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1 Introduction

The generator takes two arguments and generates an unsatisfiable instance of the satisfiability problem. The first
argument indicates the required number of variables (which is reduced until it is of the form 4g + 1 where g € Ny)
and the second is used as a seed for a random number generator. If the number of variables is 4g + 1 then the number
of clauses is 8g + 12. Each clause has three literals, so if the number of variables is n, then as n increases the number
of clauses is approximately 2n and the number of literals is approximately 6n.

Generating small yet difficult instances requires a balance among the following constraints:

1. The instance should be unsatisfiable to prevent a “lucky” discovery of a satisfying assignment.

2. To keep the instance short, each clause should eliminate a large number of possibilities.

¢

3. To make the instance hard to solve, the variables in each clause should not be “related”, that is occur together

in other clauses.

Unfortunately, 2 and 3 are in conflict. Having unrelated variables tends to preclude a clause eliminating a large
number of possible assignments. In the spirit of Hirsch’s hgen8 program the compromise used here is to group the
variables into sets of size four (in two different groupings) and have multiple clauses re-use the variables in each group.

2 Satisfiable instances

Consider first the generation of satisfiable instances where the number of variables is of the form n = 4g. We partition
the variables into g groups of size four and, for each group, generate clauses of the form:

(@vbve)A@vbvd)A(@vevd) A(bVeVd)
This permits at most two variables from the set {a, b, c,d} to be true and therefore in total at most 2g = % variables
can be true.
Now we partition the variables into a different collection of g groups and, for each group, generate clauses of the
form:
(avVbVve)A(aVbVd)A(aVeVd)A(DVeVe)

This time at most two variables from each group can be false and overall at most 2g = 5 variables can be false.
Taking these two sets of clauses together it can be seen that overall exactly half of the variable must be true
and exactly half must be false. Instances of this form are not very difficult for current solvers - on an example
configuration zchaff took less than 1 second to solve a 52 variable (312 literals) instance.

It is not clear that such instances must be satisfiable, i.e. that there is always an assignment of exactly two
variables true for each of the first set of groups which also makes exactly two variables true for each of the second

set of groups, but every such instance tested so far has been satisfiable.
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3 Unsatisfiable instances

To generate unsatisfiable instances we choose to have an odd number of variables and force ”7“ to be true at the
same time as forcing ”TH to be false - clearly impossible. We achieve this by replacing the final group of four
variables with a group of five variables and, for this group only, by generating clauses of the form

(@vbvevd)A(@vbveve) A(@vbvdve) A(@vevdVve)A(bVevdVe)

This allows at most two from this group to be true. Correspondingly for the second round of positive literals we
allow at most two from the final group to be false. These unsatisfiable instances were much harder to solve. For
example, zchaff took more than 8 seconds to solve a 53 variable (348 literals) instance.

4 Partitions

To create difficult instances we need to ensure that there is as little connection as possible between the two partitions.
The first partition is the straightforward {1, 2, 3,4}, {5,6, 7, 8} etc. The second partition is obtained by using simulated
annealing, with a weight function which tries to minimise the extent to which the original partition is reflected in the
second one.

5 Conclusions

The generated benchmarks (all unsatisfiable) appear to be amongst the most difficult for their size, both in terms of
number of variables and in terms of number of literals. For some well-known solvers running under linux on a 3-GHz
processor, the largest benchmarks solved within 600 seconds were as follows:

’ Solver \ Benchmark \ No. vars \ No. lits \ Solver \ Benchmark \ No. vars \ No. lits ‘
kenfs $85-100.cnf 85 540 siege_v4 | s77-100.cnf 7 492
march_dl | s85-100.cnf 85 540 vallst s57-100.cnf 57 372
satdj s77-100.cnf T 492 zchaff s73-100.cnf 73 468
SatELite | s77-100.cnf 77 492

The complete results are given below. Note that the time scale is logarithmic and that a time of 600s means that
the solver did not finish within 600s. All of these benchmarks were generated using a seed of 100 and it can be seen
that the times for kenfs and march_dl increase in a very regular manner whereas other solvers found $69-100.cnf (69
variables, 444 literals) surprisingly easy. There is scope for further investigation using different random seeds.
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The benchmarks are available from
http://www.cs.qub.ac.uk/~i.spence/sgen.



