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Abstract

The combinatorial problems that constraint programming
typically solves belong to the class of NP-hard problems.
The AI planning commun ity focuses on even harder prob-
lems: for example, classical planning is PSP.ACE-hard. A
natural and well-known constraint programming approach to
classical planning solves a succession of fixed plan-length
problems, though to date it has had limited success. We revisit
this approach in light of recent progress on general-purpose
branching heuristics. We conduct an empirical comparison to
show the importance of using effective combinatorial search
heuristics with this approach and that the quality of the plans
produced is sometimes comparable to that of state-of-the-art
planners.

Introduction

While there is a history of more than twenty years in the ap-
plication of SAT, CP, and MIP to AI planning problems, there
has been considerable renewed interest in a deeper cross-
fertilization between these areas, as evidenced by a number
of recent papers presented at the ICAPS, AAAI, and 1JCAI
conferences, by a 2018 Dagstuhl seminar (Beck et al. 2018)
on that topic, by the co-location of the 2018 edition of the
ICAPS and CPAIOR international conferences, and by an in-
cubator workshop on Constraints and AI Planning as part of
the 2019 edition of the CP conference.

The combinatorial problems that Constraint Program-
ming (CP) typically solves belong to the class of NP-
hard problems. The Al planning community focuses on even
harder problems. Consider the Classical Planning Problem,
perhaps the simplest and most thoroughly investigated in all
of Al planning, and which is PSP.ACE-hard: given a unique
initial state of the world, apply a sequence of actions in order
to reach a goal state. Figure 1 shows the classic example of
Blocks World: starting from the initial state, a sequence of
stack, unstack, pickup, putdown actions are performed
on blocks a, b, and c in order to reach the desired goal state.
Note that we do not know in advance how many actions need
to be applied. A natural satisfiability approach to classical
planning, known for over twenty years, is to solve a succes-
sion of fixed plan-length instances.
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Figure 1: An instance of Blocks World: initial state (left) and
goal state (right).

This basic problem can be extended and complexified in
many ways — to name a few: actions may have a duration
and need not be deterministic, leading to several possible
outcomes; there may be several agents taking actions con-
currently; the state of the world may only be partially ob-
servable and the state space may not be finite or even dis-
crete.

Within the AI planning academic community the focus
is largely on the design of domain-independent planners,
meaning that they should be able to solve problems from
a wide range of domains: expressed in a modeling language
such as STRIPS, SAS+, or PDDL, they are given as input a
set of objects and predicates with which a state of the world
can be described and a set of actions together with their pre-
conditions, effects, and costs — this is called the planning
domain — as well as a specification of the actual instance in
the form of initial and goal states, and possibly a subset of
allowed actions and an objective to optimize — this is called
the planning problem.

In contrast to CP, where modeling is typically a non-trivial
task that can greatly impact how efficiently we solve the
problem at hand, here the modeling task should be straight-
forward without injecting any domain knowledge from the
human modeler. From that perspective the care being put
into writing a good CP model would probably be consid-
ered by many from that community as not being domain-
independent. We aim to show that designing a competent
CP model for classical planning can be fairly straightforward
as well , irrespective of the planning domain. In a change of
focus, we also claim to be considering planning-independent
solvers since we will use generally-available CP constructs
without anything specific to planning problems.

Looking at the scientific literature on CP-based planners,
the consensus seems to be that while some progress has




been made, they generally still haven’t reached the perfor-
mance of state-of-the-art planners, except in specialized do-
mains. Here we revisit classical CP modeling for planning
with recent improvements to search heuristics. We show
that a simple planning-agnostic model can perform rather
well compared to state-of-the-art planners that include much
planning-specific sophistication.

The main contributions of this paper are: to give a step-
by-step process to build a CP model for classical planning
that could be automated given a planning domain; to identify
some general-purpose search heuristics developed for CP but
that perform much better than others for planning; to show
that a CP approach even without planning knowledge may
yield competitive plans.

In the next section we give a brief introduction to Con-
straint Programming focusing on the most relevant con-
straints for classical planning and on certain search heuris-
tics originating from CP which, as we will soon discover,
work particularly well for planning. We then review previ-
ous work related to CP and planning. Next we introduce a
natural CP-based approach to planning. We then apply our
approach to three well-known planning domains and present
an empirical evaluation of it.

Constraint Programming

In CP, a combinatorial problem is represented as a Con-
straint Satisfaction Problem using a finite set of discrete
variables X = {x,x2, ..., x,} each taking its value from
a finite domain, z; € D; C Z, 1 <1 < n, and a finite set of
constraints C' = {cy,ca, ..., ¢y} each expressed on a sub-
set of the variables c; (2, , )y, . .., 2;,) C Z*, 1 < j <m.
One must find a combination of values from the domain of
each variable that simultaneously satisfies every constraint.
When faced with a combinatorial optimization problem, a
cost variable to optimize over is added to the model together
with a constraint linking its value to the cost of each assign-
ment to X.

Much of the computational strength of CP comes from
the use of powerful filtering algorithms associated with each
type of constraint that efficiently remove infeasible variable-
value assignments, thus greatly shrinking the combinatorial
search space to explore. It does so by exploiting the combi-
natorial structure of each type of constraint instead of con-
sidering them merely as general relations. One such type of
constraint that will be featured prominently here enforces
regular language membership for a sequence of variables.

Automata-Based Constraints

Recall that an automaton A is defined by a tuple
(3, Q, qo, F,0) where X is an alphabet, Q a set of states,
go € Q an initial state, 7 C Q a set of final states, and
0 C Q x ¥ x Q aset of transitions. A word w € X" is rec-
ognized by automaton A if there exist states ¢, . . . , ¢, such
that (g;—1,w;,q;) € d foralli € {1,...,n} and g, € F.
Constraint REGULAR(X, A) holds if the values taken by
the sequence of variables X spell out a word belonging
to the regular language described by automaton A (Pesant
2004). Constraint COSTREGULAR (Demassey, Pesant, and

Rousseau 2006) is a generalization of REGULAR that asso-
ciates a cost with each transition of the automaton. The con-
straint is supplied with a matrix giving such costs and with a
cost variable that corresponds to the sum of the costs of the
transitions used by the word.

Internally each of these constraints maintains a layered di-
graph, built by unfolding the automaton, which is a compact
representation of its solution set that can be used to filter
out inconsistent assignments efficiently. Each solution to the
constraint (i.e. each word assembled from the domains of the
variables and recognized by the automaton) is in one-to-one
correspondence with a path between a pair of vertices from
the initial layer to the last layer in that graph. One can eas-
ily compute and maintain such feasible paths (and remove
any arc that is not traversed by a path), the number of partial
paths to and from any given vertex, and the length of shortest
and longest weighted (partial) paths.

The identification of feasible paths enables us to filter out
infeasible variable-value assignments (i.e. those that do not
appear in any such path). In the case of COSTREGULAR if
we bound the cost variable from above or even from below,
the length of shortest and longest weighted paths is used to
restrict further the set of words allowed by the constraint and
filter out even more variable-value assignments.

Counting-Based Search Heuristics

Besides reducing the combinatorial search space through do-
main filtering algorithms associated to each constraint, the
other important aspect in CP is guiding the exploration of
the search space using heuristics that define how we branch
while building the search tree. Several domain-independent
search heuristics have been proposed though search is also
programmable in CP. Counting-based search (Pesant, Quim-
per, and Zanarini 2012) is a domain-independent heuristic
that counts how often each variable-value assignment ap-
pears in a solution local to a given constraint and combines
that information from each constraint in order to branch on
a variable/value assignment that is most likely to be featured
in a global solution. For the automata-based constraints this
count is achieved by multiplying the number of partial paths
at each end of an arc representing a variable-value assign-
ment (Zanarini and Pesant 2009).

Related Work

We first review problem representation. Early work on ap-
plying CP to AI planning was mostly concerned with parallel
planning and only used elementary logical constraints over
Boolean variables (e.g. (Do and Kambhampati 2001)(Lopez
and Bacchus 2003)). One exception is (van Beek and Chen
1999) who used (non-binary) finite-domain variables but
still simple constraints. For temporal planning (Vidal and
Geffner 2006) combine the strength of Partial Order Causal
Link planners’ branching scheme with the pruning abili-
ties of CP. For every potential action in a plan, they define
starting-time and presence variables reminiscent of inter-
val variables introduced later in CPO! for constraint-based
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scheduling. Again here the constraints are simple: disjunc-
tions, logical implications, and simple temporal constraints.
(Zanarini, Pesant, and Milano 2006) propose a higher-level
CP model taking advantage of the stronger inference offered
by global constraints, describing the effects of actions on
the state of a planning object as an automaton and then en-
forcing a valid plan by stating a REGULAR constraint for
each object. They also consider the soft variant of these con-
straints in order to express preferences between goal states
and to improve search guidance. (Bartak and Toropila 2008)
reformulate some of the early CP models in a more compact
way by using TABLE (Bessiere and Régin 1997) constraints
to encode state transitions of objects under planning actions.
This can be seen as a decomposition of the REGULAR con-
straints featured in the model of the previous paper. In their
constraint-based planner (Gregory, Long, and Fox 2010) ex-
ploit the structure of the planning problem to identify re-
curring patterns of actions, called macro-actions, that can be
reused instead of being reconstructed each time. (Judge and
Long 2011) define meta-variables that correspond to sub-
sets of the original variables each related to part of the goal
state description and whose domain contains the actions that
achieve that part of the goal. More recently (Ghooshchi et al.
2017) use TABLE constraints but allow wildcards in tuples
for a more concise representation of the transitions.

In terms of search guidance, very often general-purpose
CP heuristics have been used. (van Beek and Chen 1999)
apply the min-dom dynamic variable ordering and conflict-
directed backjumping, (Bartdk and Toropila 2008) use static
variable and value orderings: reverse lexicographic for vari-
ables and lexicographic for values. As an exception, (Judge
and Long 2011) design a goal-directed variable and value
ordering heuristic that exploits the structure of the planning
problem. But even recent planners such as (Ghooshchi et al.
2017) use min-dom and dom/wdeg.

A Natural CP Approach to Classical Planning

Given a fixed plan length ¢ (thus turning a PSP ACE-hard
problem into a NP-hard one), we can model a classical
planning problem in CP by defining:

a sequence of variables (z1,za,...
step of the plan;

a domain of actions D, withz; € D, 1 <i </,

a REGULAR (or COSTREGULAR) constraint for each ob-
ject, from the automaton describing the effects of actions
on the state of that object (i.e. factored transition sys-
tems).

Going back to our example at Figure 1, we can
fix ¢ to 6, define the domain of actions D =
{stack(B, B'), unstack(B, B'), pickup(B), putdown(B) |
B,B" € {a,b,c},B # B’'}, and add constraints
REGULAR({x1,x2,...,2¢),Aa), REGULAR({x1,x2,...,
x¢), Ap), and REGULAR({z1,z2,...,2¢),A:), one for
each block with its respective automaton as illustrated at
Figure 2. Note that the automata have an identical structure
but different initial and accepting states, reflecting the
initial and goal states of the planning problem. Any instanti-
ation that simultaneously satisfies all the constraints, such as

,x¢), one for every

stack(X,Y),
unstack(X.Y),

pickup(X),
putdown(X)
X#b

stack(b,c), unstack(b.c),
pickup(X), putdown(X),
X#c.X#a

. put
o X

stack(X.Y),
unstack(X,Y),
pickup(X),
putdown(X)
X#c

Figure 2: Automata for blocks a, b, and c of the instance
at Fig. 1 (reproduced from (Zanarini, Pesant, and Milano
2000)).

(unstack(c, b), putdown(c), pickup(b), stack(b, ¢), pickup(a),
stack(a, b)), corresponds to a valid plan.

Algorithm 1: Solving models of increasing length

1 ¢* <+ 00

2 for ¢ < (i, to oo do

3 if cmin(£) > ¢* then

4 | return c*

5 ¢ + solve(model({), Tynax)
6 if ¢ < ¢* then

7 | ¢ «c

Algorithm 1 repeatedly solves the fixed-length CP model
for increasing plan length /¢, starting at some possibly triv-
ial lower bound (line 2). Let ¢yin () be some nondecreasing
function of plan length ¢ that provides a lower bound on the
cost of plans of length ¢. At each length we check the current
best cost ¢* against that lower bound and end the search if a
cheaper plan cannot be found at longer plan lengths (lines 3-
4). We attempt to solve each fixed-length model up to a given
time limit 7T;,,x (as was done e.g. in (Bartdk and Toropila
2008)) to avoid possibly spending all our time proving that
no plan exists at some intermediate length (line 5). If we time
out at some plan length, we return the cost of the best plan
found, or oo if none was found. If this improves the current
best cost, we update it (lines 6-7).

This natural way of formulating classical planning prob-
lems in CP benefits from the usual flexibility and extendabil-
ity of its models as well as from the filtering of the vari-
ables’ domains through the constraints, ruling out some ac-
tions at various steps of the plan whereas Al planners may
tend to concentrate on the next step. It also offers power-
ful general-purpose search heuristics that exploit the combi-
natorial structure of these large-arity constraints and whose
performance we evaluate later on. However an important
drawback of this approach is its reliance on a fixed plan
length. If we solve a succession of instances of increasing
plan length, finding an optimal plan requires proving the in-



feasibility of each intermediate plan length, which may be
very time consuming, and if we start from a lower bound on
feasible plan length ¢,,,;,, that is far from the shortest feasible
one we will spend most of the time searching over infeasible
plan lengths even if we set a time limit 7}, ,x.

An Elevator Problem

In planning domain miconic (Koehler and Schuster 2000),
a number of passengers should be transported between dif-
ferent floors of a building. The elevator can go up or down
between floors and at each floor passengers can enter or
leave the elevator. For each passenger we are given an origin
and a destination floor. We are also given the initial floor fj
the elevator is on.
There are two kinds of actions:

i.. for each passenger p, a board(p) and depart(p) action;

ii.. for each floor f, an up(f) and down(f) action, f repre-
senting the effect of the action (i.e. new current floor).

Given n,, passengers and ny floors, we have 2n, + 2(ny —
1) actions in all. (Note that there is no up action from the
top floor nor down action from the bottom one.) Despite the
original PDDL description including the current floor as an
additional parameter of each of these actions, we do not need
it here because it will already be reflected in the states of
our automata. This contrasts our representation with state
transition graphs which are automatically generated from the
PDDL description. For example, the number of actions in a
SAS+ encoding of the miconic domain is more than one
order of magnitude larger than in our representation.

The natural planning objects whose state is affected by
actions are the elevator and each passenger. Our elevator au-
tomaton .4, has ny states representing the current floor. All
states are accepting and the initial state is fj. At each given
state/floor, the up/down actions perform the obvious transi-
tions if they are consistent with the relative position of the
current and new floors (e.g. one cannot go up to a lower
floor) and are forbidden otherwise. The board/depart actions
are irrelevant to the elevator and so they loop at each state.
The resulting automaton is shown at Figure 3.

down(2)

down(1)

Figure 3: Elevator automaton. Loops are on board/depart
actions.

For each passenger p with origin/destination pair (o, d,),
we can create an automaton with five states (waiting,

someoneElse
somewhereElse
atOrig

someoneElse
somewhereElse,
atDest

someoneElse

somewhereFElse]
atDest

can board boarded

atOrig, some-

whereElse atDest

can depart

* except

board/depart someoneElse

Figure 4: Passenger automaton

can board, boarded, can depart, served),
the first being the initial state (unless o, = fo in which
case it starts at state can board, or o, = d, in
which case it trivially starts at served) and the last,
the accepting one. The structure of this automaton is
the same for all passengers but the effect of particular
actions differs: e.g. for p an up(o,) action while in state
waiting will transition to state can board whereas
up(f) to any other floor f will loop. Therefore we de-
fine a single passenger automaton A, on new actions
Draess- = {board, depart, someoneElse, atOrig, atDest,
somewhereElse}, but define for each p an appropriate map
M, : D — DP*** from the original actions to these new
ones: board(p) to board, board(p') to someoneElse, ...,
up(op) to atOrig, and so forth. The resulting automaton is
shown at Figure 4.

Let P be the set of passengers. Constraints (1) to (5) de-
fine our simple model. Constraint (1) enforces the elevator
automaton on the main action variables. Constraints (2) link
the main variables to the auxiliary action variables for each
passenger on which the passenger automaton is enforced
through Constraints (3).2

REGULAR([x1, ..., 2], A1) (1)
¥ = M,(z;) V1<i<l,peP (2)
REGULAR([2}, ..., 2}], As) VpeP (@3
;€D V1<i<i 4
z? e Dress V1<i<l,peP (5

Because all actions here have unit cost, plan cost equals
plan length so ¢pin(¢) = £. A simple lower bound £,
on plan length is 2n,, (each passenger must board and de-
part) plus the number of distinct values among ({0, | p €
PI\{fo})U{d, | p € P} (the set of floors that must be

Constraints (2)-(3) are actually combined for each p so that the
information computed by (3) for counting-based search is trans-
ferred to the main variables (Pesant and Zanarini 2011).
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Figure 5: An instance of the greenhouse logistics problem
(reproduced from (Helmert and Lasinger 2010)).

visited). This bound is rather trivial and could be improved.
However, we decided to introduce as little domain knowl-
edge as possible into our models.

We could add to our model some symmetry-breaking con-
straints about the order in which passengers board and depart
by imposing that in between up/down actions in a plan, all
depart actions appear in increasing order of p and then all
board actions in increasing order. But because such symme-
try breaking appears to interfere with our search heuristics,’
we do not include it in our model.

A Greenhouse Logistics Problem

We consider next an automated greenhouse logistics
problem. The scanalyzer planning domain (Helmert
and Lasinger 2010) models the problem of automated
greenhouse logistic management. Smart greenhouses are
equipped with imaging facilities that collect data about
the plants being grown. Plants are transported between the
greenhouses and the imaging facilities by a system of con-
veyor belts. Plants are grouped in batches, each located on
a distinct segment (A to F in Figure 5). Each batch must
go through an imaging facility (I) at least once and return
to its original position. A given set of rotate (r) actions
exchange two batches on segments and another set of ro-
tate&analyze (ra) actions does this while sending one of the
batches through the imaging facility. The latter actions are
considered more expensive to perform than the former. The
objective is to find a plan of minimum cost.

The instance at Figure 5 allows actions that swap the
batch on any segment among A, B, and C with the one
on any segment among D, E, and F (nine actions) and one
that swaps the batches on segments A and F while send-
ing the batch from A through the imaging facility. An op-
timal solution consists of six rotate&analyze actions and
eight rorate actions, e.g. { ra(AF), r(A,E), ra(A,F), r(A,D),
ra(AF), r(AE), ra(AF), r(B,F), r(C,D), r(A,D), ra(A,F),
r(C,F), ra(A,F), r(B,F)).

Note that in the PDDL description of this problem, the
actions are parameterized by batches currently located on
the rotating segments. As a result, the number of actions in
SAS+ encodings of problems in this domain is up to four
orders of magnitude higher than in our encoding.

3This is known to happen in combinatorial search.

Figure 6: Automaton for instance p0 3. Loops accept any ac-
tion that is not associated to an outgoing transition. States are
labeled with tuples (p, a) where p is the position and b = L
means the batch was not analyzed and b = T means the
batch was analyzed. The initial and accepting states, identi-
fied respectively by a short arrow and a double circle, are for
the batch on segment A.

Planning objects are the batches of plants. It is possible to
use an automaton to keep track of the state of the batches.
Automaton A3 depicted at Figure 6 shows how the batch
initially located on segment A changes states upon an action.
Each state is labeled with a tuple (location, analyzed) where
location is the segment on which the batch lies and analyzed
is a Boolean indicated whether the batch was analyzed. The
initial state is (A, L) since the batch is initially on segment
A and is not analyzed and the final state is (A, T), since
the batch must return to its origin while being analyzed. The
automata for the other batches are the same except for the
initial and final states.

Let BB be the set of batches. Each action a € D has a cost
of C, > 1. We have C, = 1 if it is a rotate action and
C, = 3 ifitis a rotate and analyze action. Constraints (6)
to (9) define the model.

minimize z (6)
z>2|Bl+¢ @)
COSTREGULAR([x1,...,2%¢],A3,C 2z) VYbeB (8
x; €D V1<i<é (9)

The cost variable z is made equal to Zle Cy, through
constraints (8). Since each batch must be analyzed at least
once at a cost of 3 and each other action in the plan has a
cost of 1, constraint (7) provides a trivial lower bound on
the objective function of 3|5| 4+ 1 - (¢ — |B|). Constraints (8)
enforce the batch automaton over the action variables for
each batch.

We apply Algorithm 1 using lower bound on plan length
Lmin = |B|, the number of batches, since each of them needs
to be analyzed and we cannot analyze several batches at
a time, and lower bound function on plan cost ¢pin(¢) =
2|B| 4 ¢, as previously established. As for the previous do-
main, these trivial bounds aim at introducing as little domain
knowledge as possible.



A Floor Tile Painting Problem

In the planning domain f1oortile*, a set of robots paint
tiles according to a certain colour pattern. The robots can
move to an adjacent tile in four directions (up, down, right,
and left) unless that tile is painted or occupied. They can
also colour the tile above or below them if it is not painted
or occupied using their spray gun, or change the spray to
another colour. We are given the initial location and spray
gun colour of each robot, the relative locations of the tiles,
and which tile should be painted in a given colour. There are
three kinds of actions:

i.. for each robot r and colour ¢, a change-colour(r,c) ac-
tion;

ii.. for each robot and to-be-painted tile ¢, a paint-up(r, t) and
paint-down(r, t) action;

iii.. for each robot and current tile, move-up(r,t), move-
down(r,t), move-left(r, t), and move-right(r,t) actions.

Given n,. robots, n. colours, and n; tiles, we have n,. - (n. +
6n;) actions in all. Again we simplify the parameter list of
the actions from the original PDDL description when some
of them are already reflected in the states of our automata.
This in turn reduces the number of actions in our represen-
tation compared to the state transition graphs which are au-
tomatically generated from the PDDL description.

The natural planning objects whose state is affected by
actions are the robots and the tiles. The robot automaton
Ay is structured similarly to the one for greenhouse lo-
gistics: n; X m, states, one per location/colour pair, and
the obvious transitions between locations and colours. For
paint actions, an allowed one (i.e. currently at the right
location and with the right colour) loops and all oth-
ers are forbidden. Any action for the other robots loops.
Therefore its set of actions can be reduced to D"°"°t
{ change-colour(c), paint-up(t), paint-down(t), move-up(t),
move-down(t), move-left(t), move-right(t), otherRobot}. The
initial state is given by the initial location and colour of each
robot and the only accepting states are those that should not
be painted. The resulting automaton is shown at Figure 7.

The tile automaton A5 has three states (clear,
occupied, painted), the last one being the goal state
if it has to be painted — otherwise all states are accepting.
The initial state is either clear or occupied. Which robot acts
on the state of the tile is irrelevant, paint actions on the given
tile transition from clear to painted, and move actions transi-
tion between clear and occupied depending on whether the
given tile is the current or the new one, and change-colour
actions and actions on other tiles loop. Therefore we can
map the original actions to these four: D*'¢ = {paint, move-
to, move-from, other}. The resulting automaton is shown at
Figure 8.

Action costs are not uniform: change-colour costs 5,
paint-* costs 2, and move-x costs 1 except move-up which
costs 3. We associate action costs with the robot automaton
and our objective to minimize is the sum of each robot’s con-
tribution. Let 77 be the set of tiles to paint. We use simple

*http://www.plg.inf.uc3m.es/ipc2011-deterministic/
DomainsSequential.html

change_colour(white)

change_colour(white) paint-down(t)

nge_colour(white)
I

ange_colour(g;

ge_colour(w!
n

ange_colour(gr

ge_colour(wl

—

ange_colour(gray)

change_colour(gray) change_colour(gray)

Figure 7: Part of the robot automaton. Loops on otherRobot
action are not shown. Only one paint action is shown, from
state (¢', white) assuming that tile ¢ needs to be painted

white.

other other other

paint

move_to

‘ Occupied

move_from

Figure 8: Tile automaton

lonin = |T'| + PT‘%—‘ (robots need to move in order to

paint more than the tiles directly above and below them) and
¢min(¢) = |T'| + £ by the same argument as the one for the
previous domain. Let 7 be the set of tiles and R the set of
robots. Constraints (10) to (19) define the model.

minimize z (10)
=Y (an
reR
22> |T'| +¢ (12)
zl = My(x;) V1<i<t, teT (13)
REGULAR([z},...,z}], As) VieT (14)
xf = M(x;) V1<i<l, reR (15)
COSTREGULAR([z]..2¢], A4, C, zr) VreR (16)
z; €D V1<i<t (17)

t til
l'iEDZE

1’: c Drobot

V1<i<t, teT (18)
V1<i<l, reR (19)



Empirical Evaluation

Through these experiments we want to show the importance of
using effective though still general-purpose heuristics such as
counting-based search and how the plans produced by this CP ap-
proach compare to those of state-of-the-art planners. The experi-
ments were performed using Intel E5-2683 2.1 GHz processors.
The memory limit was set to 8 GB, and the time limit was 30 min-
utes. The CP models were modeled and solved using IBM ILOG
CP version 1.6 with an implementation of the (COST)REGULAR
constraint that supplies information for counting-based search.

We used two state-of-the-art planners for comparison. The opti-
mal plans were compared with Delfil (Katz et al. 2018), a portfolio
planner, and the suboptimal plans with Fast Downward Stone Soup
2018 (FDSS) (Seipp and Roger 2018). They are the winners of the
IPC-2018 competition optimal planning and satisficing planning
tracks, respectively. These planners are available on the website of
IPC-2018°.

The problem instances were obtained from the plan-
ning.domains repository, where each planning problem has a
unique problem id. We used 150 instances for miconic (prob-
lem ids 268 to 417) and 30 instances for scanalyzer (problem
ids 2408 to 2437). Initially we considered problems 468 to 487 for
floortile but these instances are for the most part quite hard
to solve and even the state-of-the-art planners often do not produce
a plan within our time limit. Therefore we built simpler instances
from problems 468, 469, and 470 by only considering the first k
tiles to be painted, starting from k = 3 to the full set, thus yielding
24 instances.

Comparing Combinatorial Search Heuristics

To search over our CP models, we consider several general-purpose
combinatorial search heuristics that are not planning-specific: sim-
ple lexicographic variable ordering with random value ordering
(lexico), reverse lexicographic variable ordering with random value
ordering (reverse-lexico), standard smallest domain variable or-
dering with random value ordering (min-dom), more sophisti-
cated impact-based search (IBS; we use IBM ILOG CP’s native
version) (Refalo 2004), and two counting-based search variants
(maxSD and avgSD) (Pesant, Quimper, and Zanarini 2012). The
first variant branches on the variable-value pair appearing with the
highest frequency in solutions among all constraints whereas the
second one branches on the pair with the highest average frequency
taken over the constraints it appears in. For the randomized heuris-
tics, we perform ten runs for each and report the median. Table 1
reports the number of instances for which a plan was found with
each heuristic and each planning domain. The left half gives results
when the search at each plan length is exhaustive and the right half,
when a maximum of ten seconds is allocated per plan length. For
reference we provide the number of instances solved to optimality
by Delfil.

We see clearly on every domain that the counting-based search
heuristics considered here are far superior to the other ones. One
exception is floortile without Thax: because our lower bound
on plan length iy is quite poor, we waste a lot of time proving
the infeasibility of insufficient plan lengths. Despite its effective-
ness counting-based search, being a heuristic, will sometimes make
mistakes and mistakes near the top of the search tree will take a
long time to undo in the context of depth-first search. The “maxSD
LDS” row shows the impact of replacing depth-first search with
limited-discrepancy search (Harvey and Ginsberg 1995) which un-
does branching decisions near the top earlier. We see that it never
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deteriorates performance and in some cases the improvement is sig-
nificant.

What Does Counting-Based Search Do from a
Planning Perspective?

Given that counting-based search heuristics appear to be much
more effective than the rest, it can be enlightening to examine how
they proceed in terms of each planning domain.

Execution traces for miconic suggest that all the heuristics
from the previous section proceed systematically forward through
the plan. Of course this is expected for lexico but not necessarily
for the others — a possible explanation is that there may be several
planning steps tied for selection and by default we are choosing
the earliest one. But the main difference lies in how actions are se-
lected: whereas lexico and min-dom choose the next action arbitrar-
ily among those that are allowed, maxSD and avgSD make smart
choices, e.g. starting by boarding each passenger whose origin co-
incides with the initial floor. While this intuitively makes sense to
humans, keep in mind that there is no planning knowledge in our
CP model: it simply comes from the calculation that there are more
feasible paths of length £ in the layered digraph built from the pas-
senger automaton that immediately transition to the next boarded
state (see Fig. 4).

With scanalyzer we start to see a less systematic progres-
sion of the plan: the counting-based search heuristics, IBS and even
min-dom jump around while fixing plan steps but still tend to pro-
ceed in an overall forward manner.

For floortile we observe that min-dom returns to a system-
atically forward progression but again without any guidance for
action selection. IBS, maxSD and avgSD do not necessarily pro-
ceed as systematically and again the last two make smart choices
of actions, e.g. painting the tile currently above a robot or moving
one robot out of the way before having another paint a tile. The
explanation is likely similar to the one given for miconic (see
Fig.8).

We believe that an in-depth analysis of the behaviour of
counting-based search heuristics on planning problems and of their
relationship with existing planning heuristics is a very promising
line of research that we intend to investigate further.

Comparing to State-of-the-Art Planners

Table 1 already gave an indication of the performance of our CP ap-
proach relative to Delfil. Solving planning problems to optimality
and especially proving it can be challenging. This has motivated
the planning community to study algorithms that find a reason-
ably good plan within a reasonably short amount of time (coined
satisficing). Figure 9 compares our CP approach to the state-of-the-
art satisficing classical planner FDSS for each of the three plan-
ning domains. Each cross in the plot represents an instance. A red
cross means that the first plan in the series of FDSS plans which
was as good as that of the CP-based planner was strictly better
than it — a blue cross means that it had the same cost. If FDSS
never finds as good a plan, we use the timeout value (1800 sec-
onds) for FDSS. The CP approach shows excellent performance on
miconic (though hard to see, there are 29 red crosses and 121
blue crosses) and very good performance on scanalyzer. Itis
not competitive on £loortile but as we mentioned earlier our
lower bound on plan length is particularly weak so we waste a lot
of time getting to a feasible plan length.

Computational Efficiency of the Approach

The relative success of this CP approach to classical planning is due
in large part to the use of global constraints — and automata-based



without T}«

with Ty, = 10 secs

miconic  scanalyzer floortile | miconic scanalyzer floortile
#instances \ 150 30 24 | 150 30 24
lexico 20 (19) 10 (9) 6(6) | 17017 8 (8) 6 (5)
reverse-lexico | 20 (19) 10 (9) 6 (6) 17 (17) 8 (8) 4 (4)
min-dom 20 (19) 10 (9) 606) | 17(17) 8(8) 6 (5)
IBS 21 (21) 10 (9) 6(6) | 15(15) 8 (8) 54)
avgSD 63 (44) 15 (14) 5(5) | 150 (43) 22 (14) 12 (5)
maxSD 65 (43) 13 (12) 6 (6) | 150 (42) 20 (11) 11(5)
maxSD LDS 85 (68) 14 (13) 6 (6) | 150 (52) 21 (12) 14 (8)
Delfil | (141) (15) (24) |

Table 1: Number of instances for which a plan was obtained using each branching heuristic. The number of instances for which
an optimal plan was found appears in parentheses. The computational time limit is 30 minutes per instance.
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Figure 9: Comparing runtimes of satisficing planner FDSS and of our CP model (71,,x = 10 secs) with counting-based search

heuristic maxSD and limited-discrepancy tree search on each planning domain (from left to right: miconic,

scanalyzer,

floortile). Each cross represents an instance. Crosses are blue when a plan of same cost was found and red when FDSS

found a better plan.

constraints in particular — because they offer a fairly direct fac-
tored representation of the planning problem into well-established
CP components inside of which we already have algorithms to
shrink the search space and guide its exploration. The search space
reduction had already been exploited in previous work on planning
as CP but the guidance through counting-based search heuristics is
something new here and our experiments indicate that their impact
on performance is very significant.

Another contribution to efficiency is the mapping of the param-
eterized actions from the original PDDL description into a reduced
set either because some of these parameters are already reflected in
the states of our automata or because some actions are considered
equivalent from the perspective of a particular planning object and
hence can be merged into one. This simplifies the description of
each automaton and thus reduces the size of the layered digraphs
built by the automata-based constraints, which has a definite impact
on runtime.

One aspect that could be improved upon is plan-length selec-
tion. Our detailed empirical results suggest that once a feasible
plan length is reached, our CP models guided by counting-based
search quickly find a plan, sometimes without any backtracking. A
better strategy than simply increasing plan length from a straight-
forward lower bound could lead to a significant improvement in
performance.

Conclusion

We provided empirical evidence that constraint solvers are already
well equipped to solve classical planning problems, even with-
out injecting planning knowledge in the form of specialized tech-
niques, and that they can even be competitive with state-of-the-
art planners on some domains. The experiments showed that some
general-purpose search heuristics developed in constraint program-
ming work well on classical planning problems but that using an
effective heuristic is crucial. All models and techniques we de-
veloped are generic, planning-independent, and can be applied to
other planning domains: we believe that the way we derived our
model for each of the three domains is very similar and outlines
a systematic approach to modeling classical planning problems
in CP. If an additional modeling standard for planning problems,
based on automata, were adopted it would make it much easier for
CP technology to be used in AI planning.
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