# Improving the Energetic Reasoning: How I followed 15-year-old advice from my supervisor 

Claude-Guy Quimper
Université Laval, Canada

## Alejandro López-Ortiz

1967-2017


## Purposes of this talk

- To reveal some of my supervisor's greatest advice.
- To show how I still apply his advice when working my students.
- To present a O(n log ${ }^{2} n$ ) checker for the energetic reasoning



## Outline

- The Cumulative constraint
- The energetic check
- Our new checker
- The computation of energy (Advice \#1)
- Monge matrices (Advice \#2)
- Experiments (Advice \#3)
- A last advice (Advice \#4)
- Conclusion


## Definitions

## Definitions

resource

time

## Definitions

resource


- C: capacity of the resource


## Definitions

resource


- C: capacity of the resource


## Definitions

resource


- C: capacity of the resource
- p: processing time


## Definitions

resource


- C: capacity of the resource
- p: processing time
- h: height


## Definitions

resource


- C: capacity of the resource
- p: processing time
- h: height
- e: energy (e = p $\times \mathrm{h}$ )


## Definitions

resource


- C: capacity of the resource
- p: processing time
- h: height
- e: energy ( $\mathrm{e}=\mathrm{p} \times \mathrm{h}$ )
- est: earliest starting time


## Definitions



- C: capacity of the resource
- p: processing time
- h: height
- e: energy ( $\mathrm{e}=\mathrm{p} \times \mathrm{h}$ )
- est: earliest starting time
- Ict: Iatest completion time


## The Cumulative constraint



- Tasks must be scheduled between their est and lct.
- No overlap.
- The capacity of the resource is not exceeded.


## The energetic check



## The energetic check



## The energetic check


$E(i, l, u)=h_{i} \cdot \max (0, \min ($

## The energetic check


$E(i, l, u)=h_{i} \cdot \max (0, \min (u-l$,

## The energetic check


$E(i, l, u)=h_{i} \cdot \max \left(0, \min \left(u-l, p_{i}\right.\right.$,

## The energetic check


$E(i, l, u)=h_{i} \cdot \max \left(0, \min \left(u-l, p_{i}, \mathrm{est}_{i}+p_{i}-l\right.\right.$.

## The energetic check


$E(i, l, u)=h_{i} \cdot \max \left(0, \min \left(u-l, p_{i}\right.\right.$, est $\left.\left._{i}+p_{i}-l, u-\left(\operatorname{lct}_{i}-p_{i}\right)\right)\right)$

## The energetic check



$$
\begin{aligned}
E(i, l, u) & =h_{i} \cdot \max \left(0, \min \left(u-l, p_{i}, \text { est }_{i}+p_{i}-l, u-\left(\operatorname{lct}_{i}-p_{i}\right)\right)\right) \\
S(l, u) & =C \cdot(u-l)-\sum_{i} E(i, l, u)
\end{aligned}
$$

## The energetic check



$$
\begin{aligned}
E(i, l, u) & =h_{i} \cdot \max \left(0, \min \left(u-l, p_{i}, \text { est }_{i}+p_{i}-l, u-\left(\operatorname{lct}_{i}-p_{i}\right)\right)\right) \\
S(l, u) & =C \cdot(u-l)-\sum_{i} E(i, l, u)
\end{aligned}
$$

## The energetic check



$$
\begin{aligned}
E(i, l, u) & =h_{i} \cdot \max \left(0, \min \left(u-l, p_{i}, \text { est }_{i}+p_{i}-l, u-\left(\text { lct }_{i}-p_{i}\right)\right)\right) \\
S(l, u) & =C \cdot(u-l)-\sum_{i} E(i, l, u) \geq 0
\end{aligned}
$$

## Existing checkers

- Baptiste, Le Pape, and Nuijten showed that it is sufficient to test $\mathrm{O}\left(\mathrm{n}^{2}\right)$ intervals.


## Existing checkers

- Baptiste, Le Pape, and Nuijten showed that it is sufficient to test $\mathrm{O}\left(\mathrm{n}^{2}\right)$ intervals.
- The slack $\mathrm{S}(\mathrm{I}, \mathrm{u})$ is computed in constant time, using the previous computation of $S(I, u-1)$.


## Existing checkers

- Baptiste, Le Pape, and Nuijten showed that it is sufficient to test $O\left(n^{2}\right)$ intervals.
- The slack $\mathrm{S}(\mathrm{I}, \mathrm{u})$ is computed in constant time, using the previous computation of $S(I, u-1)$.
- Running time complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$


## Existing checkers

- Baptiste, Le Pape, and Nuijten showed that it is sufficient to test $\mathrm{O}\left(\mathrm{n}^{2}\right)$ intervals.
- The slack $\mathrm{S}(\mathrm{I}, \mathrm{u})$ is computed in constant time, using the previous computation of $S(I, u-1)$.
- Running time complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Derrien and Petit reduced the multiplicative constant by a factor of 7 .


## Goal

- To perform the energetic check in sub-quadratic time.
- We need to test fewer than $O\left(n^{2}\right)$ intervals
- We will need to compute the slack, upon request, for any time interval $[I, \mathrm{u}$ )


## Goal

- To perform the energetic check in sub-quadratic time.
- We need to test fewer than $O\left(n^{2}\right)$ intervals
- We will need to compute the slack, upon request, for any time interval $[I$, u)


## Advice \#1

## Reduce your problem to one that is already solved.

- Reductions can provide solutions out of the box.
- If not, they give a direction how to adapt a solution to your problem.
- Take time to reformulate your problem using different abstractions: graphs, points/vectors, ...


## Reduction



## Range trees

- Given $n$ points
- Build a range tree in $O(n \log n)$ space and time
- Count number of points in any given box in O(log n) time
- Since there are multiple points associated to a single task, adaptations are required to remain strongly polynomial in space and time.


## How to check fewer than $O\left(n^{2}\right)$ intervals?

- Recall that the slack is computed as follows.

$$
S(l, u)=C \cdot(u-l)-\sum_{i} E(i, l, u)
$$

- Goal: Find a time interval $[I, u]$ such that $S(I, u)<0$ while sampling fewer than $O\left(n^{2}\right)$ intervals or guaranty that there is no such interval.


## Advice \#2

## Increase your capacity to solve

 problems: learn new things every day.
## How to improve your capacity to solve problems

## How to improve your capacity to solve problems

## How to improve your capacity to solve problems

## How to improve your capacity to solve problems

Time

## How to improve your capacity to solve problems

Time

# How to improve your capacity to solve problems 

Time

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  | 0 | 2 | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  | 0 | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 | 0 | 2 | 4 | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  | 0 | 2 | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  | 0 | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 |  | 0 | 0 | 2 | 4 | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 |  | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## Monge matrix

- A matrix M has the Monge property if and only if

$$
M[i+1, j+1]-M[i+1, j] \geq M[i, j+1]-M[i, j]
$$

## Monge matrix

- A matrix M has the Monge property if and only if

$$
M[i+1, j+1]-M[i+1, j] \geq M[i, j+1]-M[i, j]
$$

- I did not get that out from a hat. I learned it 15 years ago!


## Monge matrix

- A matrix M has the Monge property if and only if

$$
M[i+1, j+1]-M[i+1, j] \geq M[i, j+1]-M[i, j]
$$

- I did not get that out from a hat. I learned it 15 years ago!
- The Monge property can make many problems easier:


## Monge matrix

- A matrix M has the Monge property if and only if

$$
M[i+1, j+1]-M[i+1, j] \geq M[i, j+1]-M[i, j]
$$

- I did not get that out from a hat. I learned it 15 years ago!
- The Monge property can make many problems easier:
- Finding the smallest element on every row of a Monge matrix can be done in linear time!


## Monge matrix

- A matrix M has the Monge property if and only if

$$
M[i+1, j+1]-M[i+1, j] \geq M[i, j+1]-M[i, j]
$$

- I did not get that out from a hat. I learned it 15 years ago!
- The Monge property can make many problems easier:
- Finding the smallest element on every row of a Monge matrix can be done in linear time!
- Solving the Traveling Salesman Problem can be done linear time!


## Inverse Monge matrix

Inverse

- A matrix $M$ has the Monge property if and only if

$$
M[i+1, j+1]-M[i+1, j] \geq M[i, j+1]-M[i, j]
$$

- I did not get that out from a hat. I learned it $\mathbf{1 5}$ years ago!
- The Monge property can make many problems easier:
- Finding the smallest element on every row of a Monge matrix can be done in linear time!
- Solving the Traveling Salesman Problem can be done linear time!


## Inverse Monge matrix

$$
M[i+1, j+1]-M[i+1, j] \geq M[i, j+1]-M[i, j]
$$

- To understand the intuition of Monge matrices, consider the $\mathrm{i}^{\text {th }}$ row of a matrix as a function $\mathrm{f}_{\mathrm{i}}$.

$$
\frac{f_{i+1}(x+1)-f_{i+1}(x)}{(x+1)-x} \geq \frac{f_{i}(x+1)-f_{i}(x)}{(x+1)-x}
$$

- Function $\mathrm{f}_{\mathrm{i}+1}$ grows faster than function $\mathrm{f}_{\mathrm{i}}$.
- Consequently, both functions cross each other only once.
- The crossing point (or region) can be computed with a binary search.


## The slack matrix



## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  | 0 | 2 | 4 | (6) | (8) | 6 | (6) | (5) | (4) | (4) | (6) | (8) | 10 |
| 2 |  |  | 0 | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 | 0 | 2 | 4 | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  |  |  | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  | 0 | 2 |  | 6 |  | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 | 0 | 2 | 4 | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  |  |  | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  |  | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 | 0 |  | (4) | (6) |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  |  |  | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  |  | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 |  |  | (4) | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  |  |  | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  |  | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 |  |  | (4) | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  | 0 | 2 | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  | 0 | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 | 0 | 2 | 4 | 6 |
| 4 |  |  |  |  | 0 |  |  | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | (0) | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 |  |  | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |  | (4) |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  |  | 2 | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  | 0 | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 |  | 4 | 2 | 2 | 1 | 0 | 0 | 2 | 4 | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | 0 | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |

## The slack matrix

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | (0) | 2 | 4 | 6 | 8 | 10 | 8 | 8 | 7 | 6 | 6 | 8 | 10 | 12 |
| 1 |  |  | 2 | 4 | 6 | 8 | 6 | 6 | 5 | 4 | 4 | 6 | 8 | 10 |
| 2 |  |  | 0 | 2 | 4 | 6 | 4 | 4 | 3 | 2 | 2 | 4 | 6 | 8 |
| 3 |  |  |  | 0 | 2 | 4 | 2 | 2 | 1 | 0 | 0 | 2 | 4 | 6 |
| 4 |  |  |  |  | 0 | 2 | 0 | (0) | -1 | 0 | 1 | 3 | 5 | 7 |
| 5 |  |  |  |  |  | 0 | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 6 |  |  |  |  |  |  | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 |
| 7 |  |  |  |  |  |  |  | 0 | 1 | 2 | 4 | 6 | 8 | 10 |
| 8 |  |  |  |  |  |  |  |  | 0 | 1 | 3 | 5 | 7 | 9 |
| 9 |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 | 8 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0 | 2 | 4 | 6 |
| 11 |  |  |  |  |  |  |  |  |  |  |  | $0$ | 2 | 4 |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  | (0) |

## Complexity

- If the matrix had dimension $n \times n$, there would be


## Complexity

- If the matrix had dimension $n \times n$, there would be
- $O(n)$ binary searches


## Complexity

- If the matrix had dimension $n \times n$, there would be
- $O(n)$ binary searches
- O( $n \log n$ ) comparisons


## Complexity

- If the matrix had dimension $n \times n$, there would be
- $O(n)$ binary searches
- O( $n$ log $n$ ) comparisons
- Computing an entry of the matrix takes $\mathrm{O}(\log n)$


## Complexity

- If the matrix had dimension $n \times n$, there would be
- $O(n)$ binary searches
- O( $n$ log $n$ ) comparisons
- Computing an entry of the matrix takes $\mathrm{O}(\log n)$
- Overall complexity: $\mathrm{O}\left(n \log ^{2} n\right)$


## Complexity

- If the matrix had dimension $n \times n$, there would be
- $O(n)$ binary searches
- O( $n \log n$ ) comparisons
- Computing an entry of the matrix takes $\mathrm{O}(\log n)$
- Overall complexity: $\mathrm{O}\left(n \log ^{2} n\right)$
- But the dimension is not $n \times n \ldots$


## Complexity

- If the matrix had dimension $n \times n$, there would be
- $O(n)$ binary searches
- O( $n$ log $n$ ) comparisons
- Computing an entry of the matrix takes $\mathrm{O}(\log n)$
- Overall complexity: $\mathrm{O}\left(n \log ^{2} n\right)$
- But the dimension is not $n \times n \ldots$
- To obtain a complexity of $O\left(n \log ^{2} n\right)$, the algorithm only analyzes a subset of $O\left(n^{2}\right)$ cells characterized by Derrien and Petit.


## Advice \#3

## Make your research practical!

- If you want your graduate studies to leverage your industrial career, work on something practical.
- You prefer an academic career? Having industrial partners will help fund your lab.
- You prefer theory? No problem! Be prepared to justify with applications.
- Implement your ideas!


## What we learned when implementing the algorithm

- A large portion of the computation is spent computing entries in the slack matrix.
- Adding a cache prevents computing twice the same slack and save computation time.
- Derrien et Petit reduced the number of intervals of interests by a factor 7. This makes a huge difference for our checker as well.


Time to solve to optimality (PSBLIB)


## Next steps

- Running time analysis of the filtering algorithm


## Next steps

- Running time analysis of the filtering algorithm
- Worst case: $\mathrm{O}\left(\mathrm{n}^{2} \log ^{2} \mathrm{n}\right)$


## Next steps

- Running time analysis of the filtering algorithm
- Worst case: $\mathrm{O}\left(\mathrm{n}^{2} \log ^{2} \mathrm{n}\right)$

We believe this bound is not tight

## Next steps

- Running time analysis of the filtering algorithm
- Worst case: $O\left(n^{2} \log ^{2} n\right)$

We believe this bound is not tight

- Average case: O(n² log n)


## Next steps

- Running time analysis of the filtering algorithm
- Worst case: $O\left(n^{2} \log ^{2} n\right)$

We believe this bound is not tight

- Average case: $O\left(n^{2} \log n\right)$ We believe this bound is not tight


## Next steps

- Running time analysis of the filtering algorithm
- Worst case: $O\left(n^{2} \log ^{2} n\right)$

We believe this bound is not tight We believe this bound is not tight

- Nogood learning


## Advice \#4

## Share your ideas

## Conclusion

- Range trees are convenient to compute the amount of energy in a given time interval.
- The Monge property appears in scheduling problems and can be exploited.
- Energetic check in $\mathrm{O}\left(\mathrm{n} \log ^{2} \mathrm{n}\right)$ time.


## Advice \#1

## Reduce your problem to one that is already solved.

## Advice \#2

Increase your capacity to solve problems: learn new things every day.

# Advice \#3 

Make it practical!

## Advice \#4

## Share your ideas

