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Abstract

Given a table with a minimal set of input columns that fun-
ctionally determines an output column, we introduce a me-
thod that tries to gradually decompose the corresponding mi-
nimal functional dependency (mfd) to acquire a formula exp-
ressing the output column in terms of the input columns. A
first key element of the method is to create sub-problems
that are easier to solve than the original formula acquisition
problem, either because it learns formulae with fewer inputs
parameters, or as it focuses on formulae of a particular class,
such as Boolean formulae; as a result, the acquired formulae
can mix different learning biases such as polynomials, con-
ditionals or Boolean expressions. A second key feature of
the method is that it can be applied recursively to find for-
mulae that combine polynomial, conditional or Boolean sub-
terms in a nested manner. The method was tested on data for
eight families of combinatorial objects; new conjectures were
found that were previously unattainable. The method often
creates conjectures that combine several formulae into one
with a limited number of automatically found Boolean terms.

1 Introduction
While the problem of synthesising formulae from data (Alur
et al. 2018) is central to many areas such as programming
by example (e.g. finding formulae in spreadsheets (Gulwani
2011; Gulwani, Harris, and Singh 2012; Paramonov et al.
2017)), program verification (e.g. identifying loop inva-
riants (Srivastava, Gulwani, and Foster 2013)), and conjec-
ture generation (e.g. proposing bounds for combinatorial
objects (Aouchiche et al. 2005; Larson and Cleemput 2016;
Beldiceanu et al. 2022)), acquisition techniques are limited
when the learning bias, i.e. “the set of assumptions that the
learner uses to predict outputs of given inputs” (Wikimedia
Commons 2003), is vast. In this paper, these assumptions
correspond to the type of formulae we acquire.

Besides the recent work of S.-M. Udrescu et al. (Udrescu
et al. 2020) which applies to continuous functions, most
approaches for acquiring discrete functions rely on a gra-
mmar to define a domain-specific learning bias. They use
a generate-and-test method to produce candidate formulae
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of increasing complexity. Several improvements were made
to limit the combinatorial explosion of candidate formulae.
They include the use of probabilistic grammar or statistical
methods (Brence, Todorovski, and Džeroski 2021) to focus
on more likely candidate formulae first, to generate partially
instantiated formulae whose coefficients are determined by
a CP or a MIP model (Ligeza et al. 2020; Beldiceanu et al.
2022), or to apply metaheuristics (Hansen and Caporossi
2000). However, their main weakness is twofold: first, they
usually deal with formulae from a restricted domain-specific
learning bias; second, they try to directly acquire a formula
that mentions all the relevant input parameters at once.
Question addressed by the paper. We generally do not
know how to effectively combine learning biases for ac-
quiring formulae, so a system that knows how to solve prob-
lems with the learning bias (A) and another system that
knows how to solve problems with the learning bias (B) can
be combined to handle not only problems with the learning
bias (A) or (B), but can also acquire formulae that combine
both learning biases in a nested manner. The question, then,
is how to find decomposition methods that facilitate the
discovery and combination of multiple learning biases.
Our contribution. The method we propose partly answers
this question through the following observation. Although
many formulae are complex, i.e. they involve various ope-
rators in different sub-terms of a same formula, some para-
meters only appear in a few sub-terms, and some sub-terms
have a very specific form. We show that by analysing an
mfd of a table, while relying on the input columns and
the output column of the table, it is sometimes possible to
identify different sub-terms of a formula to be learnt and
the operators that connect its sub-terms. We carry out this
analysis by using Constraint Programming (CP) to solve
certain sub-problems that allows us to decompose the for-
mula we are looking for, into its sub-terms, without knowing
yet the formula to be found.
Paper organisation. In Sect. 2, we give concrete examples
of complex formulae obtained using our new decomposition
techniques. In Sect. 3, we describe decomposition techni-
ques introduced in this paper. In Sect. 4, we evaluate our
contribution to assess its performance and the relevance of
the discovered conjectures. We conclude in Sect. 5.



2 Context, Motivation, Running Examples,
and Decomposition Types

This section first describes the context behind the decom-
position techniques introduced in the paper. Then, it gives
typical formulae found using these techniques. Finally, it
defines the types of decomposition introduced.

2.1 Context and Motivation
Paper (Beldiceanu et al. 2022) describes a CP system for
finding conjectures about sharp bounds on characteristics
of combinatorial objects. Their learning process is based on
tables, each entry of which is a positive example, specifying
the sharp lower (resp. upper) bound of a characteristic
of a combinatorial object based on a combination of
values for other characteristics. Therefore the acquisition
process acquires equality (as they have sharp bounds),
corresponding, in the end, to inequalities as the generated
conjectures deal with lower (resp. upper) bounds. As all the
entries in a table are noise-free, they acquire formulae that
match all table entries. Their framework uses three biases:
(i) Formulae mentioning one or two polynomials, e.g. ‘x3+

y ·z’, ‘max(x ·y, 2 ·z2)’; in the case of two polynomials,
these can be connected by a usual arithmetic operator.

(ii) Simple conditional formulae of the form (cond ?x : y)
denotes x if condition cond holds, y otherwise; the con-
ditional part, the then and else parts have a simple form:
each part mentions at most 2 input parameters and one
coefficient, e.g. ‘(⌈x/y⌉ = 2 ? 2 · y : x)’.

(iii) Boolean-arithmetic formulae consisting of arithmetic
conditions using a commutative operator such as ‘∧’ or
‘+’, e.g. ‘[x ≥ 2] + [(y − x) ≥ 2]’, where a Boolean
expression enclosed in square brackets is used as 0 for
false or 1 for true.

Despite using these biases (i)–(iii), the system (Beldiceanu
et al. 2022) missed many conjectures. Rather than extending
these biases further or introducing new biases, we combine
these biases to catch complex formulae. To avoid a combi-
natorial explosion, this is not done by assembling a mer-
ged grammar associated with different biases, but rather
by devising some recursive decomposition techniques that
identify the sub-terms of a formula and how these sub-terms
are connected by arithmetic operators. The base case of
such recursion belongs to biases (i)–(iii). The next section
provides a first insight on how this is achieved.

2.2 Running Examples and Intuition of the
Decomposition Technique

Conj. (1)–(4) illustrate sharp lower bounds found by the
decomposition method that could not be found before, as
they were outside the scope of biases (i)–(iii). They are
used as running examples and were proved in (Cheukam-
Ngouonou et al. 2023) to stress the fact that the
decomposition method can find non-obvious conjectures
that turn out to be true. In the first phase, the decomposition
method identifies an incomplete formula, i.e. a formula for
which some terms are still unknown and will be determined
later in the 2nd phase by applying the decomposition method

recursively. In Conj. (1)–(4), the right-hand side of each
inequality matches terms, highlighted by a brace, connected
by one or two arithmetic operators (or a conditional), where:
• Terms with no grey background refer to expressions

matching biases (i)–(iii), that are found in the 1st phase.
• Terms with a grey background are found in the 2nd phase

when the decomposition is applied recursively.
Conjecture 1 Conj. (1) provides a sharp lower bound on
the number of connected components c of a digraph where
every vertex is adjacent to at least an arc wrt its number
of vertices v, the maximum number of vertices c inside a
connected component, and the smallest number of vertices
s in a strongly connected component (scc). The right-hand
side of Inequality (1) consists of the terms (1.1) and (1.2),
resp. referring to biases (i) and (iii), and linked by a sum.

c ≥ ⌈v/c⌉︸ ︷︷ ︸
(1.1) binary function

+

[¬((2 · s ≤ c) ∨ (s ≥ (v mod c = 0 ? c : v mod c))]︸ ︷︷ ︸
(1.2) Boolean term

(1)
In Phase one, the decomposition method finds a formula of
the form g1,1(v, c)+g1,2(v, c, s), where g1,1 has only 2 para-
meters, and where the codomain of g1,2 is the set {0, 1}; in
the 2nd phase, the method finds the functions g1,1 and g1,2.
Conjecture 2 Conj. (2) gives a sharp lower bound c
of a digraph wrt its number of scc s, and the c and s
characteristics introduced in Ex. 1. The term (2.1) is the
isolated input parameter s and the term (2.2), i.e. ⌊c/s⌋,
refers to bias (i). These terms are connected by an integer
division rounded up.

c ≥
⌈

s︸︷︷︸
(2.1) unary function

/ ⌊c/s⌋︸ ︷︷ ︸
(2.2) binary function

⌉
(2)

In Phase one, the method finds the formula
⌈

g2,1(s)
g2,2(c,s)

⌉
, with

g2,1(s) = s, and where g2,2 has only 2 parameters; in the
2nd phase, the method finds the function g2,2 itself.
Conjecture 3 Conj. (3) depicts a sharp lower bound
on the maximum number of vertices s inside an scc of
a digraph wrt the s and s characteristics previously in-
troduced. Within Conj. (3), the term (3.1) is a conditional
expression, i.e. bias (ii), the term (3.2) refers to a unary
function, and the term (3.3), i.e. [s = 1], corresponds to a
Boolean expression, i.e. bias (iii). These terms are connected
by the division rounded up and the sum operators.

s ≥
⌈
(v = s ? v : v − s)︸ ︷︷ ︸

(3.1) binary function as
a conditional

/( s− 1︸ ︷︷ ︸
(3.2) unary

function

+ [s = 1]︸ ︷︷ ︸
(3.3)

Boolean
term

)

⌉
(3)

In Phase 1, the decomposition method finds a formula of the
form

⌈
g3,1(v,s)

g3,2(s)+g3,3(s)

⌉
, with g3,2(s) = s− 1, and where g3,1

has only 2 parameters, and where the codomain of g3,3 is the
set {0, 1}; in the 2nd phase, the method finds g3,1 and g3,3.



Conjecture 4 Conj. (4) depicts a sharp lower bound
on the maximum number of vertices c inside a connected
component of a digraph wrt the v, c, c and s characteristics
previously introduced. The right-hand side of Conj. (4) is a
complex conditional expression outside the scope of bias (ii),
as its ‘else’ part is too complicated. It consists of three parts:
• A simple condition v = c · c denoted by (4.1);
• A ‘then’ part, c, depicted by (4.2);
• An ‘else’ part, max

(
s,
⌈
v−c
c−1

⌉)
, referring to a complex

term labelled by (4.3).

c ≥
(
v = c · c︸ ︷︷ ︸

(4.1)
condition

? c︸︷︷︸
(4.2)

‘then’ part

: max

(
s,

⌈
v − c

c− 1

⌉)
︸ ︷︷ ︸

(4.3) ‘else’ part

)
(4)

The method first finds (v = g4,1(c, c) ? g4,2(c) :
g4,3(v, c, c, s)) with g4,1(c, c) = c · c, g4,2(c) = c ; then

it finds function g4,3 using the method in a recursive way:
• It finds g4,3(v, c, c, s) = max(g4,3,1(s), g4,3,2(v, c, c)),

with g4,3,1(s) = s, and where g4,3,2 has 3 parameters;
• It then finds function g4,3,2 using again the

decomposition method in a recursive way:

– It first finds g4,3,2(v, c, c) =
⌈
g4,3,2,1(v,c)
g4,3,2,2(c)

⌉
with

g4,3,2,2(c) = c− 1;
– It then finds function g4,3,2,1(v, c) directly as v − c, a

polynomial, i.e. bias (i).

Wrapping up the examples We saw four conjectures
acquired by our decomposition method. They cover all the
types of decompositions we found. Each function introduced
in Phase 1 when searching for an incomplete formula is
simpler than the function initially looked for: (a) it has fewer
input parameters, e.g. in Conj. 1, g1,1(v, c) = ⌈v/c⌉ does
not mention the s parameter, or (b) its codomain is restricted
to two values, e.g. in Conj. 1, the codomain of g1,2 is the set
{0, 1}, or (c) it only holds if a given condition is met, e.g. the
‘else’ part in Conj. (4) only holds if v ̸= c · c .

2.3 Decompositions Definition
By decomposing the formula to acquire into an expression
consisting of several simpler terms as mentioned in Sect. 2.2,
we aim to solve an easier acquisition problem. To this end,
we introduce four ways of decomposing a function. Before
formally defining them, we explain each of them intuitively.
• [Adding a Boolean expression] The first decomposition

breaks down a function as the sum of a function
with fewer input parameters, and a function whose
codomain is the set {0, 1}. As shown in Conj. (1),
this decomposition was motivated by the possibility of
approximating a bound by an error margin of at most 1.

• [Isolating a parameter] The 2nd decomposition is based
on the idea that one may find a formula in which an input
parameter only occurs in the outer term of the formula
where no other input parameter is used. In Conj. (2), the
parameter s only occurs in the numerator of the top-level
of binary function ‘integer division rounded up’.

• [Isolating a parameter and using a 0-1 slack] The
3rd decomposition generalises the 2nd decomposition by
introducing a 0-1 slack term that can refer to any subset
of the input parameters. In Conj. (3), the input parameter
s does not occur in the numerator of the formula; indeed,
it is only mentioned by the denominator of the top level
function ‘integer division rounded up’.

• [Introducing a conditional] The 4th decomposition is
based on the intuition that it may be easier to find a
formula that applies to a subset of the table entries
rather than to all. The 4th decomposition divides the
table entries into a ‘then’ and an ‘else’ set using a
simple condition then, for each set, we have to identify a
corresponding formula. We use a small set of predefined
formulae with a subset of the condition’s parameters for
the ‘then’ set, while imposing no restriction on the ‘else’
set. Conj. (4) illustrates such conditional decomposition.

Problem Given a table tab[1..nrow , 1..ncol + 1] of in-
teger values, consisting of nrow rows and ncol+1 columns,
where columns 1, 2, . . . ,ncol form a mfd determining
column ncol + 1, we address the following question: How
to decompose the problem of discovering a function g
satisfying all the following set of equalities

∀j ∈ [1,nrow ] : tab[j,ncol+1] = g(tab[j, 1], . . . , tab[j,ncol ])
(5)

into a set of easier subproblems requiring finding
a limited number of functions satisfying one of the
decompositions (6)–(9) of Def. 1 that we now introduce.
Definition 1 (Decomposition Types)

∀j ∈ [1,nrow ] : tab[j,ncol + 1] =

g1(tab[j, a1], . . . , tab[j, aℓ1 ]) +

g2(tab[j, b1], . . . , tab[j, bℓ2 ] (6)

∀j ∈ [1,nrow ] : tab[j,ncol + 1] =

g1(tab[j, a1], . . . , tab[j, aℓ1 ]) ⊕ g3(tab[j, b1]) (7)

∀j ∈ [1,nrow ] : tab[j,ncol + 1] =

g1(tab[j, a1], . . . , tab[j, aℓ1 ]) ⊕
(g2(tab[j, b1], . . . , tab[j, bℓ2 ]) + g3(tab[j, b1])) (8)

∀j ∈ [1,nrow ] : tab[j,ncol + 1] =

(cond(tab[j, c1], . . . , tab[j, cℓ3 ]) ?
g4(tab[j, d1], . . . , tab[j, dℓ4 ]) :
g1(tab[j, a1], . . . , tab[j, aℓ1 ]))

(9)

1. g1 : Zℓ1 → Z refers to one of the biases (i)–(iii) or to
a formula obtained by one of the four decompositions;
a1, . . . , aℓ1 are distinct indices from [1,ncol ] with ℓ1 ∈
[1,ncol − 1] for (6)–(8) as g1 does not involve all input
parameters, and with ℓ1 ∈ [1,ncol ] for (9). For (7)–(8),
b1 is different from a1, . . . , aℓ1 .

2. g2 : Zℓ2 → {0, 1} matches bias (iii); b1, . . . , bℓ2
are distinct indices from [1,ncol ] with ℓ2 ∈ [1,ncol ].
Note that in (6), functions g1 and g2 may share some
parameters.



3. g3 : Z → Z is one of the unary functions A · x2 +B · x+ C,
⌊A·x2+B·x

D ⌋, ⌈A·x2+B·x
D ⌉, min(A · x+B,C), max(A · x+B,

C), (A · x+B) mod D, |A · x+B|, [((x+A) mod D) = C],
[((x+A) mod D) ≥ C], [((x+A) mod D) ≤ C], with A, B, C

∈ Z, and D ∈ Z+. To limit the search space, we consider
unary functions involving up to 3 constants.

4. Within (7)–(8), ⊕ stands for one of the operators ‘+’, ‘ ·’,
‘min’, ‘max’, ‘⌊ ⌋’, or ‘⌈ ⌉’.

5. Within (9), cond is a condition mentioning at most
3 parameters, i.e. ℓ3 ∈ [1, 3], of the form ‘x =
min(x)’, ‘x = y’, ‘x ≤ y’, ‘x mod y = 0’, ‘x = y ·
z’, ‘A · x ≤ y’, while g4 is one of the functions ‘B’, ‘x’,
‘[x = min(x)]’, ‘[x > min(x)]’, ‘x · y’, ‘[x = y +B]’, ‘x = y + z’,
with ‘A’, ‘B’ ∈ Z.

We introduce a fair number of functions and conditions for
g3, g4, and cond in Def. 1. To avoid overfitting, they mention
at most 3 coefficients whose range is restricted to [−2, 2].
Example 1 Within Sect. 2.2, the right-hand part of
inequalities (1), (2), (3), and (4) resp. matches the following
decomposition types:
• (6) with g1(v, c) = ⌈ v

c ⌉ and g2(v, c, s) = [¬((2 · s ≤
c) ∨ (s ≥ (v mod c = 0 ? c : v mod c))].

• (7) with g1(c, s) = ⌊c/s⌋, g3(s) = s, and ⊕ =‘⌈ ⌉’.
• (8) with g1(v, s) = (v = s ? v : v − s), g2(s) = [s = 1],
g3(s) = s− 1, and ⊕ =‘⌈ ⌉’.

• (9) with g1(v, c, c, s) = max
(
s,
⌈
v−c
c−1

⌉)
and g4(c) = c.

3 Implementing the Decompositions
The implementation combines (a) phases of generating a
limited number of alternatives on the type of functions
used in the decomposition and on which parameters these
functions mention, and (b) test phases verifying certain
simple conditions and solving a constraint model to find the
values of the coefficients of the functions mentioned in the
terms of the decomposition. We introduce some notation to
refer to intermediate structures used to analyse the conse-
quence of eliminating an input parameter from a mfd.
Notation 1 Consider the table tab[1..nrow , 1..ncol + 1], in
which the first ncol columns, the input parameters, form a
mfd determining column ncol +1, i.e. the output parameter.
• Let tab↗

k [1..nrow , 1..ncol + 1] be the table obtained by
sorting the rows of the table tab[1..nrow , 1..ncol +1] in
increasing lexicographic order wrt columns 1, . . . , k −
1, k + 1, . . . ,ncol + 1, i.e. column k is skipped; to make
the correspondence between the entries of the tables tabk
and tab↗

k , let σk denote the permutation that maps the
j-th row of the table tabk to the σk(j)-th row of the table
tab↗

k (with j ∈ [1,nrow ]).
• Let I denote the parameters associated with columns
1, 2, . . . ,ncol of the table tab, and let Ij (with
j ∈ [1,nrow ]) represents the corresponding parameter
values for the j-th row of the table tab, i.e. values
tab[j, 1], tab[j, 2], . . . , tab[j,ncol ].

• Let Ik (with k ∈ [1,ncol ]) denote the parameters
associated with columns 1, . . . , k − 1, k + 1, . . . ,ncol
of the table tab, while let Ik

j (with j ∈ [1,nrow ])

represents the corresponding parameter values
tab[j, 1], . . . , tab[j, k−1], tab[j, k+1], . . . , tab[j,ncol ].

3.1 Decomposition of Type (6) [adding a Boolean
expression]

Question We want to check whether there is a k ∈
[1,ncol ] such that ∀j ∈ [1,nrow ] : tab[j,ncol + 1] =
g1(Ik

j ) + g2(Ij), with g2 : Zℓ2 → {0, 1}; i.e. we seek
an approximation with a maximum error of 1, by using a
function g1, without parameter k, and a correction term g2.

Steps for finding a decomposition of Type (6)
1. [Determining the parameters of g1] First, we

successively select the k-th column (with k ∈ [1,ncol ])
to remove from the input parameters of the function g1,
and we apply Steps 2. to 4. for each candidate column k.

2. [Checking whether the codomain of g2 is the set
{0, 1}] Second, provided function g1 does not use the
k-th input parameter selected in Step 1, we analyse how
this affects the codomain of function g2, even if functions
g1 and g2 are yet unknown.
For each maximum interval of consecutive rows [ℓ, u] in
the sorted table tab↗

k [1..nrow , 1..ncol + 1] for which
columns 1, . . . , k − 1, k + 1, . . . ,ncol have the same
value, we get the maximum max ℓ,u and minimum
minℓ,u values in the (ncol+1)-th column, and we check
that the difference max ℓ,u − minℓ,u does not exceed 1.
In other words, we test for the table tab↗

k that, for each
combination of identical input parameters, from which
the k-th input parameter is ignored, the corresponding
output parameter varies by at most 1. When satisfied, this
test ensures that the codomain of g2 is in {0, 1}.
For each entry j ∈ [ℓ, u] of the table tab↗

k we set
min↗

k [j] = minℓ,u, where min↗
k is a one-dimensional

table whose entries vary from 1 to nrow .
3. [Determining the values of g1(Ik

j ) and g2(Ij)] Third,
for each combination of input parameters of functions
g1 and g2 we compute their respective output values:
∀j ∈ [1,nrow ], g1(Ik

j ) = min↗
k [σk(j)] and g2(Ij) =

tab↗
k [σk(j),ncol + 1]−min↗

k [σk(j)].
4. [Using g1(Ik

j ) and g2(Ij) for identifying functions
g1 and g2] We search for g1 by using the CP solvers
associated with biases (i)–(iii) or by applying recursively
one of the decompositions of this paper. To identify g2
we call the Boolean solver associated with the bias (iii).

Example 2 (Illustrating the Search for a Decomposition
of Type (6) for Conj. (1)) Part (A) of Fig. 1 provides
9 entries of the table tab with input parameters v, c, s
and the lower bound of the output parameter c, previously
introduced. Assume we skip the third column of table tab,
k = 3, shown in grey in table tab↗

3 , i.e. we ignore column s.
• Parts (B1) and (B2) resp. show the tables introduced

for finding a decomposition of Type (6), i.e. tables tab,
tab↗

3 , and min↗
3 . The permutation σ3 (with σ3(3) = 4,

σ3(4) = 3, and σ3(j) = j otherwise) maps the entries of
table tab to the entries of table tab↗

3 . The rows of tab↗
3



1
2
3
4
5
6
7
8
9

σ3
1
2
3
4
5
6
7
8
9

v c s c

9 2 1 5
9 3 1 3
9 3 2 4
9 3 3 3
9 4 1 3
9 4 2 3
9 5 1 2
9 5 2 2
9 5 4 2

(A) tab[1..9,1..4]

v c s c

9 2 1 5
9 3 1 3
9 3 3 3
9 3 2 4
9 4 1 3
9 4 2 3
9 5 1 2
9 5 2 2
9 5 4 2

(B1) tab↗
3 [1..9,1..4]

5
3
3
3
3
3
2
2
2

(B2)min↗
3 [1..9]

v c g1(v, c)

9 2 5
9 3 3
9 3 3
9 3 3
9 4 3
9 4 3
9 5 2
9 5 2
9 5 2

(C1)

v c s g2(v, c, s)

9 2 1 0
9 3 1 0
9 3 2 1
9 3 3 0
9 4 1 0
9 4 2 0
9 5 1 0
9 5 2 0
9 5 4 0

(C2)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Figure 1: Tables used to find a decomposition of type 6 for Conj. (1); bold entries refer to Ex. 2.

and min↗
3 can be partitioned in four maximum intervals,

depicted in dark and light grey, resp. corresponding to
the pair of values (9, 2), (9, 3), (9, 4), and (9, 5) for
the input parameters v and c. As for each of these four
intervals the difference between the maximum and the
minimum value of c does not exceed one, we can compute
the values of g1(v, c) and g2(v, c, s).

• Parts (C1) and (C2) resp. give the tables used
to acquire g1(v, c) and g2(v, c, s), e.g. for j=3,
g1(I3

j )=g1(I3
3 )=g1(9, 3)=min↗

3 [σ3(j)]=min↗
3 [σ3(3)]=

min↗
3 [4]=3, and g2(Ij)=g2(9, 3, 2)=tab↗

3 [σ3(j), 4] −
min↗

3 [σ3(j)]=tab
↗
3 [4, 4]−min↗

3 [4] = 4− 3 = 1.

3.2 Decompositions of Types (7) and (8) (isolating
a parameter)

Using a binary operator ⊕, Decomposition (7) combines 2
sub-terms: a function g3 involving a single input parameter,
with a function g1 mentioning only all other remaining
input parameters. Decomposition (8) extends (7) a bit by
adding an extra term whose codomain is the set {0, 1}. As
identifying Decomposition (8) is very similar to identifying
Decomposition (7), we focus on the latter for space reasons.

Question We want to check whether there is a k ∈
[1,ncol ] such that ∀j ∈ [1,nrow ] : tab[j,ncol + 1] =
g1(Ik

j ) ⊕ g3(tab[j, k]), where ⊕ and function g3 were
defined in Def. 1; i.e. we want to see if we can express
the formula we are looking for, by restricting one of its
parameters to just one of the formula’s sub-terms.

1. [Selecting k, ⊕, and g3] To determine the images of
function g1 that will be used to find function g1 itself
in Step. 2 we successively consider the ncol × 10 × 6
combinations of triples ⟨k, g3,⊕⟩ (with k ∈ [1,ncol ]),
see Items 3–4 of Def. 1 for g3 and ⊕. To find whether
a combination of triples can be used or not to find the
images of the function g1, we apply the following steps:

(a) [Creating the “value variables” for the images of
g1] For each maximum interval of consecutive rows
[ℓ, u] of the table tab↗

k [1..nrow , 1..ncol + 1] for
which columns 1, . . . , k − 1, k + 1, . . . ,ncol have
the same value, we create a single domain variable
yℓ representing the value of g1(Ik

σ−1
k (ℓ)

), where σ−1
k

denotes the inverse permutation of permutation σk.

(b) [Stating the row constraints for finding the
coefficients of g3, and the value of g1 for each row]
For each entry j of a maximal interval of consecutive
rows [ℓ, u] of the table tab↗

k [1..nrow , 1..ncol + 1]
for which columns 1 . . . , k − 1, k + 1, . . . ,ncol
have the same value, we create the constraint yℓ ⊕
g3(tab[σ

−1
k (j), k]) = tab[σ−1

k (j),ncol + 1].
(c) [Solving the row constraints] We solve the

conjunction of constraints stated in Step 1b: we
find the values of the coefficients of the unary function
g3, and the values of the “value variables” of g1,
while minimising the sum of the absolute value of the
coefficients of g3 using a CP solver.

Among all triples for which Step 1c found a solution, we
keep those triples ⟨k,⊕, g3⟩ which minimise the sum of
absolute values of the coefficients of g3.

2. [Identifying function g1] As for the decomposition of
Type (6), we search for function g1 by employing the
existing CP solvers associated with biases (i)–(iii) or
by applying recursively one of the 4 decompositions
proposed in this paper. For this purpose we reuse the
value of the “value variables” found for g1 in Step 1c.

Example 3 (Illustrating the Search for a
Decomposition of Type (7) for Conj. (2)) Part (A) of
Fig. 2 provides 9 entries of the data for the input parameters
s, c, s and the lower bound of the output parameter c,
namely table tab previously introduced. Assume we skip the
first column of the table tab, i.e. k = 1 shown in grey in
the table tab↗

1 , that is we ignore the column labelled by s.
The rows of Parts (B)–(C) of Fig. 2 can be partitioned in
three maximum intervals, depicted in dark and light grey,
resp. corresponding to the pair of values (1, 1), (3, 2), and
(9, 3) for the input parameters c and s.

• Assuming we look for a function g3 of Type A·s2+B ·s+
C, and for a binary operator ⊕ of the form ‘⌈ ⌉’, the three
columns in Part (C) resp. show for each row of tab↗

1 ,
(p1) the unary function g3, (p2) the “value variables” for
g1, and (p3) the corresponding constraints.

• Part (D) gives the derived table used to acquire g1(c, s).

3.3 Decomposition of Type (9) (conditional)
Type (9) decomposition combines a simple condition and a
simple function g4 for the ‘then’ part of the condition, with a



1
2
3
4
5
6
7
8
9

s c s c

1 1 1 1
2 1 1 2
2 3 2 2
2 9 3 1
3 1 1 3
3 3 2 3
3 9 3 1
4 3 2 4
4 9 3 2

(A) tab

1
2
3
4
5
6
7
8
9

s c s c

1 1 1 1
2 1 1 2
3 1 1 3
2 3 2 2
3 3 2 3
4 3 2 4
2 9 3 1
3 9 3 1
4 9 3 2

(B) tab↗
1

σ−1
1

g3(s)=A·s2+B ·s+C g1(c, s) ⌈g3(s)/g1(c, s)⌉ = c

A + B + C y1 ⌈( A + B + C)/y1⌉ = 1
4 · A + 2 · B + C y1 ⌈( 4 · A + 2 · B + C)/y1⌉ = 2
9 · A + 3 · B + C y1 ⌈( 9 · A + 3 · B + C)/y1⌉ = 3
4 · A + 2 · B + C y4 ⌈( 4 · A + 2 · B + C)/y4⌉ = 2
9 · A + 3 · B + C y4 ⌈( 9 · A + 3 · B + C)/y4⌉ = 3

16 · A + 4 · B + C y4 ⌈(16 · A + 4 · B + C)/y4⌉ = 4
4 · A + 2 · B + C y7 ⌈( 4 · A + 2 · B + C)/y7⌉ = 1
9 · A + 3 · B + C y7 ⌈( 9 · A + 3 · B + C)/y7⌉ = 1

16 · A + 4 · B + C y7 ⌈(16 · A + 4 · B + C)/y7⌉ = 2

(C)

c s g1(c, s)

1 1 1 (y1)
1 1 1 (y1)
3 2 1 (y4)
9 3 3 (y7)
1 1 1 (y1)
3 2 1 (y4)
9 3 3 (y7)
3 2 1 (y4)
9 3 3 (y7)

(D)

1
2
3
4
5
6
7
8
9

Figure 2: (A),(B),(D) Tables, and (C) Constraints used for finding a decomposition of Type 7 for Conj. (2); variables y1, y4,
and y7 in Tables (C) and (D) correspond to the “value variables” for g1.

function g1 corresponding to biases (i)–(iii), or obtained by
one of the first three decompositions described in this paper,
i.e. the conditional decomposition is not applied recursively,
as this has proven to be very time-consuming. We use the
following steps to search for a decomposition of Type (9):

1. [Selecting cond and g4] We successively consider the
6 × 7 combinations of pairs ⟨cond, g4⟩, see Item 5 of
Def. 1. To determine whether or not a combination of
pairs can be used, we create this constraint model:

(a) The variables c1, c2, . . . , cn (resp. d1, d2, . . . , dm)
denote the indices of the columns of the table
tab[1..nrow , 1..ncol + 1] used in the condition cond
(resp. in function g4 of the ‘then’ part). These variables
are in [1,ncol ] as they correspond to input parameters,
i.e. we state the constraints ∀i ∈ [1, n] : ci ∈ [1,ncol ],
alldifferent([c1, c2, . . . , cn]), ∀i ∈ [1,m] : di ∈
[1,ncol ], and alldifferent([d1, d2, . . . , dm]).

(b) For each entry j (with j ∈ [1,nrow ]) of the table
tab[1..nrow , 1..ncol + 1], we state the constraints:

i. ∀k ∈ [1, n ] : element(ck, tab[j, 1..ncol ], vj,k ),
cond(vj,1, vj,2, . . . , vj,n)⇔rj , rj ∈ [0, 1],

ii. ∀k ∈ [1,m] : element(dk, tab[j, 1..ncol ], wj,k),
iii. rj = 1 ⇒ g4(wj,1, . . . , wj,m) = tab[j,ncol + 1].

(c) By maximising the number of rows in the table
tab[1..nrow , 1..ncol + 1] for which condition ‘cond’
is met, we try to create a smaller subproblem for
acquiring the ‘else’ part. This is done by stating the
constraints cost =

∑
j∈[1,nrow ] rj , cost > 0, cost <

nrow . The last two constraints require the ‘then’ (or
‘else’) part to contain at least one row for which
condition ‘cond’ is true (or false) as we want to obtain
a non-simplifiable conditional formula. We maximise
cost wrt the posted constraints.

2. [Identifying function g1] As for decomposi-
tions (6)–(8), using Item 5 of Def. 1, we search for
function g1 using the CP solvers related to biases (i)–(iii),
or by recursively applying decompositions (6)–(8). To
do this, we focus only on all the j-th rows of the
table tab[1..nrow , 1..ncol + 1] for which condition
cond(vj,1, vj,2, . . . , vj,n) does not hold, i.e. the ‘else’
part of the conditional.

3.4 Integrating Decompositions and Biases (i)-(iii)
Trying simple formulae first, the decompositions have been
integrated with biases (i)–(iii) in the following order.

1. Boolean-arithmetic formulae: bias (iii) when the output
column of the table tab has only two values.

2. Simplest polynomial formulae: bias (i) with 1 monome.
3. Simple conditional formulae: bias (ii).
4. Simple polynomial formulae: bias (i), 2 or 3 monomes.
5. The decompositions (6), (7), (8), and (9), in this order.
6. Complex polynomial formulae: bias (i), 4 to 6 monomes.

4 Evaluation
Description of the used combinatorial objects We

evaluate the decomposition method on the combinatorial
objects DIGRAPH, ROOTED TREE, ROOTED FOREST,
ROOTED FOREST2, PARTITION, PARTITION0, STRETCH,
and CYCLIC STRETCH introduced in (Gindullin et al. 2023).

Definition 2 For DIGRAPH, ROOTED TREE, ROOTED
FOREST, and ROOTED FOREST2, size denotes the number
of vertices. For PARTITION0 and PARTITIONS, size is the
number of elements of the set we partition, and for STRETCH
and CYCLIC STRETCH, size is the sequence length.

Description of input tables The data set (Gindullin
et al. 2023) consists of a collection of tables giving for any
combinatorial object of size at most size , for any combina-
tion of at most 3 input parameters, for any feasible combi-
nations of values of these input parameters, the sharp lower
or the sharp upper bound of a given output parameter, e.g.
Table (A) of Fig. 1 is an excerpt of such an input table. In
addition, an input table may contain auxiliary parameters,
called secondary parameters, all functionally determined by
the input parameters. The tables represent 12 GB of data.

Conjectures we are looking for We search for (I)
conjectures expressing a secondary parameter wrt input
parameters, (II) conjectures expressing sharp bound on an
output parameter wrt input parameters, (III) conjectures
expressing a secondary parameter wrt both input and
secondary parameters, (IV) conjectures expressing sharp
bound on an output parameter wrt both input and secondary



combinatorial
noobject

DIGRAPH 2861
ROOTED TREE 185
ROOTED FOREST 2088
ROOTED FOREST2 2861
PARTITION 562
PARTITION0 235
STRETCH 6416
CYCLIC STRETCH 6589
total 21797

1st version
nt na nb ni ne

3270 2637 434 1789 2

225 138 67 119 0

2343 1577 562 1250 4

2404 1639 569 1372 1

572 436 78 279 0

238 189 37 134 0

6481 4978 556 2157 4

5964 4484 521 2041 15

21497 16078 2824 9141 26

2nd version
nt na nb ni ne nd n6 n7 n8 n9 n>1

3412 2702 447 1940 6 328 89 71 52 156 66
240 152 77 133 1 39 10 12 6 18 8

2672 1697 613 1428 6 433 122 131 112 168 121
2563 1700 607 1459 9 361 71 108 94 103 65
586 453 78 303 0 89 11 27 7 34 9
282 209 38 162 0 65 14 12 10 20 13

6981 5237 582 2473 0 660 146 220 118 357 161
7011 5105 561 2486 32 882 103 299 131 636 309

23747 17255 3003 10384 54 2857 566 880 530 1492 752

Table 1: Detailed experimental results for the 1st and the 2nd versions of the acquisition tool, where no is the number of
secondary and output parameters across all tables, nt is the number of acquired conjectures by the 1st or the 2nd version, na

is the number of secondary and output parameters for which the 1st or the 2nd version could acquire at least a conjecture, nb

is the number of output parameters for which the 1st or the 2nd version could acquire at least a conjecture, ni is the number of
secondary and output parameters for which the 1st or the 2nd version could acquire at least a conjecture input parameters only,
ne is the number of conjectures invalidated on the largest available size of a combinatorial object, nd is the number of output
parameters for which the 2nd version could acquire at least a conjecture using decompositions (6)–(9), n6, n7, n8, n9 are the
number of output parameters for which we could resp. acquire at least a conjecture using (6), (7), (8), (9), n>1 is the number of
output parameters for which the 2nd version found at least a conjecture using more than one decompositions.

parameters. We prefer conjectures using input parameters
only as it allows one to express sharp bounds directly wrt
input parameters, i.e. without using secondary parameters.
Focusing only on sharp bounds limits the number of
conjectures learned, which now depends only on the number
of characteristics considered for the combinatorial objects.

Experimental Setting We compare 2 versions of the
acquisition tool using SICStus 4.7.1 on an cluster with
Intel processors such as Silver 4216 Cascade Lake @
2.1GHz, and E7-4809 v4 Broadwell @ 2.1Ghz. The source
code for the decomposition consists of 1882 commented
lines that are written in SICStus Prolog available from
https://github.com/cquimper/MapSeekerAAAI24; The 1st
version uses biases (i)–(iii), while the 2nd version uses
biases (i)–(iii) and the 4 decompositions (6)–(9). If one of
these versions took more than 96 hours to complete the
acquisition for an input table, that table is excluded from
the result evaluation, unless otherwise stated. We acquire
conjectures on tables of smaller sizes and test them on the
largest tables using the method described in (Beldiceanu
et al. 2022) on selecting table size. We exclude invalidated
conjectures from our evaluation.

Experimental Results Out of a total of 4469 tables, the
1st version had timeouts on 44 tables, the 2nd version on
49 tables, with almost no overlap. We remove these tables
and use the remaining 4378 tables to compare 2 versions.
The 4378 tables has 21797 secondary and output parameters.
As cluster node performance varies and we cannot control
allocation of tables over CPUs, we only compare the aggre-
gated full acquisition time for both versions. The 1st ver-
sion took 5888 hours in total, while the 2nd version took
25053 hours to complete. A total of 26 (resp. 54) conjectures
acquired by the 1st (resp. 2nd) version were not validated.

Table 1 shows the detailed results of the experiment. The
1st and the 2nd versions resp. found conjectures for 16078
and 17255 secondary or output parameters. The 2nd version
found conjectures of types I–IV (resp. I–II) for 5% more
(resp. 14% more) secondary and output parameters com-
pared to the 1st version. The 14% increase reflects the fact
that the 2nd version expresses more conjectures with input
parameters only, which is one of our goals. Including all
4469 tables, the 2nd version found conjectures for 7% more
secondary and output parameters than the 1st version.

The 2nd version found 6% more conjectures of types II
and IV, i.e. sharp bounds. In the 2nd version, 2857 secondary
or output parameters (16.5% of the 17255 parameters) have
conjectures that use decompositions (6)–(9); 26% of them
use several decompositions in one conjecture. In (Cheukam-
Ngouonou et al. 2023), we proved Conjectures (1)–(4) to
show that our decomposition methods find non-trivial sharp
bounds, as well as some non-obvious conjecture found for
ROOTED TREE.

5 Conclusion

Although simple, the proposed method may seem counter-
intuitive. It is based on the idea of identifying sub-terms
of the formula being searched for before actually knowing
the formula itself, by combining data analysis and CP wrt
minimal functional dependencies. The method helps to find
formulae whose sub-terms correspond to various biases, e.g.
polynomial, conditional or Boolean expressions, as shown
during the search for conjectures on sharp bounds. For our
benchmark, the decomposition methods found 14% more
conjectures expressed directly wrt input parameters. It also
found non-obvious conjectures that we proved. Future work
may use acquired conjectures to synthesise efficient filtering
algorithms, as a lack of sharp bounds is a weakness of CP.
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