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Abstract. Combinatorial optimization problems are often very difficult to solve and the 

choice of a search strategy has a tremendous influence over the solver's performance. A 

search strategy is said to be adaptive when it dynamically adapts to the structure of the 

problem instance and identifies the areas of the search space that contain good solutions. 

We introduce an algorithm (RLBS) that learns to efficiently backtrack when searching non-

binary trees. Branching can be carried on using any variable/value selection strategy. 

However, when backtracking is needed, the selection of the target node involves 

reinforcement learning. As the trees are non-binary, we have the opportunity to backtrack 

many times to each node during the search, which allows learning which nodes generally 

lead to the best rewards (that is, to the most interesting leaves). RLBS is evaluated for a 

scheduling problem using real industrial data. It outperforms classic (non-adaptive) search 

strategies (DFS, LDS) as well as an adaptive branching strategy (IBS). 
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1 Introduction

Combinatorial optimization problems are often very difficult to solve and the
choice of a search strategy has a tremendous influence over the solver’s perfor-
mance. To solve a problem using search, one needs to choose a variable selection
strategy (defining the order in which variables will be instantiated), a value se-
lection strategy (defining the sequence in which we will try the variable possible
values) and a backtracking strategy (that determines to which node we should
backtrack/backjump, when a leaf is reached or a dead-end is encountered). Some
backtracking policies are encoded into full deterministic algorithms (e.g. Depth-
First Search, DFS) while others rely on more dynamic node evaluator mecha-
nisms (e.g. Best-First Search). Others (e.g. Limited Discrepancy Search [9]) can
be implemented as a deterministic iterative algorithm or as a node evaluator [3].

A strategy is said to be adaptive when it dynamically adapts to the structure
of the problem and identifies the areas of the search space that contain good
solutions. Some have proposed adaptive branching strategies (e.g. Impact-based
Search (IBS) [17]) or a backtracking strategy (e.g. Adaptive Discrepancy Search
[7], proposed for distributed optimization problems).

In this paper, we consider a machine learning approach which improves the
performance of the solver. More specifically, we use Reinforcement Learning (RL)
to identify the areas of the search space that contain good solutions. The ap-
proach was developed for optimization problems for which the search space is
encoded as a non-binary tree. As the trees are non-binary, we have the oppor-
tunity to backtrack multiple times to each node during the search. This allows
learning which nodes generally lead to the best rewards (that is, to the most
interesting leaves).

Section 2 reviews some preliminary concepts regarding adaptive search and
reinforcement learning. Section 3 explains how backtracking can be encoded as
a reinforcement learning task and introduces the proposed algorithm (Reinforce-
ment Learning Backtracking Search, or RLBS). Section 4 presents results for a
complex industrial problem that combines planning and scheduling. RLBS is
compared to more classic (non-adaptive) search strategies (DFS, LDS) as well
as an other adaptive branching strategy (IBS). Section 5 concludes the paper.

2 Background

2.1 Learning Variable/Value Selection Heuristics

Some algorithms learn during the search which variables are the most difficult
to instantiate, in order to dynamically change the order of the variables (e.g.
YIELDS [10]). In [4] and [8], each time a constraint causes a failure, the priority
of the variables involved in this constraint is increased.

In Impact Based Search (IBS) [17], the impact of the variables is measured by
observing how their instantiation reduces the size of the search space. Since IBS
picks the variable to assign and the value to try all at once, it can be considered
learning a combination of a variable and value ordering strategies.
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2.2 Learning to Backtrack

Approaches where the system learns to evaluate the quality of the nodes are of
particular interest for backtracking strategies. Ruml [18] makes an interesting
proposal regarding this. While a basic LDS policy gives the same importance to
any discrepancy, Best Leaf First Search (BLFS) dynamically attributes different
weights to discrepancies according to their depth. BLFS uses a linear regression
in order to establish the value of the weights. The model was not really used in
order to define a backtracking strategy. Instead, the search algorithm proceeds
by a series of successive descents in the tree. Ruml has achieved very good results
with this algorithm (see [19]). It was the inspiration for the following algorithm.

Adaptive Discrepancy Search (ADS) [7] is an algorithm that was proposed for
distributed optimization but it could be used in a classic COP context. During
the search, it dynamically learns which nodes it pays the most to backtrack
to (in order to concentrate on those areas of the tree first). For each node, it
tries learning a function Improvement(i) predicting how good would be the first
leaf reached after backtracking to this node for the i-th time, in comparison to
previous backtracks to the same node. The drawback of this method is that
a function needs to be learned for each open node, and updated each time it
leads to a new solution [13] (although an approximation can be computed using
regression).

The algorithm in Section 3 introduces a simplified learning mechanism based
on a basic reinforcement learning technique.

2.3 Reinforcement Learning

The fundamental idea of Reinforcement Learning (RL) is to figure out a way to
map actions to situations in order to maximize the total reward. The learner is
not told which actions to take, it must discover by itself which actions lead to
the highest reward (at long-term). Actions may affect not only the immediate
reward but also the next situation and, through all, all subsequent rewards [2].
Moreover, the actions may not lead to the expected result due to the uncertainty
of the environment.

RL uses a formal framework defining the interaction between the learner and
the environment in terms of states, actions, and rewards. The environment that
supports RL is typically formulated as a finite-state Markov Decision Process
(MDP). In each state s ∈ S, a set of actions a ∈ A are available to the learner,
among which it has to pick the one that maximizes the cumulative reward. The
evaluation of actions is entirely based on the learner’s experience, built through
its interactions with the environment. The goal of the learner is to find, through
its interactions with the environment, an optimal policy π : S → A maximizing
the cumulative reward. The cumulative reward is either expressed as a sum of
all the rewards R = r0 + r1 + · · · + rn or as a discounted sum of the rewards
R =

∑
t γ

trt. The discount factor 0 ≤ γ ≤ 1 is applied to promote the recent
rewards. The discounted sum representation of the cumulative reward is mostly
used for an MDP with no terminal state.
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A central intuition underlying reinforcement learning is that actions that lead
to large rewards should be made more likely to recur.

In a RL task, each action a, in each state s, is associated with a numeric
value Q(s, a) that represents the desirability to take the action a in the state s.
These values are called Q-Values. The higher the Q-Value, the more likely the
action is going to lead to a good solution, according to the learner’s judgment.
Every time a reward is returned to the learner, the learner must update the
Q-Value of the action that has led to this reward. However, the older Q-Value
should not be completely forgotten, otherwise the learner would be acting based
on the very last experience every single time. To do so, we keep a part of the old
Q-Value and we update it with a part of the new experience. Also, we assume
that the learner is going to act optimally afterward. Moreover, the expected
future rewards need to be discounted to express the idea of the sooner a reward
is received, the better.

Let s be the current state, s′ the next state, a an action, r the returned
reward after having taken the action a, α the learning rate, and γ the discount
factor. The update formula for the Q-Values is as follows:

Q(s, a)← (1− α)Q(s, a) + α[r + γmax
a′

Q(s′, a′)] (1)

This update formula comes in handy when the learner has to learn an action-
value representation, like in Q-Learning [20].

2.4 Reinforcement Learning and Search

The idea of using RL in solving combinatorial problems is supported by many
publications [14, 16, 21]. Some researches tried to apply RL to solve optimization
problems and some have considered solving Constraint Satisfaction Problems
(CSP) using RL techniques.

For instance, Xu et al. [21] proposed a formulation of a CSP as a RL task.
A set of different variable ordering heuristics is provided to the algorithm that
learns which one to use, and when to use it, in order to solve a CSP in a shorter
amount of time. The learning process is accomplished in an offline manner and
applied on different instances of the same CSP. The states are the instances or
sub-instances of the CSP and the actions are defined as the variable ordering
heuristics. A reward is assigned each time an instance is solved. This approach
relies on Q-learning to learn the optimal variable ordering heuristic at each
decision point of the search tree, for a given (sub)-instance of the CSP.

Moreover, Loth et al. [11] have proposed the Bandit Search for Constraint
Programming (BASCOP) algorithm that guides the exploration in the neigh-
borhood of the previous best solution, based on statistical estimates gathered
across multiple restarts. BASCOP has been applied on a job shop problem in
[12] and has been shown to match the CP-based state of the art.

A local search technique using RL is also proposed in [14]. This approach aims
at solving COPs based on a population of RL agents. The pairs 〈variable, value〉
are considered as the RL task states, and the branching strategies as the actions.
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Each RL agent is assigned a specific area of the search space where it has to learn
and find good local solutions. The expertise of the entire population of RL agents
is used. A new solution is produced by taking a part of the locally-best solution
found by one agent, and complete the remaining assignments using the expertise
of another agent.

According to [16], local search can be seen as a policy of a Markov Decision
Process (MDP) where states represent solutions, and actions define neighboring
solutions. Reinforcement learning techniques can then be used to learn a cost
function in other to improve local search. One way to do so is to learn a new cost
function over multiple search trajectories of the same problem instance. Boyan
and Moore’s STAGE algorithm [5] follows this approach and alternates between
using the learned and the original cost function. By enhancing the predictive
accuracy of the learned cost function, the guidance of the heuristics improves as
the search goes on.

Another approach that uses reinforcement learning to improve local search
in the context of combinatorial optimization is to learn a cost function off-line,
and then use it on new instances of the same problem. Zhang and Dietterich’s
work [22] falls into this category.

3 RLBS: Backtracking as a Reinforcement Learning Task

This section introduces Reinforcement Learning Backtracking Search (RLBS).
Branching is performed according to any variable/value selection heuristic. Each
time we reach a leaf/solution, we need to select the node to backtrack to. To
each available candidate (node with at least one unvisited child) corresponds a
possible action (“backtracking to this node”). Once we select a node, the search
continues from that point until we reach a new leaf/solution. The difference
between the quality of this new solution and the best solution so far is the
reward we get for performing the previous action. As our trees are non-binary, we
backtrack multiple times to each node during the search. This is an opportunity
to identify the actions that pay the most (that is, nodes that are more likely to
lead to interesting leaves/solutions).

This situation reminds the k-armed-bandit problem [1]. It is a single-state
reinforcement learning problem. Many actions are possible (pulling one of the
arms/levels of the slot machine). Each action may lead to a reward (which
is stochastic) and we need balancing between exploration and exploitation. In
our specific backtracking situation, performing an action makes us discover new
nodes/actions, in addition to giving us a reward (which is stochastic and non-
stationary).

3.1 Learning

As in classic reinforcement learning, the valuation (Q-value) of an action a is
updated each time we get a reward after performing the action. As we are in
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a single-state environment, the discount factor γ is equal to 0 and equation (1)
reduces to equation (2):

Q(a)← Q(a) + α[r(a)−Q(a)] (2)

where r(a) is the reward and α is the learning rate.
The next action to perform is selected based on those valuations. A node

that paid well at first but never got good solutions afterward will see its Q-value
decrease over time, until it becomes less interesting than other nodes/actions.

3.2 Initialization of the Algorithm

At the beginning of the search, we descend to the first leaf/solution of the tree
using a DFS. We then backtrack once to each open node (this is similar to
performing the first 2 iterations of LDS), which allows computing their Q-Values.
Then, we start using the Q-Values in order to choose the next node to backtrack
to. Each time a new node is visited for the first time, its Q-Value is initialized
using the value of its parent.

Fig. 1. Solution objective function
value according to computation time of
LDS and RLBS for case #1

Fig. 2. Solution objective function
value according to computation time of
LDS and RLBS for case #2

4 Experimentation using Industrial Data

We carried out experiments for a combined planning and scheduling problem
from the forest-products industry (lumber planning and scheduling problem).
The problem is difficult as it involves divergent processes with coproduction: a
single process produces many different products at the same time, from a single
type of raw material. Moreover, many alternative processes can produce the same
product. Finally, it involves complex setup rules. The objective is to minimize
orders lateness.

The problem is fully described in [6] which provides a good variable/value
selection heuristic specific for it. In [7], this heuristic was used to guide the
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Fig. 3. Solution objective function
value according to computation time of
LDS and RLBS for case #3

Fig. 4. Solution objective function
value according to computation time of
LDS and RLBS for case #4

Fig. 5. Solution objective function
value according to computation time of
LDS and RLBS for case #5

search in a constraint programming model. Provided with this heuristic, LDS
outperformed DFS as well as a mathematical programming approach. In [15],
parallelization was used to improve performance: however, the visiting order of
the nodes is the same as the centralized version, so it implements the same
strategy.

Table 1. Computation time needed to get the best solution (RLBS vs. LDS)

Case 1 Case 2 Case 3 Case 4 Case 5 Average

LDS 57926 5940 9922 1008 26166 20192.4
RLBS 22164 3949 7172 990 9545 8764

Time reduction ↓ 61.73% ↓ 33.52% ↓ 27.72% ↓ 1.79% ↓ 63.52% ↓ 37.66%

We used the same variable/value selection heuristic as in previous work.
We also used the same industrial data provided by a Canadian forest-products
company. However, in order to be able to compare the algorithms according to
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Table 2. Average computation time to get a solution of a given quality (RLBS vs.
LDS)

Case 1 Case 2 Case 3 Case 4 Case 5 Average

LDS 8777.82 1243.86 386.5 127.34 2776.05 2662.31
RLBS 4254.81 606.79 264.24 152.17 1320.15 1319.63

Time reduction ↓ 51.53% ↓ 51.22% ↓ 31.63% ↑ 19.5% ↓ 52.44% ↓ 33.46%

the time needed to get optimal solutions, we reduced the size of the problems (5
periods instead of 44 periods).

RLBS was evaluated using a learning rate α = 0.5. We compared the algo-
rithm to an LDS-based policy (selecting the node showing the least discrepan-
cies).

Figures 1 to 5 present the results for five different cases. Table 1 shows the
reduction of computation time (measured as the number of visited nodes) needed
to get an optimal solution. RLBS reduced computation time for each case (on
average by 37.66%).

As in industrial context we usually do not have time to wait for the opti-
mal solution, we also wanted to consider the time needed to get solutions of
intermediate qualities. Table 2 shows, for each case, the average time needed
to get a solution of any given quality. The last column shows that on average,
for all problems and all needed solution qualities, the expected improvement of
computation time is 33.46%.

Fig. 6. Solution objective function
value according to computation time of
RLBS, LDS, IBS and DFS for a toy
problem

Finally, we also tried using IBS. It performs adaptive variable/value selection,
which prevents us from using our specific variable/value selection heuristic. We
were not able to find good solutions in reasonable computation time (over 150
hours using Choco v2.1.5). Therefore, we generated really small toy problems
(Fig. 6) in order to compare RLBS, DFS, LDS and IBS. IBS showed the worst
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result, presumably because it cannot make use of the specific branching strategy
known to be really efficient for this problem. DFS was also outperformed by
LDS, as it was already reported in the literature for this problem.

5 Conclusion

We proposed a simple learning mechanism based on reinforcement learning with
allows a solver to dynamically learn how to backtrack. It was evaluated for
a difficult industrial planning and scheduling problem which is only efficiently
solved when using specific branching heuristics. The proposed adaptive strategy
greatly improved the performance in comparison with a LDS policy. This is made
possible as the mechanism allows identifying which nodes are the most profitable
to backtrack to and, thus, focusing on them first.

Using real industrial data showed the value of this approach. However, there
are still open questions regarding how the algorithm should perform with prob-
lems for which we do not know good branching heuristics. In this situation, is it
worth trying to identify which node we should backtrack to?

The combination of the adaptive backtracking strategy and adaptive branch-
ing strategies would be another interesting research opportunity.

Acknowledgments

This work has been supported by the FORAC Research Consortium industrial
partners.

References

1. Ethem Alpaydin. Introduction to machine learning. MIT press, 2004.
2. Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.
3. J Christopher Beck and Laurent Perron. Discrepancy-bounded depth first search.

In Proceedings of the Second International Workshop on Integration of AI and
OR Technologies for Combinatorial Optimization Problems (CPAIOR), Germany,
Paderborn, pages 7–17, 2000.

4. Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. In ECAI, volume 16, page 146,
2004.

5. Justin A Boyan and Andrew W Moore. Using prediction to improve combinatorial
optimization search. In Sixth International Workshop on Artificial Intelligence and
Statistics, 1997.

6. Jonathan Gaudreault, Pascal Forget, Jean-Marc Frayret, Alain Rousseau, Se-
bastien Lemieux, and Sophie D’Amours. Distributed operations planning in the
softwood lumber supply chain: models and coordination. International Journal of
Industrial Engineering: Theory Applications and Practice, 17:168–189, 2010.

7. Jonathan Gaudreault, Gilles Pesant, Jean-Marc Frayret, and Sophie D’Amours.
Supply chain coordination using an adaptive distributed search strategy. Jour-
nal of Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 42(6):1424–1438, 2012.

RLBS: An Adaptive Backtracking Strategy Based on Reinforcement Learning for Combinatorial 
Optimization

8 CIRRELT-2015-07



8. Diarmuid Grimes and Richard J Wallace. Learning from failure in constraint
satisfaction search. In Learning for Search: Papers from the 2006 AAAI Workshop,
pages 24–31, 2006.

9. William D Harvey and Matthew L Ginsberg. Limited discrepancy search. In
Proceedings of International Joint Conference on Artificial Intelligence (1), pages
607–615, 1995.
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