \) and edge \((C_i, d(C_i, l_j)) \) is adjacent to this node, no more edges in \(M \) can be adjacent to node \((C_i, d(C_i, l_j)) \). Therefore the edge \(S(C_i, l_j) \) has no other choice to be matched with node \(l_j \). By Lemma 1 we obtain that \((X_j, l_j) \) belongs to \(M \). \(\square \)
Clauses that contain X_i

Belongs to the matching if X_i is true

Belongs to the matching if X_i is false

Clauses that contain $\neg X_i$

Edges connected to nodes $d(C4, x_i)$ for $i > 1$

This edge may or may not belong to a matching if x_i is true. It cannot be part of the matching if x_i is false.

There must be 0 or 1 edge adjacent to this node in the matching.

Fig. 1. Part of graph G related to variable X_i.
Lemma 3. SAT is satisfiable if and only if there exists a generalized matching M in graph G.

Proof. (⇒) Suppose SAT is satisfiable, we construct a matching by pointing each node C_i to a node $d(C_i, l_i)$ such that literal l_i is true in the SAT solution. Other left-nodes in L are matched according to Lemma 2 and Lemma 1.

(⇐) Consider a generalized matching M. For all variables $X_i \in X$, we have either the edge (X_i, x_i) or $(X_i, \neg x_i)$ in M. We say that literal l_i is true if the edge (X_i, l_i) belongs to M and false if the edge does not belong to M. For all clause C_i, we have an edge $(C_i, d(C_i, l_j))$ in M for some $l_j \in \{x_j, \neg x_j\}$. This implies by Lemma 2 that l_j is true and therefore clause C_i is satisfied. Therefore all clauses are satisfied by the variable assignments given by the edges (X_i, l_i).

4 Conclusion

Lemma 3 shows that determining the satisfiability of extended-GCC is NP-complete and therefore enforcing domain consistency on the extended-GCC is NP-hard.

Acknowledgments

The author would like to thank Alejandro López-Ortiz for proof-reading this technical report. Thanks also to Alexander Golynski who pointed out that the graph presented above could be simplified by merging the C_i nodes and the $d(C_i, l_j)$ nodes together and fixing their cardinality to the interval $[0, k_i - 1]$.

References