
Improving the Energetic Reasoning:
How I followed 15-year-old advice

from my supervisor

Claude-Guy Quimper
Université Laval, Canada

Alejandro
López-Ortiz

1967 - 2017

Purposes of this talk
• To reveal some of my

supervisor’s greatest
advice.

• To show how I still apply
his advice when working
my students.

• To present a O(n log2 n)
checker for the energetic
reasoning Yanick Ouellet

Outline
• The CUMULATIVE constraint

• The energetic check

• Our new checker

• The computation of energy (Advice #1)

• Monge matrices (Advice #2)

• Experiments (Advice #3)

• A last advice (Advice #4)

• Conclusion

Definitions

time

Definitions

time

resource

Definitions

• C: capacity of the resource

C

time

resource

Definitions

• C: capacity of the resource

taskC

time

resource

Definitions

• C: capacity of the resource
• p: processing time

task
p

C

time

resource

Definitions

• C: capacity of the resource
• p: processing time
• h: height

task
p

hC

time

resource

Definitions

• C: capacity of the resource
• p: processing time
• h: height
• e: energy (e = p × h)

task
p

hC

time

resource

Definitions

• C: capacity of the resource
• p: processing time
• h: height
• e: energy (e = p × h)
• est: earliest starting time

task
p

hC

est
time

resource

Definitions

• C: capacity of the resource
• p: processing time
• h: height
• e: energy (e = p × h)
• est: earliest starting time
• lct: latest completion time

task
p

hC

est lct
time

resource

The CUMULATIVE constraint

• Tasks must be scheduled between their est and lct.

• No overlap.

• The capacity of the resource is not exceeded.

The energetic check
C

est lct

The energetic check

l u

C

est lct

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

The energetic check

l u

C

est lct

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

The energetic check

l u

C

est lct

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

The energetic check

l u

C

est lct

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

The energetic check

l u{
left shift

C

est lct

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

The energetic check

l u{right shift

C

est lct

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

S(l, u) = C · (u� l)�
X

i

E(i, l, u)

The energetic check

l u{right shift

C

est lct

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

S(l, u) = C · (u� l)�
X

i

E(i, l, u)

The energetic check

l u

C

E(i, l, u) = hi ·max(0,min(u� l, pi, esti + pi � l, u� (lcti � pi)))

S(l, u) = C · (u� l)�
X

i

E(i, l, u)

The energetic check

l u

C

� 0

Existing checkers
• Baptiste, Le Pape, and Nuijten showed that it is

sufficient to test O(n2) intervals.

Existing checkers
• Baptiste, Le Pape, and Nuijten showed that it is

sufficient to test O(n2) intervals.

• The slack S(l, u) is computed in constant time,
using the previous computation of S(l, u-1).

Existing checkers
• Baptiste, Le Pape, and Nuijten showed that it is

sufficient to test O(n2) intervals.

• The slack S(l, u) is computed in constant time,
using the previous computation of S(l, u-1).

• Running time complexity: O(n2)

Existing checkers
• Baptiste, Le Pape, and Nuijten showed that it is

sufficient to test O(n2) intervals.

• The slack S(l, u) is computed in constant time,
using the previous computation of S(l, u-1).

• Running time complexity: O(n2)

• Derrien and Petit reduced the multiplicative
constant by a factor of 7.

Goal

• To perform the energetic check in sub-quadratic
time.

• We need to test fewer than O(n2) intervals

• We will need to compute the slack, upon request,
for any time interval [l, u)

Goal

Let’s start by solving this problem

• To perform the energetic check in sub-quadratic
time.

• We need to test fewer than O(n2) intervals

• We will need to compute the slack, upon request,
for any time interval [l, u)

Advice #1

• Reductions can provide solutions out of the box.

• If not, they give a direction how to adapt a solution to
your problem.

• Take time to reformulate your problem using different
abstractions: graphs, points/vectors, …

Reduce your problem to one that is
already solved.

Reduction

0 1 2 3 4 5 6 7 8 9

Reduction

0 1 2 3 4 5 6 7 8 9

l u

Reduction

0 1 2 3 4 5 6 7 8 9

l u

Reduction

0 1 2 3 4 5 6 7 8 9

l u

Reduction

0 1 2 3 4 5 6 7 8 9

l u

Reduction

0 1 2 3 4 5 6 7 8 9

l u

Reduction

0 1 2 3 4 5 6 7 8 9

l u

Reduction

0 1 2 3 4 5 6 7 8 9

l u

Reduction

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9l u

Reduction

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9l u

Reduction

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9l u

Reduction

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9l u

Range trees
• Given n points

• Build a range tree in O(n log n) space and time

• Count number of points in any given box in
O(log n) time

• Since there are multiple points associated to a
single task, adaptations are required to remain
strongly polynomial in space and time.

How to check fewer than
O(n2) intervals?

• Recall that the slack is computed as follows.

• Goal: Find a time interval [l, u] such that S(l, u) < 0
while sampling fewer than O(n2) intervals or
guaranty that there is no such interval.

S(l, u) = C · (u� l)�
X

i

E(i, l, u)

Advice #2

Increase your capacity to solve
problems: learn new things every day.

How to improve your
capacity to solve problems

How to improve your
capacity to solve problems

C
ap

ac
ity

 to
 s

ol
ve

 a
 p

ro
bl

em

Time

How to improve your
capacity to solve problems

C
ap

ac
ity

 to
 s

ol
ve

 a
 p

ro
bl

em

Time

How to improve your
capacity to solve problems

C
ap

ac
ity

 to
 s

ol
ve

 a
 p

ro
bl

em

Time

How to improve your
capacity to solve problems

C
ap

ac
ity

 to
 s

ol
ve

 a
 p

ro
bl

em

Time

How to improve your
capacity to solve problems

C
ap

ac
ity

 to
 s

ol
ve

 a
 p

ro
bl

em

Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

M [i+ 1, j + 1]�M [i+ 1, j] M [i, j + 1]�M [i, j]

Monge matrix
• A matrix M has the Monge property if and only if

�

M [i+ 1, j + 1]�M [i+ 1, j] M [i, j + 1]�M [i, j]

Monge matrix
• A matrix M has the Monge property if and only if

• I did not get that out from a hat. I learned it 15 years ago!

�

M [i+ 1, j + 1]�M [i+ 1, j] M [i, j + 1]�M [i, j]

Monge matrix
• A matrix M has the Monge property if and only if

• I did not get that out from a hat. I learned it 15 years ago!

• The Monge property can make many problems easier:

�

M [i+ 1, j + 1]�M [i+ 1, j] M [i, j + 1]�M [i, j]

Monge matrix
• A matrix M has the Monge property if and only if

• I did not get that out from a hat. I learned it 15 years ago!

• The Monge property can make many problems easier:

• Finding the smallest element on every row of a Monge
matrix can be done in linear time!

�

M [i+ 1, j + 1]�M [i+ 1, j] M [i, j + 1]�M [i, j]

Monge matrix
• A matrix M has the Monge property if and only if

• I did not get that out from a hat. I learned it 15 years ago!

• The Monge property can make many problems easier:

• Finding the smallest element on every row of a Monge
matrix can be done in linear time!

• Solving the Traveling Salesman Problem can be done
linear time!

�

M [i+ 1, j + 1]�M [i+ 1, j] M [i, j + 1]�M [i, j]

Monge matrix
• A matrix M has the Monge property if and only if

• I did not get that out from a hat. I learned it 15 years ago!

• The Monge property can make many problems easier:

• Finding the smallest element on every row of a Monge
matrix can be done in linear time!

• Solving the Traveling Salesman Problem can be done
linear time!

�

Inverse
Inverse

Inverse Monge matrix

• To understand the intuition of Monge matrices, consider
the ith row of a matrix as a function fi.

• Function fi+1 grows faster than function fi.

• Consequently, both functions cross each other only once.

• The crossing point (or region) can be computed with a
binary search.

M [i+ 1, j + 1]�M [i+ 1, j] M [i, j + 1]�M [i, j]�

fi+1(x+ 1)� fi+1(x)

(x+ 1)� x
� fi(x+ 1)� fi(x)

(x+ 1)� x

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 2 4 6 8 10 8 8 7 6 6 8 10 12
1 0 2 4 6 8 6 6 5 4 4 6 8 10
2 0 2 4 6 4 4 3 2 2 4 6 8
3 0 2 4 2 2 1 0 0 2 4 6
4 0 2 0 0 -1 0 1 3 5 7
5 0 0 0 1 2 3 5 7 9
6 0 0 1 2 3 5 7 9
7 0 1 2 4 6 8 10
8 0 1 3 5 7 9
9 0 2 4 6 8

10 0 2 4 6
11 0 2 4
12 0 2
13 0

The slack matrix

Complexity
• If the matrix had dimension n × n, there would be

Complexity
• If the matrix had dimension n × n, there would be

• O(n) binary searches

Complexity
• If the matrix had dimension n × n, there would be

• O(n) binary searches

• O(n log n) comparisons

Complexity
• If the matrix had dimension n × n, there would be

• O(n) binary searches

• O(n log n) comparisons

• Computing an entry of the matrix takes O(log n)

Complexity
• If the matrix had dimension n × n, there would be

• O(n) binary searches

• O(n log n) comparisons

• Computing an entry of the matrix takes O(log n)

• Overall complexity: O(n log2 n)

Complexity
• If the matrix had dimension n × n, there would be

• O(n) binary searches

• O(n log n) comparisons

• Computing an entry of the matrix takes O(log n)

• Overall complexity: O(n log2 n)

• But the dimension is not n × n …

Complexity
• If the matrix had dimension n × n, there would be

• O(n) binary searches

• O(n log n) comparisons

• Computing an entry of the matrix takes O(log n)

• Overall complexity: O(n log2 n)

• But the dimension is not n × n …

• To obtain a complexity of O(n log2 n), the algorithm only analyzes
a subset of O(n2) cells characterized by Derrien and Petit.

Advice #3

• If you want your graduate studies to leverage your industrial career, work on
something practical.

• You prefer an academic career? Having industrial partners will help fund
your lab.

• You prefer theory? No problem! Be prepared to justify with applications.

• Implement your ideas!

Make your research practical!

What we learned when
implementing the algorithm

• A large portion of the computation is spent
computing entries in the slack matrix.

• Adding a cache prevents computing twice the
same slack and save computation time.

• Derrien et Petit reduced the number of intervals of
interests by a factor 7. This makes a huge
difference for our checker as well.

(PSBLIB)

Next steps

• Running time analysis of the filtering algorithm

Next steps

• Running time analysis of the filtering algorithm

• Worst case: O(n2 log2 n)

Next steps

• Running time analysis of the filtering algorithm

• Worst case: O(n2 log2 n) We believe this
bound is not tight

Next steps

• Running time analysis of the filtering algorithm

• Worst case: O(n2 log2 n)

• Average case: O(n2 log n)

We believe this
bound is not tight

Next steps

• Running time analysis of the filtering algorithm

• Worst case: O(n2 log2 n)

• Average case: O(n2 log n)

We believe this
bound is not tight
We believe this

bound is not tight

Next steps

• Running time analysis of the filtering algorithm

• Worst case: O(n2 log2 n)

• Average case: O(n2 log n)

• Nogood learning

We believe this
bound is not tight
We believe this

bound is not tight

Advice #4

Share your ideas

Conclusion

• Range trees are convenient to compute the amount
of energy in a given time interval.

• The Monge property appears in scheduling
problems and can be exploited.

• Energetic check in O(n log2 n) time.

Advice #1

Reduce your problem to one that is
already solved.

Advice #2

Increase your capacity to solve
problems: learn new things every day.

Advice #3

Make it practical!

Advice #4

Share your ideas

