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Purposes of this talk
• To reveal some of my 

supervisor’s greatest 
advice. 

• To show how I still apply 
his advice when working 
my students. 

• To present a O(n log2 n) 
checker for the energetic 
reasoning Yanick Ouellet



Outline
• The CUMULATIVE constraint 

• The energetic check 

• Our new checker 

• The computation of energy (Advice #1) 

• Monge matrices (Advice #2) 

• Experiments (Advice #3) 

• A last advice (Advice #4) 

• Conclusion
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Definitions

• C: capacity of the resource
• p: processing time
• h: height
• e: energy (e = p × h)
• est: earliest starting time
• lct: latest completion time
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The CUMULATIVE constraint

• Tasks must be scheduled between their est and lct. 

• No overlap. 

• The capacity of the resource is not exceeded.
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Existing checkers
• Baptiste, Le Pape, and Nuijten showed that it is 

sufficient to test O(n2) intervals.

• The slack S(l, u) is computed in constant time, 
using the previous computation of S(l, u-1).

• Running time complexity: O(n2)

• Derrien and Petit reduced the multiplicative 
constant by a factor of 7.
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Goal

Let’s start by solving this problem

• To perform the energetic check in sub-quadratic 
time. 

• We need to test fewer than O(n2) intervals 

• We will need to compute the slack, upon request, 
for any time interval [l, u) 



Advice #1

• Reductions can provide solutions out of the box. 

• If not, they give a direction how to adapt a solution to 
your problem. 

• Take time to reformulate your problem using different 
abstractions: graphs, points/vectors, …

Reduce your problem to one that is 
already solved.
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Range trees
• Given n points 

• Build a range tree in O(n log n) space and time 

• Count number of points in any given box in 
O(log n) time 

• Since there are multiple points associated to a 
single task, adaptations are required to remain 
strongly polynomial in space and time.



How to check fewer than 
O(n2) intervals?

• Recall that the slack is computed as follows. 

• Goal: Find a time interval [l, u] such that S(l, u) < 0 
while sampling fewer than O(n2) intervals or 
guaranty that there is no such interval.

S(l, u) = C · (u� l)�
X

i

E(i, l, u)



Advice #2

Increase your capacity to solve 
problems: learn new things every day.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix
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Inverse Monge matrix

• To understand the intuition of Monge matrices, consider 
the ith row of a matrix as a function fi. 

• Function fi+1 grows faster than function fi. 

• Consequently, both functions cross each other only once. 

• The crossing point (or region) can be computed with a 
binary search.

M [i+ 1, j + 1]�M [i+ 1, j]  M [i, j + 1]�M [i, j]�

fi+1(x+ 1)� fi+1(x)

(x+ 1)� x
� fi(x+ 1)� fi(x)

(x+ 1)� x
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Complexity
• If the matrix had dimension n × n, there would be

• O(n) binary searches

• O(n log n) comparisons

• Computing an entry of the matrix takes O(log n)

• Overall complexity: O(n log2 n)

• But the dimension is not n × n …

• To obtain a complexity of O(n log2 n), the algorithm only analyzes 
a subset of O(n2) cells characterized by Derrien and Petit.



Advice #3

• If you want your graduate studies to leverage your industrial career, work on 
something practical. 

• You prefer an academic career? Having industrial partners will help fund 
your lab. 

• You prefer theory? No problem! Be prepared to justify with applications. 

• Implement your ideas!

Make your research practical!



What we learned when 
implementing the algorithm

• A large portion of the computation is spent 
computing entries in the slack matrix. 

• Adding a cache prevents computing twice the 
same slack and save computation time. 

• Derrien et Petit reduced the number of intervals of 
interests by a factor 7. This makes a huge 
difference for our checker as well.





(PSBLIB)
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Next steps

• Running time analysis of the filtering algorithm

• Worst case: O(n2 log2 n)

• Average case: O(n2 log n)

• Nogood learning

We believe this 
bound is not tight
We believe this 

bound is not tight



Advice #4

Share your ideas



Conclusion

• Range trees are convenient to compute the amount 
of energy in a given time interval. 

• The Monge property appears in scheduling 
problems and can be exploited. 

• Energetic check in O(n log2 n) time.
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Reduce your problem to one that is 
already solved.



Advice #2

Increase your capacity to solve 
problems: learn new things every day.



Advice #3

Make it practical!



Advice #4

Share your ideas


