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Abstract. Air mobility is rapidly moving towards the development and
usage of hybrid electric aircraft in multi-flight missions. Aircraft opera-
tors must consider numerous infrastructure and operational constraints
in their planning, during which predicting energy usage is critical. We
introduce this problem as the Fixed Route Hybrid Electric Aircraft Charg-
ing Problem (FRHACP). Given a fixed route, this problem aims to decide
how much to refuel/charge at each terminal as well as the energy types
to use during each flight leg (hybridization). The objective is to mini-
mize the total energy-related monetary costs while satisfying scheduling
and hybridization constraints. We propose a dynamic programming al-
gorithm to solve this problem and show that it is optimal under assump-
tions usually satisfied in real-life settings. We then propose a gradient
descent post-treatment to relax one of these assumptions while main-
taining optimality. Results on realistic instances demonstrate that the
developed algorithms outperform greedy heuristics, reaching an average
cost reduction of up to 19.4%.

Keywords: Energy Management · Hybrid Electric Aircraft · Air Mo-
bility · Dynamic Programming · Optimization · FRVCP

1 Introduction

Air mobility traditionally involves aircraft powered by combustion engines us-
ing carbon-based fuels. In the past years, the interest in alternative propulsion
engines significantly increased with the general aim of reducing aircraft green-
house gas emissions. For that purpose, electricity-powered aircraft have been
⋆ This work received financial support from the Consortium for Research and Innova-
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proposed, including hybrid electric aircraft which combines internal combustion
engines with electrical power sources. It is envisioned that the future of air mo-
bility will include these aircraft in a significant number of multi-flight missions,
even possibly on demand, of varying length and duration [3].

Many challenges arise from the use of electricity as propulsion energy. Not
only must one determine the trajectory of the vehicle, but also manage its energy
consumption over the whole mission course according to aircraft, infrastructure,
security, and schedule specifications. Given a flight route, this management as-
pect is particularly important in a planning perspective, since charging currently
requires a non-negligible and non-linear amount of time [6,15]. Aircraft opera-
tors must thus decide how much to refuel and charge at each mission terminal.
Furthermore, the consideration of hybrid electric aircraft requires hybridization
decisions on the energy types to use (fuel and/or electricity) during each flight
leg. These decisions must take into account consumption predictions from non-
linear energy models [7,17], as well as mass variations and schedule requirements,
to globally minimize energy-related monetary costs.

In this paper, we introduce the above-described optimization problem as the
Fixed Route Hybrid Electric Aircraft Charging Problem (FRHACP) and propose
a Dynamic Programming (DP) algorithm to solve it. Section 2 describes the
FRHACP. Section 3 relates this problem to other work in the literature, no-
tably the FRVCP for electric vehicles [7,15]. The DP algorithm is presented in
Section 4, including details on the assumptions to guarantee its optimality, as
well as a post-treatment to relax one of these assumptions. The algorithms are
validated and compared to greedy heuristics on realistic instances in Section 5,
while we conclude in Section 6.

2 The Fixed Route Hybrid Electric Aircraft Charging
Problem (FRHACP)

The FRHACP considers hybrid electric aircraft in a multi-flight mission setting.
A mission is defined as a fixed route r := (n1, n2, . . . , n|N |) of subsequent nodes
ni ∈ N . Each nodes from the route is either a terminal from set T or a waypoint
from set W (N := T ∪ W ). A terminal is typically an airport, where facilities
are available to refuel and charge the aircraft. The route r starts and ends at a
terminal, i.e. n1, n|N | ∈ T , while r induces a natural order t1, t2, . . . , t|T | on the
terminals in T . Between consecutive terminals, the route is defined by waypoints,
typically reference points in the air that must be part of the aircraft trajectory.
We define legs as route segments connecting two consecutive nodes such as L :=
{(ni, ni+1) : i = 1, . . . , |N |−1}.

The FRHACP asks to decide how much to refuel and charge the aircraft
at each terminal. Fuel quantity in the aircraft is limited by a minimal security
margin fmin and the tank capacity fmax. Similarly, the aircraft battery State
of Charge (SoC) is limited by minimal and maximal security margins, smin and
smax. Each terminal t ∈ T is also associated with a scheduled departure time
dtime
t to respect as a hard constraint. The time needed to charge the battery
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from SoC s1 to s2 at terminal t ∈ T is predicted with αs
t (s1, s2), usually non-

linear [6,15]. Refueling duration is given by a constant rate αf depending on
quantity.

Hybridization decisions on the energy types to use (fuel and/or electricity)
during each leg are also part of the FRHACP. On that matter, it is known in the
literature that the optimal energy management strategy on a leg is to use the fuel
first, then the electricity [16]. Furthermore, fuel has a non-negligible mass, here
encoded as a constant ratio of mf depending on volume. This is known to be an
important non-linear factor impacting the fuel and electricity consumption [17].
Thus, this problem encodes hybridization on each leg as a percentage of its
distance using fuel, while the remaining distance is done using electricity, with
fuel used first. Aircraft mass, ma, and payload mass at terminal t, mp

t , are also
considered. Fuel and electricity consumption prediction models are encoded as
functions dependant on the travel distance d and the total mass m, denoted
respectively by δf (d,m) and δs(d,m). These functions are usually based on non-
linear energy models including numerous other physical parameters [7,17] that
are assumed constant on a given leg, but allowed to vary between legs (e.g.,
speed, altitude, and trajectory angle).

We resume the decisions variables of this problem as follows. For each ter-
minal t ∈ T , FD

t ∈ [fmin, fmax] and SD
t ∈ [smin, smax] are respectively the fuel

quantity and SoC of the aircraft when departing from terminal t. Then, for each
leg l ∈ L, Hl ∈ [0, 1] is the hybridization on leg l as its percentage traveled using
fuel. Intermediate variables FA

t and SA
t describe the deduced fuel quantity and

SoC upon arrival at terminal t ∈ T .
Finally, each terminal t ∈ T has a fuel (resp. electricity) cost cft (cst ) per

refueled (charged) quantity. The FRHACP objective is thus to minimize the
mission total cost according to energy decisions, i.e.

min
∑
t∈T

(
cft

(
FD
t − FA

t

)
+ cst

(
SD
t − SA

t

))
. (1)

3 Related Work

The FRHACP is highly related to the Fixed Route Electric Vehicle Charging
Problem (FRVCP) introduced by Montoya et al. [15], which has recently been
extended with non-linear energy management in the context of an electric vehicle
route planning [7]. In this problem, the objective is to minimize the total route
duration including its charging time by considering variable vehicle speed and
charging detours, while handling the non-linearity of electricity. The FRVCP has
been solved using dynamic programming [5], Mixed Integer Programming [7] and
labeling algorithms [10]. The FRHACP can naturally be seen as a variant of the
FRVCP adapted to the context of hybrid electric aircraft. The main differences
are the hybridization decisions and the objective function.

It is also well known in the literature that the non-linearity of energy models,
depending among others on vehicle specifications, speed, mass, and temperature,
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are essential for energy-related predictions and planning [2,4,6,17]. Prior work
in the hybrid electric aircraft domain mainly relates to optimal hybrid manage-
ment [16], energy architecture [14,18] and fuel/electricity consumption models for
different aircraft configurations [13,19]. Notably, OpenAP provides open-source
aircraft performance and emission models based on open data and accessible for
air transport research [17].

4 Dynamic Programming Algorithm

The FRHACP defined in Section 2 is more complex than the FRVCP and its
variants [5,7] since two energy sources must be simultaneously considered (fuel
and electricity). It is thus harder to design a dynamic programming algorithm
following the approach of Deschênes et al. [5]. At least one state space must be
added for the fuel. This would increase the computation time based on the num-
ber of sampled fuel quantities, say f̃ . When refueling and charging, combinations
of fuel and SoC will need to be considered, say f̃ · s̃. Thus we can estimate that
the algorithm would be at least f̃2 · s̃ times slower, without even considering the
additional computation time of 2-dimensional interpolation. With f̃ = 50 and
s̃ = 10, it would be at least 25 000 times slower. Thus, the dynamic programming
curse of dimensionality quickly arises.

Nevertheless, under some assumptions, it is possible to design a dynamic
programming algorithm that optimally solves the problem. This algorithm is
presented in Section 4.1. In Section 4.2, we develop a gradient descent post-
treatment that allows to relax one of these assumptions while maintaining opti-
mality.

4.1 Minimizing Total Cost

The proposed approach looks at the total cost minimization problem from the
perspective of minimizing the fuel quantity in a number of subproblems. Each
flight between consecutive terminals ti and ti+1 defines a different subproblem,
leading to the following question for all nodes nk between ti and ti+1 inclusively:
Given a current SoC s, what is the minimal fuel quantity F ∗

nk
(s) needed to reach

terminal ti+1 from node nk while satisfying all constraints? Equation (2) presents
the recurrence used to answer this question.

F ∗
nk
(s) =

 fmin if nk = ti+1

min
h∈[0,1]

[
F ∗
nk+1

(s−∆s
lk
(h)) + ∆f

lk
(h)

]
otherwise (2)

If node nk is terminal ti+1, the minimal quantity to reach itself is trivially the
margin fmin. Otherwise, the minimal quantity from nk depends on the hy-
bridization decision h ∈ [0, 1] on leg lk := (nk, nk+1). Here, we respectively
denote ∆f

lk
(h) and ∆s

lk
(h) the fuel and electricity consumption on leg lk given

h. The SoC at node nk+1 is thus given by s − ∆s
lk
(h), while the minimal fuel
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quantity needed at nk+1 is F ∗
nk+1

(s−∆s
lk
(h)). We must then add the amount of

fuel needed on leg lk as given by ∆f
lk
(h). Taking the minimal value over all h,

F ∗
nk
(s) returns the minimal fuel quantity from nk. Proposition 1 directly follows

from this inductive reasoning.

Proposition 1. The problem of minimizing the fuel quantity between consecu-
tive terminals ti and ti+1 admits an optimal substructure. In other words, given
a current SoC s, F ∗

nk
(s) is the minimal fuel quantity to reach ti+1 from node nk

for all nk ∈ N between ti and ti+1.

To solve the recurrence, we compute h̃ values of h and take the minimal com-
puted quantity. ∆f

lk
(h) is obtained with δf (h · dk,m(h)) where dk is the total dis-

tance of leg lk and m(h) is the mass, considering ma, m
p
ti , and the fuel mass in the

tank depending on h. Similarly, ∆s
lk
(h) is obtained with δs((1− h) · dk,m(h)).

As in Deschênes et al. [5], the state space of s is continuous, thus we use the
same techniques to solve the problem. We sample F ∗

nk
(s) for s̃ different SoC s

for each node nk. Finally, we use Akima interpolation [1] to approximate the
overall function F ∗

nk
(s) for each node nk.

Constructing the route solution. Our proposed DP algorithm solves the
problem by constructing decisions for the complete route. It first starts at termi-
nal t1 with the initial fuel and SoC of the aircraft. Then, it finds SD

t1 satisfying
the schedule dtime

t1 and margin smax using a binary search. From SD
t1 , it uses

recurrence (2) to compute FD
t1 and follows it until reaching terminal t2. Note

that it always makes sure fmin, fmax, and smin are satisfied. The hybridization
decisions Hlk on legs lk between t1 and t2 are simultaneously computed by the
recurrence (as the argmin). At each following terminal ti ∈ T , we determine SD

ti
and FD

ti in the same way. This gives us our final solution. In order to prove this
solution is optimal when minimizing the total cost under some assumptions, the
following definition is needed.

Definition 1 (Independence of subproblems). All subproblems are inde-
pendent if FA

t = fmin and SA
t = smin ∀t ∈ T in the optimal solution.

The independence of subproblems is known to imply at least these necessary
conditions: (1) Fuel cost cft is the same at each terminal t ∈ T ; (2) Between
each consecutive terminal, the optimal solution consumes all fuel and electric-
ity. Note that other conditions might be needed to fully ensure independence
of subproblems on some instances. For example, it is possible to construct an
instance where dtime

t constrains the charging time in a way that electricity must
be stored from a previous terminal, violating the independence while satisfying
the above-mentioned conditions.

Proposition 2. Suppose that consumption functions δf (d,m) and δs(d,m) are
monotonically increasing with respect to d and m, that we have independence of
subproblems, and that electricity costs cst are significantly lower than fuel costs
cft . Then the DP constructed solution optimally minimizes total cost.
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Proof. With independence of subproblems, the constructed solution is such that
all fuel and electricity is consumed between all consecutive terminals. Accord-
ing to Equation (1) and the assumption about electricity costs, the only way to
reduce the total cost would be to reduce the fuel consumption in each subprob-
lem. Since δf (d,m) and δs(d,m) are monotonically increasing (more fuel leads
to more mass, increasing the overall consumption), reducing the consumption
is only possible by reducing the fuel quantity. However, by Proposition 1, this
quantity is already minimal. ⊓⊔

Complexity analysis. Suppose the calls to δf (d,m) and δs(d,m) consumption
functions are executed in constant time. To solve the problem, we compute the
recurrence for s̃ values of SoC for each node nk ∈ N . Computing F ∗

nk
(s) has

a time complexity of Θ(h̃) testing h̃ hybridization decisions. Since computing
the Akima interpolation is done in a linear time, the overall time complexity is
Θ(s̃ · h̃ · |N |). Thus, the algorithm running time increases pseudo-linearly with
the number of nodes in the route.

4.2 Gradient Descent Post-Treatment

Most of the assumptions of Proposition 2 are usually satisfied in real-life settings,
except for the implied condition that fuel cost is the same at each terminal.
Algorithm 1 relaxes independence of subproblems by allowing FA

t > fmin at all
terminals t ∈ T .

The algorithm starts by computing the DP solution before improving it
further with a gradient descent. The problem is encoded as a directed graph
G = (T ,E), where E := {(ti, tj) : ti, tj ∈ T , i < j, cfti < cftj}. It defines the possi-
bilities of transferring fuel between terminals ti and tj to save on fuel costs. The
action of transferring x quantity of fuel from terminal tj to ti, denoted Trans-
fer(x, ti, tj), ensures that FA

tj is increased by x. It is achieved by increasing FD
ti

by at least x. The action takes into consideration the non-linearity of δf (d,m)
and δs(d,m), i.e. that taking more fuel at terminal ti will increase the mass and
thus the energy consumption until we reach terminal tj . It takes into account
the fact that we may need to add more fuel to compensate for the mass increase
or the hybridization correction on the legs to ensure electricity margins. Indeed,

Algorithm 1 Gradient Descent Post-Treatment (DP+GD)
1: Compute a solution using the DP algorithm
2: Construct the directed graph G = (T,E), E := {(ti, tj) : ti, tj ∈ T , i < j, cfti < cftj}
3: Initialize gradients ge ← 1, ∀ e ∈ E
4: while ∃e ∈ E such that ge > 0 do
5: Compute ge for each edge e ∈ E
6: Find (ti, tj) ∈ E such that g(ti,tj) is maximal
7: if g(ti,tj) > 0 then Transfer(α · g(ti,tj), ti, tj)
8: return The updated solution
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the latter is due to the fact that, because of the schedule, we cannot take more
electricity to compensate for the increase in electricity consumption, thus we
instead increase the fuel consumption by modifying the hybridization decisions.
Finally, the action is only possible if the transfer allows to satisfy fmax and
dtime
ti .

The algorithm computes the gradient g(ti,tj) of each edge (ti, tj) ∈ E, i.e.
how much a small transfer of fuel from terminal tj to ti changes the overall cost
of the solution. We then do a gradient descent to transfer fuel on the maximum
gradient edge. These transfers are repeated until we reach convergence, i.e. when
all gradients are non-positive. If the maximal gradient is g(ti,tj) > 0, we do
Transfer(α · g(ti,tj), ti, tj) to transfer the fuel, where α is a strictly positive
learning rate. Thus, at each iteration, the solution changes. Since by definition
the graph is acyclic and we can only transfer in the direction of the edge (i.e.
not backwards), the algorithm terminates in a finite number of steps.

Proposition 3. Suppose the assumptions of Proposition 2 where we relax the
independence of subproblems by allowing FA

t > fmin at all terminals t ∈ T .
Then Algorithm 1 converges to the global optimum.

Proof. Let c∗a be the cost of solution a returned by Algorithm 1. Suppose the
contrary, i.e. that there exists a solution π following the assumptions with total
cost c∗π < c∗a. By Proposition 2, we know that the decrease in cost cannot be
from using less fuel or using the electricity. Thus, the only option would be by
exploiting the relaxed assumption. This implies that solution π takes more fuel
at least at one terminal to reduce the total cost, thus that there exist terminals ti
and tj with cfti < cftj not exploited by solution a. By construction of Algorithm 1,
this leads to an edge (ti, tj) with gradient g(ti,tj) > 0. However, this is impossible
since the algorithm terminates with all gradients non-positive. ⊓⊔

5 Experiments

The main goal of the experiments is to compare the proposed DP algorithms with
heuristics on real-life inspired instances. It aims at showing the benefits of using
the electric engine, while doing optimized refueling, charging, and hybridization
decisions.

Fuel First Heuristic (FF-H). This heuristic aims at globally maximizing the
fuel usage during the flight route. It imposes a hybridization decision of 100%
fuel (Hl := 1) on each leg. Then, the departure fuel FD

t is adjusted to minimize
the consumption while satisfying the minimal margin fmin. Summarized steps
of this heuristic are presented in Algorithm 2.
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Algorithm 2 Fuel First Heuristic (FF-H)
1: Initialize FD

t ← fmax and SD
t ← smin for t ∈ T ; Hl ← 1 for l ∈ L

2: Compute FA
t for t ∈ T

3: For ti ∈ T, i = 1, . . . , |T |−1, correct FD
ti so that FA

ti+1
= fmin

Maximize Battery Usage Heuristic (MB-H). This heuristic aims at glob-
ally maximizing the electricity usage during the flight route. It tries to impose
a hybridization decision of 100% electricity (Hl := 0) on each leg. This is often
impossible, thus it handles these cases based on a greedy hypothesis of using
the fuel first. The minimal quantity of fuel is computed so that the arrival SoC
SA
t reaches the margin smin for t ∈ T . Summarized steps of this heuristic are

presented in Algorithm 3.

Algorithm 3 Maximize Battery Usage Heuristic (MB-H)
1: Initialize FD

t ← fmin for t ∈ T
2: Set SD

t to its maximal value given dtime
t for t ∈ T ; Hl ← 0 for l ∈ L

3: Compute SA
t for t ∈ T

4: for all t ∈ T where SA
t < smin do

5: Set FD
t to the minimal fuel quantity satisfying smin, with Hl using fuel first

6: For ti ∈ T, i = 1, . . . , |T |−1, correct SD
ti so that SA

ti+1
= smin

5.1 Experimental Setup

We implemented the algorithms described in Section 4 and the heuristics in
Python. The experiments were performed on an Intel Core i7-8750H CPU @
2.20 GHz, 6 cores and 8 GB of RAM. The DP algorithm has two different
hyperparameters affecting the quality of the solution and its computation time:
h̃, the number of hybridization values tested on each leg, and s̃, the number
of SoC values sampled to determine the minimal fuel. For our experiments, we
used h̃ = 40 and s̃ = 10. These values were empirically determined to yield good
results in a decent computation time. For the DP+GD algorithm, the gradient
is approximated by forward difference. We also used a constant learning rate
α = 500 empirically determined for converging quickly.

5.2 Instances

Our dataset consists of four real-life inspired instances, created from day-long se-
quences of commercial flights with the same aircraft in Canada and France. The
routes and their schedule are generated using available data in FlightRadar24 [9],
while the fuel and electricity costs are directly taken from various credible
sources [8,11,12]. For the purpose of comparison, we convert EUR (€) costs
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in CAD ($) using 1.49 as exchange rate. Table 1 presents the particularities of
each instance. In France, PNT4W59 describes two round trips between Paris and
Nice, while TBT5W42 includes a round trip from Toulouse to Lille followed by
a round trip from Bordeaux to Marseille. In Canada, MST6W30 includes a flight
from Montreal to Quebec City, followed by a round trip to the Magdalen Islands,
then a flight to Sept-Îles. OTT7W43 describes a flight from Ottawa to Toronto,
followed by a round trip to St. John’s, Newfoundland.

Table 1. Description of the four real-life inspired instances forming the dataset.

Instance |T | |W | Duration Distance
(km)

cs

($/kWh)
cf

($/L)

PNT4W59 4 59 4h30 2740 0.1397 1.46
TBT5W42 5 42 6h42 2812 0.1397 1.46
MST6W30 6 30 7h22 2294 0.0533 [1.16, 1.25]
OTT7W43 7 43 9h34 4709 [0.0533, 0.1140] [1.03, 1.28]

All instances suppose a Cessna S550 Citation II as the aircraft. Following
the approach of Wang et al. [18], we suppose a battery of 216 kWh with a mass
of 600 kg, giving a total mass ma of 4256 kg. We also suppose a payload mp

t

varying at terminals t ∈ T between 400 kg and 800 kg. The Cessna uses Jet-A1
fuel with ratio mf 0.819 kg/L, a fuel capacity fmax of 3260 L, and a refueling
rate αf of 1086 L per minute. In addition, the following security margins are
considered: fmin = 163 L (5%), smin = 10%, and smax = 95%.

We use OpenAP aircraft performance model [17] to predict the fuel con-
sumption as function δf (d,m). To do so, we deduce altitude, distance, speed,
and trajectory angle from the instance generated route. We also suppose a cruise
phase at an altitude of 10.7 km with a speed of 777 km/h. All other parame-
ters are implicitly encoded in the OpenAP model. For predicting the electricity
consumption δs(d,m), we use OpenAP predicted net thrust and convert it to
kWh.

For the charging time prediction αs
t (s1, s2), we use for all terminals t ∈ T the

non-linear charging function from Deschênes et al. [7]. Although this function is
unrealistic given that it has been designed for a 40 kWh battery of an electric
vehicle, we envision that charging technology in a near future may allow similar
durations.

5.3 Results

Table 2 presents the results of our experiments. For each algorithm (DP, DP+GD,
FF-H, MB-H) and each instance, we report the solving time, as well as costs and
consumed quantities related to each energy type. We also distinguish the solving
time of the algorithms (internal) from the calls to OpenAP performance model
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Table 2. Solving time of each instance in seconds — distinguished between internal
(algorithms) and external (OpenAP) time — as well as costs and consumed quantities
for fuel and electricity. Results reported for the Dynamic Programming algorithm (DP),
DP with the Gradient Descent post-treatment (DP+GD), the Fuel First heuristic (FF-
H) and the Maximum Battery heuristic (MB-H).

Instance Algorithm

Solving time (s) Costs ($) Consumption

Internal External Total Fuel Elec. Total Fuel
(L)

Elec.
(kWh)

PNT4W59

DP 0.43 4.65 5.08 4284 148 4433 2930 712
DP+GD - - - - - - - -

FF-H 0.06 0.06 0.12 5316 0 5316 3634 0
MB-H 0.40 0.55 0.95 4579 128 4707 3131 614

TBT5W42

DP 0.32 3.78 4.10 4335 142 4477 2991 805
DP+GD - - - - - - - -

FF-H 0.05 0.05 0.10 5421 0 5421 3740 0
MB-H 0.26 0.40 0.66 4630 126 4756 3195 691

MST6W30

DP 0.23 2.40 2.63 3148 28 3176 2650 899
DP+GD 0.40 2.56 2.96 3084 28 3112 2659 899

FF-H 0.02 0.02 0.04 4081 0 4081 3429 0
MB-H 0.14 0.14 0.28 3315 24 3338 2789 798

OTT7W43

DP 0.34 4.32 4.66 6449 95 6543 5408 1210
DP+GD 1.79 5.94 7.73 6173 95 6268 5523 1210

FF-H 0.05 0.05 0.10 7822 0 7822 6540 0
MB-H 0.37 0.50 0.87 6836 83 6919 5730 1038

(external). The smallest total costs are in bold. Note that it is possible to check
that all instances follow the assumptions discussed in Section 4. Since PNT4W59

and TBT5W42 have no fuel cost variation, DP is optimal for these instances by
Proposition 2 and the gradient descent post-treatment is not required. On the
other hand, DP+GD is optimal for MST6W30 and OTT7W43 by Proposition 3.

As expected, heuristics have the smallest solving times, while all algorithms
terminate within 8 seconds. We remark that the gradient descent can increase
the computation time of up to 40.0% (OTT7W43). On average, 92% of DP com-
putation time comes from external calls, i.e. OpenAP. This is reduced to 80 %
with DP+GD.

About costs, DP and DP+GD (when applicable) obtain the smallest total
cost on all instances. The reduction mainly comes from lower fuel consumption.
On instances where the fuel costs vary (MST6W30, OTT7W43), the gradient descent
post-treatment of DP+GD allows an average reduction of 3.1% compared to DP.
As expected, the electricity costs remain constant, since the post-treatment does
not affect charging decisions. FF-H obtains the highest costs on all instances,
with the DP algorithms leading to a reduction of up to 23.7% (average 19.4%).
This clearly shows the benefits of using the electric engine. MB-H has smaller
costs compared to FF-H, but the DP algorithms can reduce them of up to 9.4%
(average 7.0%). This shows that smarter hybridization and refueling decisions
can lead to better solutions.
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6 Conclusion

In this paper, we introduced the FRHACP, a variant of the FRVCP adapted
to the context of hybrid electric aircraft. The problem aims to handle refuel-
ing/charging and hybridization decisions given a fixed route, while minimizing
energy costs and satisfying various requirements, such as mass and schedule.
To solve the problem, we proposed a dynamic programming algorithm that has
been shown to be optimal under some assumptions. In order to fit for more real-
life settings, we relaxed one of these assumptions and allowed fuel costs to vary
between terminals by proposing a gradient descent post-treatment while main-
taining optimality. The algorithms were compared to two greedy heuristics on
four real-life inspired instances that showed the benefits of considering electric
engines and doing smart hybridization decisions. Results demonstrated an aver-
age cost reduction of up to 19.4%. The proposed algorithms found the optimal
solution within 8 seconds on all instances.
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