sgend: A generator for small but difficult
satisfiability instances

Ivor Spence
School of Electronics, Electrical Engineering and Computer Science
Queen’s University Belfast
i.spence@qub.ac.uk

I. INTRODUCTION

This is a development of the previous generators sgenl [1]
and sgen2 [2] and generates both satisfiable and unsatisfiable
instances. The instances are not derived solving any particular
problem but are crafted to be as difficult as possible to solve. In
all cases the variables in the generated instance are partitioned
into small groups and for each group there are clauses to define
relationships among the group. This is repeated for two or
more partitions.

II. UNSATISFIABLE INSTANCES

Generating small yet difficult unsatisfiable instances re-
quires a balance between the following constraints:

« To keep the instance short, each clause should eliminate
a large number of possibilities.

« To make the instance hard to solve, the variables in each
clause should not be “related”, that is occur together in
other clauses.

Unfortunately, these constraints conflict. Having unrelated
variables tends to preclude a clause eliminating a large number
of possible assignments. In the spirit of Hirsch’s hgen8 pro-
gram the compromise used here is to partition the variables
into groups of size four and five (in two different partitions)
and have multiple clauses re-use the variables in each group.

The basic technique here is identical to previous versions
of the generator. In each partition one group contains five
variables and the remaining groups each contain four. Thus
the number of variables must be of the form 4g + 1 where
g € IN. If the number of variables requested is not of this
form the generator will use the next larger possibility - thus the
generated instance will contain at least the requested number
of variables, but may contain up to three more.

Within each group of four variables the idea is to permit at
most two variables to be false For each group of size four,
generate all possible 3-clauses of positive literals, i.e.

(aVbVve)A(aVbVd)A(aVeVd)A(DVeVd)

This permits at most two variables from the set {a,b,c,d}
to be false. For the group of size five again generate all
possible 3-clauses of positive literals (10 clauses), meaning
that again only two variable from this group can be false.
In total therefore, only 2(g—1)+2 = 2g = (n—1)/2 variables
can be false.

Now partition the variables into a different collection of (g—
1) groups of size four and one of size five and again for each
group of variables generate all possible 3-clauses except this
time use all negative literals. Thus now only (n—1)/2 variables
can be true. Taking these two sets of clauses together it can
be seen that it is not possible to assign a value to every variable
since at most (n—1)/2 can be t rue and also at most (n—1)/2
can be false. Thus the generated instance is unsatisfiable.

If the number of variables is 4g + 1 then the number of
groups is g and the total number of clauses is 8g + 12. Each
clause has three literals, so if the number of variables is n,
then as n increases the number of clauses is approximately 2n
and the number of literals is approximately 6n.

III. SATISFIABLE INSTANCES

To generate difficult satisfiable instances we use three
partitions of the variables, all in groups of size five. Clauses
generated from the first partition permit at most one variable
from each group to be positive and clauses from the second
and third partitions both require at least one variable per group
to be positive. In principle therefore the instance may be
satisfiable.

If the number of groups is g (so that n = 5g) then
the instance will contain 10g binary clauses (from the first
partition) and 2g 5-clauses (g from each of the second and
third paritions), giving a total of 12g = 12n/5 clauses and 6n
literals (see Table I).

For each group in the first partition, we generate all possible
binary clauses of negative literals (10 clauses for each group).
This permits at most one true variable per group, that is a
maximum of g = n/5 true variables overall.

For each group in the second and third partitions, we
generate one 5-clause of all the positive literals. The n/5 true
variable permitted by the first set of clauses might be enough
to satisfy these subsequent clauses if they can be allocated as
one per group.

If more and more collections of 5-clauses of positive literals
are added it is less and less likely that the formula will remain
satisfiable. Empirical results indicate that two collections give
the most difficult instances for their size.

IV. PARTITIONING

For both satisfiable and unsatisfiable cases, to create difficult
instances we need to ensure that there is as little connection as

possible between the different partitions. For the first partition
natural ordering is used, e.g. {1,2,3,4},{5,6,7,8},.... Sec-
ond and subsequent partitions are obtained by using simulated
annealing, with a weight function which tries to minimise the
extent to which the original partition is reflected in the second
one. The difference between sgen4 and earlier versions lies
in this function, which now tries to minimise the correlation
between the second and third partitions as well as between
first and second and between first and third. It is anticipated
that this may make instances even harder to solve, but there
is not yet sufficient empirical evidence to confirm this.

To ensure that satisfiable instances are created when re-
quested, i.e. that it is possible to choose the g positive variables
so that there is one per group in each of the three partitions,
the technique used is to make an initial choice of the n/5
true variables and restrict the partitioning process to keep
these variables in different groups. If the option -m model-file
is chosen when generating a satisfiable instance, a satisfying
model will be written to model-file.

Different partitions can be forced by using -s to specify the
seed for the random number generation. If -s is omitted a value
of 1 is used.

V. PARAMETERS
The possible parameters are:

sat Requests that a satisfiable instance be generated.

unsat Requests that an unsatisfiable instance must be gen-
erated. Exactly one of sat and unsat must be
specified.

reorder
Having generated the clauses as described up, a ran-
dom permutation of variables and clauses is applied.
This option is enabled by default.

n Specify the minimum number of variables to be
generated. Mandatory.

S Specify a seed for random number generation. De-
faults to 1.

m Specify a filename for a satisfying model to be

written to. Requires sat to be specified.
For example, typical invocations might be:

sgend4d —-unsat -n 49 >u49.cnf
sgend4d -sat -n 120 -m s120.cnf >s120.cnf

VI. RESULTS

Table I gives an example of a 9-variable unsatisfiable
formula and a 10-variable satisfiable one.

REFERENCES

[1] 1. Spence, “sgenl: A generator of small but difficult satisfiability
benchmarks,” J. Exp. Algorithmics, vol. 15, pp. 1.2:1.1-1.2:1.15, mar
2010. [Online]. Available: http://doi.acm.org/10.1145/1671970.1671972

[2] A. V. Gelder and I. Spence, ‘“Zero-one designs produce small hard sat
instances,” in SAT, ser. Lecture Notes in Computer Science, O. Strichman
and S. Szeider, Eds., vol. 6175. Springer, 2010, pp. 388-397.

Unsatisfiable (9 variables) Satisfiable (10 variables)
p cnf 9 28 p cnf 10 24
2-3-40 -1-20
-1-3-40 -1-30
-1-2-40 -1-40
-1-2-30 -1-50
5-6-70 230
5-6-80 240
5-6-90 2-50
-5-7-80 340
5-7-90 350
-5-8-90 -4-50
6-7-80 6-70
6-7-90 -6-80
-6-8-90 690
-7-8-90 -6-100
4260 -7-80
7260 790
7460 -7-100
7420 890
3850 -8-100
3890 9-100
3810 963510
3590 4281070
3510 753920
3910 1048160
8590
8510
8910
5910

TABLE I

EXAMPLE INSTANCES

