
The Multi-Inter-Distance
Constraint

Pierre Ouellet and Claude-Guy Quimper

Introduction

• The MULTI-INTER-DISTANCE constraint is a new global constraint.

• It is useful to model scheduling problems.

• We present a filtering algorithm achieving bounds consistency.

• The filtering algorithm relies on the theory of the shortest paths
in a graph.

• We experimented on the runway scheduling problem.

2

MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied
iff no more than m variables are assigned to values lying in a
window of p consecutive values.

3

MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied
iff no more than m variables are assigned to values lying in a
window of p consecutive values.

• Example: MULTI-INTER-DISTANCE([X1, X2, X3, X4, X5], m = 2, p = 3)

3

MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied
iff no more than m variables are assigned to values lying in a
window of p consecutive values.

• Example: MULTI-INTER-DISTANCE([X1, X2, X3, X4, X5], m = 2, p = 3)

3

1 2 3 4 5 6 7 8

X4 X2 X5 X1 X3

MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied
iff no more than m variables are assigned to values lying in a
window of p consecutive values.

• Example: MULTI-INTER-DISTANCE([X1, X2, X3, X4, X5], m = 2, p = 3)

3

Variable count: 2

1 2 3 4 5 6 7 8

X4 X2 X5 X1 X3

MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied
iff no more than m variables are assigned to values lying in a
window of p consecutive values.

• Example: MULTI-INTER-DISTANCE([X1, X2, X3, X4, X5], m = 2, p = 3)

3

Variable count: 2

1 2 3 4 5 6 7 8

X4 X2 X5 X1 X3

MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied
iff no more than m variables are assigned to values lying in a
window of p consecutive values.

• Example: MULTI-INTER-DISTANCE([X1, X2, X3, X4, X5], m = 2, p = 3)

3

Variable count: 1

1 2 3 4 5 6 7 8

X4 X2 X5 X1 X3

MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied
iff no more than m variables are assigned to values lying in a
window of p consecutive values.

• Example: MULTI-INTER-DISTANCE([X1, X2, X3, X4, X5], m = 2, p = 3)

3

Variable count: 2

1 2 3 4 5 6 7 8

X4 X2 X5 X1 X3

MULTI-INTER-DISTANCE

• The MULTI-INTER-DISTANCE constraint encodes a scheduling
problem where the variables Xi are the starting times of the task.

• Each task has a processing time p.

• There are m identical resources.

4

MULTI-INTER-DISTANCE

• The MULTI-INTER-DISTANCE constraint encodes a scheduling
problem where the variables Xi are the starting times of the task.

• Each task has a processing time p.

• There are m identical resources.

• This constraint encodes other constraints

4

MULTI-INTER-DISTANCE

• The MULTI-INTER-DISTANCE constraint encodes a scheduling
problem where the variables Xi are the starting times of the task.

• Each task has a processing time p.

• There are m identical resources.

• This constraint encodes other constraints

• For m = 1 and p = 1, the MULTI-INTER-DISTANCE constraint
encodes the ALL-DIFFERENT constraint.

4

MULTI-INTER-DISTANCE

• The MULTI-INTER-DISTANCE constraint encodes a scheduling
problem where the variables Xi are the starting times of the task.

• Each task has a processing time p.

• There are m identical resources.

• This constraint encodes other constraints

• For m = 1 and p = 1, the MULTI-INTER-DISTANCE constraint
encodes the ALL-DIFFERENT constraint.

• When m = 1, the constraint specializes into the
INTER-DISTANCE constraint.

4

Consistencies

• Domain consistency is NP-Hard to enforce as it is for the
Inter-Distance constraint.
[Artiouchine and Baptiste 2005]

5

Consistencies

• Domain consistency is NP-Hard to enforce as it is for the
Inter-Distance constraint.
[Artiouchine and Baptiste 2005]

• We show how to enforce bounds consistency in polynomial
time.

• We assume that the domain of a variable Xi is an interval [li, ui).

• We want to shrink this interval to remove all values that are
not involved in any solution.

5

Test for Satisfiability
• The Multi-Inter-Distance constraint is satisfiable iff the following

scheduling problem has a solution:

• Task i starts at or after time li but before time ui

• Task i is executed without preemption for p units of time

• Task i does not overload one of the m resources.

• This scheduling problem is solved in time O(n2 min(1, p/m))
[López-Ortiz & Quimper, 2011].

• We use this scheduling algorithm as a sub-routine in our filtering
algorithm.

6

X1 � [7, 9), X2 � [2, 4), X3 � [4, 7), X4 � [2, 7), X5 � [3, 5)

Multi-Inter-Distance([X1, . . . , X5],m = 2, p = 3)

Scheduling Graph

7

2

0

2

-1
0

2

-2
-1

0

2

0

2

-4
-2

-1

0 0

-5
-3

-2

-1
0

98765432

Forward Edges

Connect two time points
that are p units of time
apart with an edge of
weight m.

X1 � [7, 9), X2 � [2, 4), X3 � [4, 7), X4 � [2, 7), X5 � [3, 5)

Multi-Inter-Distance([X1, . . . , X5],m = 2, p = 3)

Scheduling Graph

8

2

0

2

-1
0

2

-2
-1

0

2

0

2

-4
-2

-1

0 0

-5
-3

-2

-1
0

98765432

Null Edges

Connect a time point with
its predecessor with an
edge of weight 0.

X1 � [7, 9), X2 � [2, 4), X3 � [4, 7), X4 � [2, 7), X5 � [3, 5)

Multi-Inter-Distance([X1, . . . , X5],m = 2, p = 3)

Scheduling Graph

9

2

0

2

-1
0

2

-2
-1

0

2

0

2

-4
-2

-1

0 0

-5
-3

-2

-1
0

98765432

Backward Edges

Connect an upper bound
with a lower bound. The
absolute value of the
weight is the number of
domains contained in the
interval spanned by the
edge.

X1 � [7, 9), X2 � [2, 4), X3 � [4, 7), X4 � [2, 7), X5 � [3, 5)

Multi-Inter-Distance([X1, . . . , X5],m = 2, p = 3)

Scheduling Graph

10

2

0

2

-1
0

2

-2
-1

0

2

0

2

-4
-2

-1

0 0

-5
-3

-2

-1
0

98765432

Theorem

The Multi-Inter-Distance
constraint is satisfiable if
and only if the scheduling
graph has no negative
cycles.

[Dürr & Hurand 2009]

li ui

G

First Pruning Rule

• Consider a variable Xi and its domaine [li, ui).

11

Scheduling graph:

li uiv

G

Gv
i

First Pruning Rule

• Consider a variable Xi and its domaine [li, ui).

• Reducing the upper bound leads to a new problem... and a new
scheduling graph.

11

Scheduling graph:

Altered scheduling graph:

li uiv

G

Gv
i

First Pruning Rule

• Consider a variable Xi and its domaine [li, ui).

• Reducing the upper bound leads to a new problem... and a new
scheduling graph.

• Definition: If the altered scheduling graph has a negative cycle, the
interval [li, v) is a forbidden region.

11

Scheduling graph:

Altered scheduling graph:

li uiv

G

Gv
i

First Pruning Rule

• Consider a variable Xi and its domaine [li, ui).

• Reducing the upper bound leads to a new problem... and a new
scheduling graph.

• Definition: If the altered scheduling graph has a negative cycle, the
interval [li, v) is a forbidden region.

• Theorem: The forbidden region is effective for all variables whose
domain upper bound is greater than or equal to ui.

11

Scheduling graph:

Altered scheduling graph:

li uiv

G

Gv
i

First Pruning Rule

• Consider a variable Xi and its domaine [li, ui).

• Reducing the upper bound leads to a new problem... and a new
scheduling graph.

• Definition: If the altered scheduling graph has a negative cycle, the
interval [li, v) is a forbidden region.

• Theorem: The forbidden region is effective for all variables whose
domain upper bound is greater than or equal to ui.

• Rule: Lower bounds in that forbidden region should be increased to v.

11

Scheduling graph:

Altered scheduling graph:

Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)

12

Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)

• Let u* be the smallest domain upper bound greater than li.

12

Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)

• Let u* be the smallest domain upper bound greater than li.

• If the altered scheduling graph has no negative cycles, there
exists a solution with Xi ∈ [li, u*).

12

Gu�

i

Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)

• Let u* be the smallest domain upper bound greater than li.

• If the altered scheduling graph has no negative cycles, there
exists a solution with Xi ∈ [li, u*).

• What is the smallest value in [li, u*) that has a support?

12

Gu�

i

Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)

• Let u* be the smallest domain upper bound greater than li.

• If the altered scheduling graph has no negative cycles, there
exists a solution with Xi ∈ [li, u*).

• What is the smallest value in [li, u*) that has a support?

• Theorem: The smallest value that has a support in dom(Xi) is
the largest value that is at distance 0 from li in .

12

Gu�

i

Gu�

i

Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)

• Let u* be the smallest domain upper bound greater than li.

• If the altered scheduling graph has no negative cycles, there
exists a solution with Xi ∈ [li, u*).

• What is the smallest value in [li, u*) that has a support?

• Theorem: The smallest value that has a support in dom(Xi) is
the largest value that is at distance 0 from li in .

• Rule: Compute the shortest paths from li to all the other nodes.
Set the new lower bound to the largest value that is at distance 0
from li.

12

Gu�

i

Gu�

i

Filtering Algorithm
We process the variables in non-decreasing order of upper bounds.

1. Let the interval [li, ui) be the domain of the variable Xi.

2. Let u* be the smallest domain upper bound greater than li.

3. If the altered scheduling graph has a negative cycle, the interval
[li, u*) is a forbidden region and we prune the domains accordingly.
Go to 2.

4. If the altered scheduling graph has no negative cycles, let v be the
largest value at distance 0 from li.

5. Set the lower bound of Xi to v.

6. Process next variable.

13

Gu�

i

Running Time Complexity

• Computing a shortest path:

• Maximum number of shortest
path computations:

• Total running time complexity:

14

O(n2 min(1,
p

m
))

O(n3 min(1,
p

m
))

2n

Runway scheduling problem

15

time

Landing time intervals

MID Multi-Inter-Distance

MVH Edge-Finder
[Mercier & Van Hentenryck]

OC Overload Checking

One runway

16

Number of instances solved vs time

O(n3 min(1,
p

m
))

O(n2)

O(n log n)

Two or Three Runways

17

Number of instances solved vs time

MID Multi-Inter-Distance

MVH Edge-Finder
[Mercier & Van Hentenryck]

OC Overload Checking

O(n3 min(1,
p

m
))

O(n2)

O(n log n)

Conclusion

• The Multi-Inter-Distance constraint is a new constraint that
models certain scheduling problems.

• We showed how to enforce bounds consistency in polynomial
time.

• The filtering algorithm relies on the properties of shortest paths
in the scheduling graph.

• Experiments on the runway scheduling problem proved that a
strong consistency is necessary to efficiently solve the problem.

18

