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Abstract7

In project scheduling, calendar considerations can increase the duration of a task when its execution8

overlaps with holidays. On the other hand, the use of overtime may decrease the task’s duration.9

We introduce the CalendarOvertime constraint which verifies that a task follows a calendar with10

overtime and holidays. We also introduce the CumulativeOvertime constraint, a variant of the11

Cumulative constraint, that also reasons with the calendars when propagating according to the12

resource consumption, the overtime, and the holidays. Experimental results of a RCPSP model on13

the PSPLIB, BL, and PACK instances augmented with calendars and overtime show that the use of14

the CalendarOvertime constraint offers a speedup greater than 2.9 on the instances optimally15

solved and finds better solutions on more than 79% of the remaining instances when compared to a16

decomposition of the constraint. We also show that the use of our CumulativeOvertime constraint17

further improves these results.18
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1 Introduction24

In project management, it is common to schedule a variety of tasks on a project timeline.25

With multiple machines and workers, some tasks can easily be done in parallel. For example,26

a furniture factory can build a table at the same time as a chair, as long as sufficient workers27

and workspace are available. Cumulative scheduling allows the simultaneous execution of28

tasks while limiting these executions in order not to overload the resources.29

Scheduling problems (with release times and deadlines) are generally NP-hard [9]. Con-30

straint programming is frequently used to solve these problems.31

In practice, tasks can be suspended for some time periods. The factory can be closed at32

night and during weekends. If every operation is stopped at these times, these time periods33

can simply be ignored. If some tasks must be stopped at specific times while others do not34

because, for example, the machines keep working at night, side constraints become necessary35

to encode these suspensions and this may undermine the efficiency of the models.36

The aim of this research is to design constraints that facilitate the modeling and solving37

of scheduling problems where tasks must be interrupted according to a calendar, or may be38

shortened by working overtime.39

Section 2 provides background on the cumulative scheduling problem, the Time-Tabling40

rule, and the generalizations with calendars. Section 3 presents the new constraints we41

introduce. Section 4 describes how these constraints can be decomposed into elementary42

constraints while Section 5 details the propagators of the new constraints. Section 6 describes43

the methodology we used to test our new propagators. Section 7 evaluates the performances44

of the new propagators and the decomposition.45
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2 Background46

2.1 Cumulative Scheduling47

The cumulative scheduling problem is often modeled with the Cumulative global con-48

straint [1]. In what follows, lower-case symbols represent constants and indices while49

upper-case ones represent variables. Symbols in bold represent arrays that we define using50

list comprehension. Let I be the set of tasks and let pi, hi, and Si for i ∈ I be the task’s51

processing time, usage of a resource, and starting time. Let S be [Si | i ∈ I], p be [pi | i ∈ I],52

and h be [hi | i ∈ I]. The constraint Cumulative(S, p, h, hmax) asserts that for a resource53

of capacity hmax that executes the tasks in I, for any integer time point t in the horizon (the54

complete time interval considered, [0, tmax]),
∑

i∈I:t∈[Si,Si+pi) hi ≤ hmax. This means that55

tasks running simultaneously cannot, at any time, consume more than the resource’s capacity.56

The execution window of a task is considered to be [Si, Si + pi), with Si + pi being its ending57

time. As such, Si takes integer values in [0, tmax − pi]. The Cumulative constraint uses58

filtering algorithms to prune the variable domains during the search. Since enforcing bounds59

consistency is NP-hard [17], one usually applies simple filtering rules that offer a weaker level60

of consistency such as the Time-Tabling rule [2]. In a multi-resource problem, each resource61

is associated with its own Cumulative constraint. A common objective is to minimize the62

makespan, i.e., the completion time of the last task.63

Lazy clause generation [18] is a technique that deduces new logical constraints, in the64

form of a disjunction of literals representing domain states of the variables, from the failures65

encountered during the search. It permits learning previous bad decisions and prune them66

from the remaining search tree. Solvers that implement lazy clause generation, such as67

Chuffed [8], have been shown to perform well on cumulative scheduling problems [20].68

2.2 The Time-Tabling Rule69

Let X and X respectively be the smallest and largest values a variable X can take. We note70

dom(X) the set of all values variable X may take, i.e., its domain. The Time-Tabling rule [2]71

filters the domains of the starting time variables subject to the Cumulative constraint. We72

note the earliest starting time of task i as esti, its latest starting time as lsti, its earliest73

completion time as ecti, and its latest completion time as lcti. These are defined as follows:74

esti
def= Si (1) lsti

def= Si (2)

ecti
def= Si + pi (3) lcti

def= Si + pi (4)
75

If a task duration is a variable, these definitions use the lower bound of that variable76

rather than pi. These four concepts bound the time points at which a task can be in execution.77

A task must be in execution in the interval [lsti, ecti), called the compulsory part, if it is78

non-empty.79

The Time-tabling rule computes the compulsory part of each task and aggregates them80

to create a consumption profile, i.e., a lower bound of the resource consumption at each time81

point. The Time-Tabling check identifies a conflict when a point in this profile overloads82

the resource. The Time-Tabling filtering algorithm makes sure that if a task overloads the83

resource when executing at time t, then the task must either start after or finish before t [19].84

Let f(Ω, t) be the consumption profile of a resource at time t given the tasks in the set Ω.85

f(Ω, t) =
∑

{i∈Ω|t∈[lsti,ecti)}

hi (5)86
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The checking and filtering rules for the cumulative constraint can then be expressed as:87

∃ t, f(I, t) > hmax =⇒ conflict (6)88

ecti > t ∧ hmax < hi + f(I \ {i}, t) =⇒ S′
i > t (7)89

Rule (7) can be adapted to filter Si. Propagators applying the Time-Tabling rule can have90

a complexity as low as O(n), n being the number of tasks. However, there exist efficient91

implementations with a complexity of O(n2) [10].92

2.3 Augmentation With Calendars93

It is possible that, at some specific times, some tasks must be paused while others remain94

unaffected. We say that these special times are defined by a calendar. This notion is close95

to preemption, but it is still in a non-preemptive context. A task can only be suspended96

because of calendars and it must resume as soon as each calendar affecting the task permit97

it. There are multiple ways to conceptualize calendars and many ways to solve the problem98

have been studied.99

2.3.1 Calendars Associated to Resources100

One way to add calendars into the cumulative scheduling problem is to assign to each resource101

an arbitrary array of Booleans indicating whether the resource is available or not at a specific102

time. When a resource is unavailable, tasks cannot progress in their execution, which has103

the effect of artificially lengthening their execution time.104

Kreter et al. [12, 13, 14] use releasable resources that stop being consumed by tasks that105

are paused. Their tasks may have an initial uninterruptible setup time. To deal with their106

complex problem, Kreter et al. study various methods:107

They use multiple binary linear model formulations and search methods that they compare108

against each other [12].109

They implement a new constraint, namely CumulativeCalendar, in a constraint solver110

and compare its efficiency with various models using existing constraints [13].111

They compare both previous methods on the resource investment problem, i.e., the problem112

of minimizing the cost associated to the maximum consumption of each resources [14].113

Kreter et al. [13, 14] show that the use of CumulativeCalendar constraints with a lazy114

clause generation solver such as Chuffed is highly competitive to solve their problems.115

2.3.2 Calendars Associated to Tasks116

Boudreault et al. [6] directly assigns the calendars to the tasks, meaning that each task117

follows its own calendar, rather than following one implied by those of the resources. This118

might be wanted over the preceding option when some resources are plentiful enough that119

modeling them with a Cumulative constraint would be useless. However, if these omitted120

resources have a calendar, they still need to affect the actual calendar of a task, which121

justifies using this more general type of calendar. For Boudreault et al., the calendars are122

not arbitrary as the composition of a working day is fixed and shared between all calendars:123

the regular execution time starts at a given time in the morning and finishes at a given time124

in the afternoon. Some tasks can execute during the weekend while other tasks cannot. The125

calendars are periodic on weeks and do not allow exceptions even for holidays.126

Boudreault et al. [6] allow overtime, i.e., a way to shorten the execution time of a task127

while inducing an overtime cost. Working one time point worth of overtime on task i costs128

CP 2024
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wi. The amount of overtime is limited by its availability. Indeed, overtime is assigned to129

specific time points in the calendar, during which a task can be interrupted or can continue130

its execution if it is executed in overtime.131

To solve their problem, Boudreault et al. [6] do not implement a new constraint in a132

solver, they rather decompose the calendar constraints into elementary constraints available133

in any constraint solver and use a meta-heuristic to reach better results.134

2.3.3 Other Approaches135

In CP Optimizer, tasks in scheduling problems are modeled through interval variables. These136

variables possess a starting time and an ending time, but also a size, and a step function,137

called intensity. The size of an interval variable can be interpreted as the work contained in138

the interval, while the intensity gives the ratio of work that each time point provides. As139

such, the behavior that tasks do not progress during holidays can directly be treated through140

the intensity function by having an intensity of 0% during that time. If tasks are not allowed141

to start or end during holidays, constraints forbidStart and forbidEnd directly model and142

deal efficiently with this aspect [15].143

Beldiceanu [4, 5] introduces a Calendar constraint to model this behavior. This144

constraint maps, for each calendar, the real-time coordinate system to a virtual one where145

there are no interruptions. These virtual time coordinates then permit the use of classic146

propagators that normally cannot deal with calendars. The mapping deals with the problem147

of changing the length of tasks and of making sure none starts nor ends during a holiday.148

3 Calendar Constraints With Overtime149

This section presents the new constraints we introduce. The next section presents how they150

can be decomposed while the following section describes their filtering algorithms.151

The constraints we introduce are motivated by the calendar constraints used by Boudr-152

eault et al. [6]. We generalize the calendars they use by allowing arbitrary calendars, i.e.,153

non-periodic calendars with sporadic holidays. Every task must follow a specific calendar.154

The elapsed time of a task is the difference between its end time and its start time. Without155

calendars, the elapsed time of a task is simply its processing time.156

Given a horizon representing all the time points at which a task can be processed, our157

calendars are arbitrary sequences of the symbols r, c, or o where the t-th symbol represents158

the nature of the t-th time point, i.e., the t-th hour in our context. The symbol r indicates159

that the time point is regular (the classic scheduling problem would correspond to a calendar160

with only r’s). The symbol c indicates that the time point is closed, that is, tasks are161

suspended when they are in process at that time. As for o, it indicates that the time point is162

an overtime period that can behave as a regular or a closed time point whether it is worked163

or not. The duration that a task is worked in overtime is the number of time points of type164

o that behave as type r. The time point of the start and the one preceding the end of a task165

must not be closed. If either of these points is an overtime period, the amount of worked166

overtime must allow to work them. The time worked in the execution window of a task must167

be exactly its processing time.168

▶ Example 1. Let i be a task with processing time pi = 3 following the calendar coroorrc.169

This task cannot start at time 0 since it is closed. It can execute at times 1, 2, and 3. It170

could also execute at times 1, 2, and 4. In that case, it finishes later and is idle at time 3.171
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The task cannot start at time 1 while ending at time 7 because the regular times 2, 5, and 6172

are mandatory, leaving no work to perform at time 1.173

3.1 The CalendarOvertime Constraint174

We define a new constraint to model calendars with overtime. The CalendarOvertime175

constraint, for a starting time variable S, an elapsed time variable E (with dom(E)⊆ [p, tmax]),176

an overtime variable O (with dom(O) ⊆ [0, p]), a processing time p, and a calendar Cal,177

asserts that:178

The first and last time points of the execution window [S, S + E) are not closed.179

There are enough, but not too many, worked time points in the window to complete the180

task of processing time p with the overtime prescribed by O.181

There are enough overtime periods in [S, S + E) for the overtime prescribed by O.182

The first and last time points in [S, S + E) can actually be worked if they are of type o.183

In a more mathematical way, the CalendarOvertime constraint is defined as follows:184

CalendarOvertime(S, E, O, p, Cal) def⇐⇒ Cal[S] ̸=c ∧ Cal[S + E − 1] ̸=c185

∧O = p− |{t ∈ [S, S + E) | Cal[t] = r}|186

∧O ≤ |{t ∈ [S, S + E) | Cal[t] = o}|187

∧ |{t ∈ {S, S + E − 1} | Cal[t] = o}| ≤ O188

This constraint does not deal with the concept of resource consumption. It simply maintains189

consistency between the variables S, E, and O given a processing time p and a calendar Cal.190

3.2 The CumulativeOvertime Constraint191

Let E be [Ei | i ∈ I], O be [Oi | i ∈ I], and Cal be [Cali | i ∈ I]. We define the new192

CumulativeOvertime constraint as follows:193

CumulativeOvertime(S, E, O, p, Cal, h, hmax)194

def⇐⇒ Cumulative(S, E, h, hmax)195

∧
∧
i∈I

CalendarOvertime(Si, Ei, Oi, pi, Cali)196

In words, we define the new CumulativeOvertime constraint as a conjunction of a197

Cumulative constraint and the CalendarOvertime constraints associated to the tasks198

consuming the resource. Importantly, we consider that tasks continue to use the resource199

while they are suspended, be it because of unworked overtime or closed time. This last200

aspect is reasonable if we consider that some resources may relate to small spaces where201

moving machinery should be avoided, such as during ship refitting. In that case, releasing202

the resource necessitates unwanted work that would overcomplicate the planning.203

Although the propagator for CalendarOvertime (described at Section 5.1) maintains204

bounds consistency on S, E, and O given processing time p and calendar Cal, the bounds205

found on E are often not sufficient to allow the Cumulative constraint to perform a good206

propagation. This is because the Time-Tabling rule filtering the Cumulative constraint207

only uses E in its reasoning and does not take into account the calendars.208

▶ Example 2. Consider a task 1 of processing time p1 = 2 following the calendar rcrrcr209

with dom(S1) = [0, 3] and dom(E1) = [2, 3]. Let task 2 follow the same calendar, with210

CP 2024
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p2 = 2, dom(S2) = [0, 2] and dom(E2) = [2, 3]. In this case, O1 = O2 = 0. It can be seen211

that the domains of the variables of both tasks are bounds consistent with respect to the212

CalendarOvertime constraints and that they do not induce any compulsory part. Let213

both tasks consume 1 unit of a resource of capacity 1 (i.e., a disjunctive resource). Then,214

the Time-Tabling rule is not able to deduce that S1 should be fixed to 3. Indeed, not only215

does it fail to detect that task 2 must be executing at time 2 (meaning its compulsory part216

in Figure 1a should not be empty), it also considers that task 1 could start at time 0 and217

end at time 2 (excluded), leading to no propagation. Should the calendar considerations be218

included in the rule, the propagation would be deduced, as visible in Figures 1b and 1c.219

0 1 2 3 4 5
r c r r c r

| lst1|ect1

|lst2 ect2

(a) When not considering the
calendar, the time windows that
end the earliest or start the
latest have no intersection. The
profile is empty and no propaga-
tion is possible.

0 1 2 3 4 5
r c r r c r

| lst
′
1ect′1

|lst′2 |ect
′
2

(b) When taking the calendar
into account, the tasks execu-
tion windows become longer, al-
lowing the detection of compuls-
ory parts that would otherwise
be missed.

0 1 2 3 4 5
r c r r c r

S1

| |

×

(c) With this augmented pro-
file, calendar considerations can
again lengthen a task’s execu-
tion window and permit the
detection of propagations that
would be missed otherwise.

Figure 1 Comparison of the propagation done by the Time-tabling rule without and with
calendar considerations in the case described by Example 2. The meaning of ect′

i and lst′
i is defined

at section 5.1.

4 Decomposition of the New Constraints220

To evaluate the usefulness of the new constraints defined in the previous section, we need to221

compare them with their decomposition into elementary constraints.222

4.1 Decomposition of the CalendarOvertime Constraint223

Suppose we want to decompose the constraint CalendarOvertime(S, E, O, p, Cal). If Cal224

is the trivial calendar, i.e., the calendar with only regular time points without closed time or225

overtime, the constraint is trivially decomposed as follows:226

E = p ∧O = 0 (8)227

If Cal is not the trivial calendar, more work is necessary. Let the compiled calendars228

Cc, Cr, and Co respectively count how many closed, regular, and overtime periods are229

encountered in calendar Cal before a given time point in the horizon [0, tmax]. The number230

of closed time points in the time interval [a, b) is simply given by Cc[b]−Cc[a]. These arrays231

can be precomputed.232

Cx[t] = |{j ∈ [0, t) | Cal[j] = x}| ∀x ∈ {c, r,o} (9)233

The following variables are added to the decomposition: I, for the idle time i.e., the234

number of time points in [S, S +E) that are not worked, as well as Nc, Nr, and No respectively235
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for the number of closed, regular, and overtime time points within the execution window236

[S, S + E).237

First, variables Nc, Nr, and No must count the time points of each type in the execution
window.

Nx = Cx[S + E]− Cx[S] ∀x ∈ {c, r,o} (10)238

The number of regular time points in the execution window must be equal to the regular
time worked. There must be enough overtime periods in the execution window to work
the overtime prescribed by O. The idle time is not only the closed time points, but also
the unworked overtime periods. Since overtime periods appear directly in the calendar, the
elapsed time is simply the processing time plus the idle time. The overtime is nonnegative
and at most equal to the processing time.

Nr = p−O (11)239

No ≥ O (12)240

I = Nc + No −O (13)241

E = p + I (14)242

0 ≤ O ≤ p (15)243

The starting time and the time preceding the ending time of a task must be able to be
worked, even if they are overtime periods. Let 1(x) be the function that returns 1 if x is true
and 0 otherwise.

Cal[S] ̸= c (16)244

Cal[S + E − 1] ̸= c (17)245

E > 1 =⇒ O ≥ 1(Cal[S] = o) + 1(Cal[S + E − 1] = o) (18)246

E = 1 =⇒ O ≥ 1(Cal[S] = o) (19)247

4.2 Decomposition of the CumulativeOvertime Constraint248

A decomposition of the constraint CumulativeOvertime(S, E, O, p, Cal, h, hmax) can249

simply consist of the constraint Cumulative(S, E, h, hmax) along with the decomposition of250

CalendarOvertime(Si, Ei, Oi, pi, Cali) for each i ∈ I given by constraints (8) to (19).251

5 Filtering Algorithms for the New Constraints252

The strength of the new constraints over their decomposition, aside from the modeling253

simplification they bring, is the stronger propagation they permit. This is possible thanks to254

the filtering rules and algorithms presented in this section.255

5.1 Propagation of the CalendarOvertime Constraints256

For each task i, let Vi(s, e, o) be a predicate satisfied if task i can start at time s for a257

duration of e with overtime o given the calendar Cali.258

Vi(s, e, o) def⇐⇒ s + e ≤ horizon ∧CalendarOvertime(s, e, o, pi, Cali) (20)259

CP 2024
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Since Cali affects task i, esti, lsti, ecti, and lcti are redefined as follows:260

est′
i

def= min
{

s ∈
[
Si, Si

]
| ∃e ∈

[
Ei, Ei

]
,∃o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(21)261

lst′
i

def= max
{

s ∈
[
Si, Si

]
| ∃e ∈

[
Ei, Ei

]
,∃o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(22)262

ect′
i

def= min
{

s + e | s ∈
[
Si, Si

]
, e ∈

[
Ei, Ei

]
, o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(23)263

lct′
i

def= max
{

s + e | s ∈
[
Si, Si

]
, e ∈

[
Ei, Ei

]
, o ∈

[
Oi, Oi

]
, Vi(s, e, o)

}
(24)264

We consider that min(∅) =∞ and max(∅) = −∞.265

Using definition (21), the checking and filtering rules for Si in the CalendarOvertime266

propagator are:267

est′
i = ∞ =⇒ conflict (25) Si < est′

i =⇒ S′
i = est′

i (26)268

The filtering algorithm for the constraint CalendarOvertime is based on four precom-269

puted vectors: Let k ⊆ {r,o}, be the types of time points the vectors consider. Ck
i [t] is the270

number of time points of type in k that come before time t in Cali, and Y k
i [j] is the index271

of the j-th time point of type in k in Cali. With these vectors, we define helper functions272

that execute in constant time. For simplicity’s sake, we only present sketches that ignore273

boundary conditions at the beginning or the end of the scheduling horizon. The function274

countk(a, b) := Ck
i [b] − Ck

i [a] returns the number of time points in the time window [a, b)275

with a type in k. previousk(t) := Yi[Ck
i [t + 1]− 1] returns the latest time point with a type276

in k that is not later than t. nextk(t) := Yi[Ck
i [t]] returns the earliest time point with type in277

k that is not earlier than t. get_endk(t, ∆) := Yi[Ck
i [t] + ∆] returns the end of the smallest278

time window beginning at t and containing ∆ time points with a type in k. Finally,279

verify_head_tail(s, e) :=1(Cali[s] = o) + 1(e > 1)1(Cali[s + e− 1] = o)280

≤ pi − count{r}(s, s + e)281

is true if and only if the time worked regularly in [s, s + e) permits enough overtime to work282

in overtime on the first and last time points.283

This constraint requires a constant number of variables per task. Because the vectors284

Ck
i and Y k

i must be precomputed, the space complexity of the filtering algorithm is linear285

with respect to the horizon, and the initialization (performed once when instantiating the286

model) is also linear. Algorithm 1 computes in constant time a candidate value for ect′
i, as287

redefined by (23), given a fixed starting time s for a task i subject to a calendar. Algorithm 2288

verifies the value given by Algorithm 1, and filters the lower bound of Si according to the289

CalendarOvertime constraint. This algorithm iterates on dom(Si), computing a minimal290

completion time for each candidate start time. The first start time leading to a finite291

completion time is the new lower bound. Even though the running time complexity is in292

O(|dom(Si)|), it is technically linear w.r.t. the number of filtered-out unclosed time points.293

As such, the algorithm runs in constant time if it filters nothing and it runs in linear time if294

it filters many values. The upper bound of Si and the other variables are processed similarly.295

Algorithm 2 iterates using naive unit leaps (see line 7). By analyzing the cause of why296

Algorithm 1 returns infinity, these leaps can be extended. For example, if the current s is a297

time point of type r and the failure is due to “end-s” at line 13 in Algorithm 1 being greater298

than E by k, then the “+1” in the leap could be replaced by a “+k”. We have tested such299

enhancements but found no improvement on the performance. As such, the simpler version300

presented is the one used for the experimentations presented in Section 6.301
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Algorithm 1 Computing ect′
i given calendar Cali, and Si = s

1 Function compute_completion_time(i, s):
2 if Cali[s] = c then return ∞ ;

// The execution window contains at least pi unclosed periods.
3 end← get_end{r,o}(s, pi)
4 if end− s < Ei then

// The associated elapsed time must be at least Ei.
5 end← next{r,o}(s + Ei − 1) + 1
6 worked_regular_time← count{r}(s, end)
7 min_worked_regular_time← pi −Oi

8 if worked_regular_time < min_worked_regular_time then
// At least pi −Oi regular time must be worked.

9 end← get_end{r}(s, min_worked_regular_time)
10 if Cali[end− 1] = o ∧ not verify_head_tail(s, end) then
11 if next{r}(end− 1) + 1 ≤ horizon then

// Adding a regular time point fixes the tail problem.
12 end← next{r}(end− 1) + 1

/* The ending time is minimal. Constraints on Ei, Oi or head and
tail cannot be made right if they are not already. */

13 if end ≤ horizon ∧ end− s ≤ Ei ∧ pi − count{r}(s, end) ≥ Oi

∧verify_head_tail(s, end) then
14 return end
15 return ∞

5.1.1 Explaining the Propagation302

In a solver with lazy clause generation, we explain propagations by rules (25) and (26) naively,303

respectively by (27)→ False and (28)→ [[est′
i ≤ Si]].304

305

[[Si ≤ Si]] ∧ [[Si ≤ Si]] ∧ [[Ei ≤ Ei]] ∧ [[Ei ≤ Ei]] ∧ [[Oi ≤ Oi]] ∧ [[Oi ≤ Oi]] (27)306

307

[[Si ≤ Si]] ∧ [[Ei ≤ Ei]] ∧ [[Ei ≤ Ei]] ∧ [[Oi ≤ Oi]] ∧ [[Oi ≤ Oi]] (28)308

Our previous attempts indicate that computing more general explanations is of little interest309

for this propagator compared to using the naive ones.310

5.2 Propagation of the CumulativeOvertime Constraints311

The basis of the CumulativeOvertime propagator is that of a Cumulative propagator312

applying the classic Time-Tabling rule. The main difference is that it uses the definitions (21)313

to (24), rather than (1) to (4), to compute the profile with (5) and apply the Time-Tabling314

rules (6) and (7). Thus, f ′(Ω, t) =
∑

{i∈Ω|t∈[lst′
i
,ect′

i
)} hi and the new checking and filtering315
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Algorithm 2 Filtering Si given a calendar

Input: Variables Si, Ei, and Oi.
1 s← next{r,o}(Si)
2 while s ≤ Si do
3 end← compute_completion_time(i, s)

// We only need to verify that it is a valid value for ect′
i.

4 if end ̸=∞ then
5 Si ← s

6 return Success
7 s← next{r,o}(s + 1)
8 return Conflict

rules are as follows:316

∃ t, f ′(I, t) > hmax =⇒ conflict (29)317

ect′
i > t ∧ hmax < hi + f ′(I \ {i}, t) =⇒ S′

i > t (30)318

For that, the algorithm that enforces the Time-Tabling can compute the value ect′
i by319

calling Algorithm 1 (and verifying the value returned) with increasing values of s ∈ dom(Si).320

The first valid value returned is the ect′
i. The lst′

i is computed symmetrically. Most321

propagators applying the Time-Tabling rule can be adapted for the CumulativeOvertime322

propagator. Because of the computing time caused by the new definitions, the complexity of323

the CumulativeOvertime propagator is that of its base Cumulative propagator multiplied324

by the size of the largest domain of the starting time variables. Since we chose to adapt the325

propagator by Schutt et al. [20] that has a complexity of O(n2), we obtain a propagator in326

O(kn2), where k = maxi∈I |dom(Si)|. Under the assumption that this constraint is used327

alongside CalendarOvertime constraints, the size of the scope of the constraint is the328

same as for the Cumulative constraint (here linear in the number of tasks).329

This global propagator is used in combination with the propagators for the Calen-330

darOvertime constraints. This is done because filtering the calendar constraints solely331

through this global propagator specialized for resource consumption would be inefficient.332

5.2.1 Explaining the Propagation333

In a solver using lazy clause generation, the propagation needs to be explained. First,334

should the propagator fail to find a valid ect′
i at some point in its execution, it means335

that the CalendarOvertime constraint cannot be satisfied. The CumulativeOvertime336

propagator directly reports a conflict that it naively explains with (27). As such, the rest337

of this section considers that est′
i, lst′

i, ect′
i, and lct′

i are valid. Let t ∈ [lst′
i, ect′

i) be a time338

point in the calendar-corrected compulsory part of task i. The expression profile_expl is339

used to construct the explanation.340

profile_expl(i, t) def=


[[Si ≤ t]] ∧ [[t + 1− Ei ≤ Si]]

∧ [[Ei ≤ Ei]]
if t ∈

[
Si, Si + Ei

)
(27) otherwise

(31)341

The expression profile_expl(i, t) depends on whether the redefinitions (21) to (24) are342

necessary to detect t as part of the compulsory part of task i. If the original definitions343
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are sufficient, the explanation for t being in the compulsory part of task i is the same as344

presented by Schutt et al. [20], but with a variable duration. Otherwise, the explanation345

cannot be as general and we simply reuse the naive one presented previously.346

Suppose that rule (29) finds a conflict at time t. We define Bt ⊆ I the set of tasks for347

which t is in their corrected compulsory part, i.e., Bt = {i ∈ I | t ∈ [lst′
i, ect′

i)}. Let B∗
t ⊆ Bt348

be a minimal set (in terms of number of elements) such that
∑

i∈B∗
t

hi > hmax. Let t+ be349

the smallest ect′
i or lst′

i greater than t and let t− be the greatest ect′
i or lst′

i smaller than350

t. This means that every time point in the interval [t−, t+] have the same set of tasks that351

have a compulsory part overlapping it, i.e., Bt = Bt′ for all t′ ∈ [t−, t+]. As such, explaining352

based on any point in this interval is valid. Then, the propagator explains the conflict by:353 ∧
i∈B∗

t

profile_expl
(

i,

⌊
t− + t+

2

⌋)
→ False. (32)354

This corresponds to saying that the conflict is caused by a minimal number of tasks all having355

a compulsory part that includes the time point in the middle of the profile rectangle that356

contains t. If the calendar corrections (the new definitions (21) to (24)) are never needed,357

this explanation is the same as the pointwise explanation from Schutt et al.358

For a task i and a time t ∈
[
Si, ect′

i

)
, we define task_expl(i, t) as follows:359

task_expl(i, t) def=
{

[[t + 1− Ei ≤ Si]] ∧ [[Ei ≤ Ei]] if t ∈
[
Si, Si + Ei

)
(28) otherwise

. (33)360

The logical expression task_expl(i, t) depends on whether calendar corrections are needed to361

detect that task i, when starting at a time not earlier than time Si, is not finished by time t.362

If so, we use a naive explanation like for the CalendarOvertime constraint. Otherwise,363

we reuse the expression from Schutt et al. [20].364

Suppose that rule (30) pushes Si to time t + 1 and that t is the earliest time for which365

the rule applies. Let B∗
t ⊆ Bt \ {i} be a minimal set such that

∑
k∈B∗

t
hk > hmax−hi. Then,366

the propagator instead filters Si to t∗ = min{ect′
i, t+} and explains it by:367

task_expl(i, t∗ − 1) ∧
∧

k∈B∗
t

profile_expl (k, t∗ − 1)→ [[t∗ ≤ Si]]. (34)368

Rule (30) is reapplied until it no longer filters. This cuts the propagation from rule (30)369

into sub-propagations permitting, according to Schutt et al. [20], more general explanations.370

If the calendar corrections are never needed, these explanations are the same as the ones371

presented by Schutt et al.372

6 Experimentation373

To compare the value of our new propagators with the decomposition, we solve the following374

RCPSP model augmented with calendars and overtime.375

6.1 Experimentation Model376

The model has initial constraints on the time window of each task, task precedence constraints,377

resources that tasks need, and calendars that tasks follow. Let R be the set of resources and378

I a set of tasks. Each task i ∈ I has to start in a window [minStarti, maxStarti] and end379

in a window [minEndi, maxEndi]. These windows encode release times and deadlines. Let380

CP 2024



5:12 Cumulative Scheduling with Calendars and Overtime

P ⊆ I × I contain the precedence relationships. For each (i, j) ∈ P, the task i must end381

before the task j may start. The release times and deadlines provide the initial domains of382

the variables through the propagation of the following constraints:383

minStarti ≤ Si ≤ maxStarti ∀i ∈ I (35)384

minEndi ≤ Si + Ei ≤ maxEndi ∀i ∈ I (36)385

The following constraints enforce the precedence relationships:386

Si + Ei ≤ Sj ∀(i, j) ∈ P (37)387

Finally, CumulativeOvertime constraints prevent the overload of the resources.388

CumulativeOvertime(S, E, O, p, Cal, hj , hmax
j ) ∀j ∈ R (38)389

We either minimize the makespan (39) or the overtime costs (40):390

max
i∈I

{Si + Ei} (39)
∑
i∈I

wiOi (40)391

We optimize these objective functions separately, i.e., optimizing only one function or the392

other. When minimizing the makespan, all overtime is forbidden. Otherwise, it would also393

maximize the overtime, which makes little sense for an applied project, since it leads to cost394

maximization.395

By modifying how constraint (38) is implemented, we define three equivalent models:396

The CumulativeOvertime model implements constraint (38) directly with our global397

CumulativeOvertime constraint.398

The CalendarOvertime model decomposes constraint (38) with a classic Cumulative399

constraint, and a CalendarOvertime constraint for each task.400

The decomposition model decomposes constraint (38) as described in section 4.2.401

6.2 Experimentation Details402

We implement1 the CalendarOvertime and CumulativeOvertime constraints in C++403

in the solver Chuffed 0.13.02 [8], and write our models in MiniZinc [16]. To keep the404

comparison with the CumulativeOvertime model fair, the propagator that filters the405

Cumulative constraints in the CalendarOvertime and decomposition models only uses406

the Time-Tabling check and filtering already implemented in Chuffed. We run all experiments407

with a timeout of 10 minutes on a machine with a 32-core Intel Xeon 4110 CPU @ 2.10 GHz408

and 32 Gb of memory. We run four executions simultaneously, which may affect the precision409

of the runtimes.410

We use the instances j30, j60, j90, and j120 from the PSPLIB [11] benchmark, the411

instances bl20 and bl25 from the BL set [3], and the PACK [7] instances, all adapted with412

randomly generated calendars where time points represent hours. The instances use calendars413

similar to those of Boudreault et al. [6], where days have 8 regular hours, followed by 4 hours414

of overtime. Some calendars have weekends off, and some do not have overtime. We add for415

each day a 5% chance for it to be a holiday. There is a calendar where weekends and holidays416

1 Available at: https://github.com/Samclou/chuffed/releases/tag/Calendars-cp2024
2 Available at: https://github.com/chuffed/chuffed/releases/tag/0.13.0
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Figure 2 Comparison, between the decomposition and CalendarOvertime models, of the
runtime on the instances solved by both models (1st row) and the best solution found for the
remaining instances (2nd row) for makespan (1st column) and overtime (2nd column) minimization.
On the 2nd row, gray dots are instances solved by the CalendarOvertime model and black dots
are for when all models timeout.

are composed of 12 overtime hours. These 2135 augmented instances and the models (as417

well as the execution logs) are accessible in the code repository.418

For makespan minimization, we extend the horizons from the original instances by a factor419

of 5 to prevent the addition of closed hours from leading to trivial unsatisfiable instances. In420

these executions, we forbid overtime. For overtime costs minimization, we must use a smaller421

horizon to prevent having too many instances where the best value of 0 overtime is trivial to422

find, but it should not be reduced so much that we get easy unsatisfiable instances. To fix the423

horizon, we solve the instances twice to minimize the makespan: once by forbidding overtime424

and a second time by allowing overtime. We fix the horizon to the mean makespan. This425

gives a horizon for which there is always a solution, which is often not trivial and leaves room426

to optimize the overtime costs. The computation time required to compute these horizons is427

not taken into account in our results as they are used to construct the instances rather than428

solving the problem.429

7 Results430

Comparisons are made between the decomposition and the CalendarOvertime models,431

and between the CalendarOvertime and the CumulativeOvertime models.432

7.1 Comparing the Decomposition and CalendarOvertime Models433

Figure 2 shows graphs comparing the runtimes of our models on instances for which the solver434

proved the optimality. Compared to the decomposition model, the CalendarOvertime435

model represents an average speedup of 13.8 for makespan optimization and 2.9 for overtime436

optimization, respectively, on these 1625 and 1373 instances.437

This speedup for the makespan optimization is larger than the one for the overtime438

optimization. We surmise that this important discrepancy is due to the size of the horizon in439

the makespan optimization instances. Indeed, their horizon is often very high compared to440
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the optimal makespan or the horizon of the overtime optimization instances. It so happens441

that the Element constraints present in the decomposition of the CalendarOvertime442

constraint are susceptible to the size of the horizon. For example, in the solver used, constraint443

(16) becomes a collection of clauses that may each be as long as the horizon while constraint444

(10) is filtered by a propagator that is linear in the size of the horizon (as long as S and E are445

not fixed). This leads to both weak and slow filtering which must degrade the performances446

of the decomposition. We can see that the performances of the decomposition model become447

more competitive in the context of overtime minimization, which uses a tighter horizon.448

Regarding the instances not solved optimally by both models, there are no instances449

where the decomposition model is able to prove optimality or find a solution better than the450

CalendarOvertime model. The CalendarOvertime model proves optimality on 17% of451

the 510 makespan instances and 8% of 762 overtime instances. It finds better solutions in 81%452

(79%) of makespan (overtime) instances. There are 21 instances for which the decomposition453

model fails to find any solution while the CalendarOvertime model is able to.454

7.2 Comparing the CalendarOvertime and CumulativeOvertime Models455

Figure 3 Comparison, between the CalendarOvertime and CumulativeOvertime models, of
the runtime on the instances solved by both models (1st row) and the best solution found for the
remaining instances (2nd row) for makespan (1st column) and overtime (2nd column) minimization.
On the 2nd row, gray dots are instances solved by the CalendarOvertime model and black dots
are for when all models timeout.

Figure 3 shows that the CumulativeOvertime model has an average speedup of 1.14456

over the CalendarOvertime model for makespan optimization and 1.24 for overtime457

optimization, respectively, on the 1712 and 1436 instances solved optimally by both models.458

When comparing the best solutions found on the remaining instances, we see that, for459

makespan minimization, the CalendarOvertime model never proves optimality or finds a460

better solution than the CumulativeOvertime model. The CumulativeOvertime model461

proves optimality on respectively 1.6% and 1.4% of both these 423 makespan instances and462

the 699 overtime instances. It finds better solutions in 31% (44%) of makespan (overtime)463

instances. However, here, there are 5 overtime instances for which the CalendarOvertime464

model finds a better solution, and 1 where it proves optimality.465
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Thus, the CalendarOvertime constraint is a notable enhancement over the decomposi-466

tion and is further improved by the CumulativeOvertime constraint.467

8 Conclusion468

We propose two new constraints to solve the cumulative scheduling problem with calendars469

and overtime. The CalendarOvertime constraint uses a precomputed substructure to470

enforce bounds consistency on the Si, Ei, and Oi variables in O(|dom(Si)|). The Cumu-471

lativeOvertime constraint adapts the Time-Tabling rule to take calendars into account.472

Experiments on PSPLIB, BL, and PACK instances augmented with calendars show that473

the models using the specialized propagators of the new constraints outperform a model474

using a decomposition, the CumulativeOvertime constraints being a further enhancement475

over the CalendarOvertime constraints. These new constraints could also help solve the476

resource investment problem, the multi-mode resource-constraint project scheduling problem477

or even disjunctive problems such as job shop when they are augmented with calendars and478

overtime.479
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