Augmentation du filtrage de la contrainte Auplusnyaleur à l'aide d'altérations locales des multiplicateurs de Lagrange

Frédéric Berthiaume Claude-Guy Quimper

Programmation par contraintes

En programmation par contraintes on modélise des problèmes à l'aide :

- d'objectifs;
- de variables;
- de contraintes;

Les variables

- ▶ Une variable X représente une **entité** dans le problème.
- ► Chaque *X* peut prendre certaines valeurs.
- L'ensemble des valeurs que peut prendre X s'appelle le **domaine** de X, noté $\operatorname{dom}(X)$.

Exemple de deux variables:

- $ightharpoonup X ext{ avec } ext{dom}(X) = \{2, 3, 5\}$
- $ightharpoonup Y ext{ avec } ext{dom}(Y) = \{1, 3, 4\}$

Les contraintes

Les contraintes **imposent** des relations sur les variables.

$$\operatorname{dom}(X) = \{2,3,5\}$$

$$\operatorname{dom}(Y) = \{1,3,4\}$$
 Entrée :
$$X \quad Y \qquad \qquad X \quad Y$$

$$X \leq Y \qquad \qquad X \leq$$

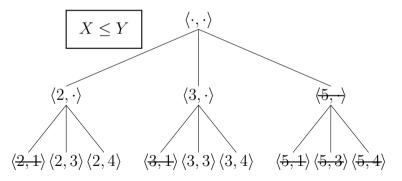
Les algorithmes de filtrage

Chaque contrainte a un algorithme de filtrage qui retire les valeurs incohérentes du domaine des variables.

Les valeurs $5 \notin dom(X)$ et $1 \notin dom(Y)$ après le filtrage.

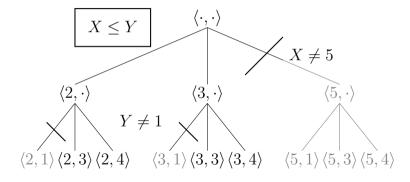
L'arbre de recherche

- L'arbre de recherche est un objet avec une structure d'arbre.
- Les feuilles de l'arbre sont toutes les combinaisons de valeurs que les variables peuvent prendre.



Algorithme de filtrage dans l'arbre de recherche

Les algorithmes de filtrage **élaguent** des branches de l'arbre.



La contrainte Auplusnvaleur (\mathcal{X},N)

Les entrées :

- ▶ Un ensemble de variables $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$.
- ▶ Une variable de **cardinalité** *N*.

 $AuPLUSNVALEUR(\mathcal{X}, N) \Leftrightarrow N \geq |\{X_1, X_2, \dots, X_n\}|.$

Exemple Auplusnvaleur (\mathcal{X}, N)

- $ightharpoonup dom(X_1) = \{1, 2\} \text{ et } dom(X_2) = \{2, 3\},$
- $ightharpoonup dom(N) = \{0, 1\}$

Avant	Algorithme de filtrage	Après		
$dom(X_1) = \{1, 2\}$ $dom(X_2) = \{2, 3\}$ $dom(N) = \{0, 1\}$	$\text{AuPlusNValeur}(\mathcal{X},N)$	$ \begin{array}{c} \operatorname{dom}(X_1) = \{2\} \\ \operatorname{dom}(X_2) = \{2\} \\ \operatorname{dom}(N) = \{1\} \end{array} $		

Le programme linéaire de la contrainte AuPlusNValeur

La contrainte AuPlusNValeur s'encode avec ce programme linéaire.

$$egin{array}{ll} \min_{oldsymbol{y}} & h(oldsymbol{y}) = oldsymbol{1}^ op oldsymbol{y} \ & ext{s.t.} & Aoldsymbol{y} \geq oldsymbol{1} \ & oldsymbol{0} \leq oldsymbol{y} \leq oldsymbol{1} \end{array}$$

Les y sont des variables binaires (relaxées).

$$\forall j \in \bigcup_{i=1}^{n} \text{dom}(X_i), \quad j \longleftrightarrow y_j.$$

 $y_j=1$ signifie que la valeur j est utilisée pour couvrir des variables X_i . $y_j=0$ signifie que la valeur j n'est pas utilisée pour couvrir des variables X_i .

La fonction objectif $\min_{\boldsymbol{v}} h(\boldsymbol{v}) = \mathbf{1}^{\top} \boldsymbol{v}$

La contrainte AuPlusNValeur s'encode avec ce programme linéaire.

$$egin{array}{ll} \min_{m{y}} & h(m{y}) = m{1}^{ op} m{y} \ & ext{s.t.} & Am{y} \geq m{1} \ & m{0} < m{y} < m{1} \end{array}$$

L'objectif est de minimiser le nombre de valeurs utilisées pour couvrir l'ensemble $\{X_1, \ldots, X_n\}$.

$$h(\boldsymbol{y}) = \mathbf{1}^{\top} \boldsymbol{y} = \sum_{j=1}^{m} y_{j}.$$

h(y) est une borne inférieure sur N.

Les contraintes de couverture $Aoldsymbol{y} \geq 1$

La matrice A contient de l'information sur les domaines des variables.

$$a_{ij} = \begin{cases} 1 & \text{si } j \in \text{dom}(X_i) \\ 0 & \text{si } j \notin \text{dom}(X_i) \end{cases}$$

Pour l'exemple $dom(X_1) = \{1, 2\}, dom(X_2) = \{2, 3\}$:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

$$\mathbf{A}\boldsymbol{y} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} y_1 + y_2 \\ y_2 + y_3 \end{pmatrix} = \begin{pmatrix} \# \text{ valeurs couvrant } X_1 \\ \# \text{ valeurs couvrant } X_2 \end{pmatrix} \ge \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Le programme linéaire de la contrainte Auplusnvaleur

En résumé, voici le programme linéaire de la contrainte AUPLUSNVALEUR est

$$egin{array}{ll} \min_{m{y}} & h(m{y}) = m{1}^{ op} m{y} \ & ext{s.t.} & \mathrm{A}m{y} \geq m{1} \ & m{0} \leq m{y} \leq m{1} \end{array}$$

Filtrage par coût-réduit

- ightharpoonup Le programme linéaire a été résolu et on a trouvé une solution y.
- Le coût-réduit d'une valeur j est écrit ρ_j .

$$\rho_j = h(\mathbf{y'}) - h(\mathbf{y})$$

où y' est une solution où on a forcé j a être utilisée (si $y_j = 0$) ou a ne pas être utilisée (si $y_j = 1$).

▶ Si $h(y') > \max(\text{dom}(N))$ la valeur j ne peut pas être forcé dans un autre état que celui de y.

La relaxation Lagrangienne de la contrainte Auplusnvaleur

Cambazard et Fages ont fait cette relaxation

$$\begin{array}{c|c} \min_{\boldsymbol{y}} \ h(\boldsymbol{y}) = \mathbf{1}^{\top} \boldsymbol{y} \\ \text{s.t.} \quad A \boldsymbol{y} \geq \mathbf{1} \\ 0 \leq \boldsymbol{y} \leq \mathbf{1} \end{array} \qquad \begin{array}{c} \min_{\boldsymbol{y}} \ h'(\boldsymbol{y}, \boldsymbol{\lambda}) = \mathbf{1}^{\top} \boldsymbol{y} + \boldsymbol{\lambda}^{\top} (\mathbf{1} - A \boldsymbol{y}) \\ \text{s.t.} \quad 0 \leq \boldsymbol{y} \leq \mathbf{1} \\ \boldsymbol{\lambda} \geq \mathbf{0} \end{array}$$

 λ est un vecteur de **multiplicateurs de Lagrange**.

Où $\lambda \geq 0$ assure le respect des contraintes.

Le respect des contraintes et $\lambda \geq 0$

$$egin{aligned} \min_{oldsymbol{y}} \ h(oldsymbol{y}) &= \mathbf{1}^{ op} oldsymbol{y} & \min_{oldsymbol{y}} \ h'(oldsymbol{y}, oldsymbol{\lambda}) &= \mathbf{1}^{ op} oldsymbol{y} + oldsymbol{\lambda}^{ op} (\mathbf{1} - \mathbf{A} oldsymbol{y}) \ & ext{s.t.} & 0 \leq oldsymbol{y} \leq \mathbf{1} \ & 0 \leq oldsymbol{y} \leq \mathbf{1} \ & oldsymbol{\lambda} \geq \mathbf{0} \end{aligned}$$

Regardons le terme ajouté pour la variable X_1 du problème avec $dom(X_1) = \{1,2\}$ et $dom(X_1) = \{2,3\}$:

Résoudre le problème relaxé

La relaxation présentée :

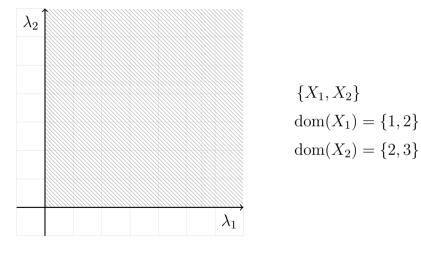
$$egin{aligned} \min_{oldsymbol{y}} \ h(oldsymbol{y}) &= oldsymbol{1}^{ op} oldsymbol{y} & \min_{oldsymbol{y}} \ h'(oldsymbol{y}, oldsymbol{\lambda}) &= oldsymbol{1}^{ op} oldsymbol{y} + oldsymbol{\lambda}^{ op} (oldsymbol{1} - oldsymbol{A} oldsymbol{y}) \ & ext{s.t.} \quad oldsymbol{0} \leq oldsymbol{y} \leq oldsymbol{1} \ oldsymbol{0} \leq oldsymbol{y} \leq oldsymbol{1} \ oldsymbol{0} \leq oldsymbol{y} \leq oldsymbol{1} \ oldsymbol{\lambda} \geq oldsymbol{0} \end{aligned}$$

Celle qu'on utilise pour résoudre le problème :

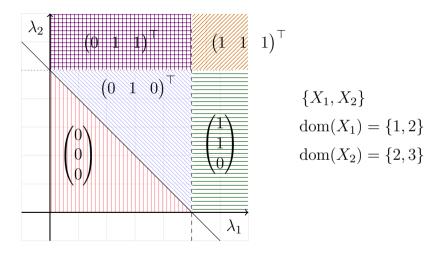
$$egin{aligned} \min_{oldsymbol{y}} \ h(oldsymbol{y}) &= oldsymbol{1}^{ op} oldsymbol{y} & \min_{oldsymbol{y}} \ h'(oldsymbol{y}, oldsymbol{\lambda}) &= ig(oldsymbol{1} - \mathrm{A}^{ op} oldsymbol{\lambda} ig)^{ op} oldsymbol{y} + oldsymbol{\lambda}^{ op} oldsymbol{1} \ & \mathrm{s.t.} \quad oldsymbol{0} \leq oldsymbol{y} \leq oldsymbol{1} \ & oldsymbol{\lambda} \geq oldsymbol{0} \end{aligned}$$

Le vecteur de coût réduit est $q(\lambda) = 1 - A^{\top} \lambda$.

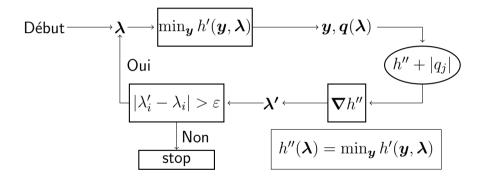
L'espace des multiplicateurs de Lagrange



Différentes régions produisent différents $oldsymbol{y}$



Relaxation Lagrangienne



L'optimisation Lagrangienne

La relaxation présentée :

$$egin{aligned} \min_{oldsymbol{y}} \ h(oldsymbol{y}) &= oldsymbol{1}^{ op} oldsymbol{y} & \min_{oldsymbol{y}} h'(oldsymbol{y}, oldsymbol{\lambda}) &= oldsymbol{1}^{ op} oldsymbol{y} + oldsymbol{\lambda}^{ op} (oldsymbol{1} - oldsymbol{A} oldsymbol{y}) \ ext{s.t.} & 0 \leq oldsymbol{y} \leq oldsymbol{1} \ 0 \leq oldsymbol{y} \leq oldsymbol{1} \ & oldsymbol{\lambda} \geq oldsymbol{0} \end{aligned}$$

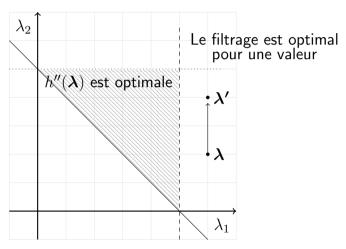
On regarde le respect des contraintes $\nabla h''(\lambda) = 1 - Ay$. Plus il y a de reines, moins h(y) est minimisée. Ainsi on optimise λ pour respecter le premier objectif

$$\boldsymbol{\lambda^{(k+1)}} = \max(\mathbf{0}, \boldsymbol{\lambda^{(k)}} + \alpha_k \boldsymbol{\nabla} h''(\boldsymbol{\lambda^{(k)}}))$$

Ce type de méthode a la propriété de converger vers des maximums globaux parce que la fonction $h''(\lambda)$ est *concave*.

L'algorithme d'altérations locales

L'idée est de modifier les multiplicateurs de Lagrange pour augmenter le filtrage.



Quelle direction?

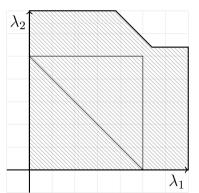
▶ On a définit une nouvelle fonction : la fonction de borne inférieure forcée

$$\rho_j(\lambda) = h''(\lambda) + |q_j(\lambda)|$$

- \triangleright On utilise cette nouvelle fonction pour diriger l'optimisation des λ .
- ightharpoonup On recommence une optimisation Lagrangienne pour chaque (ou du moins presque) valeur j.

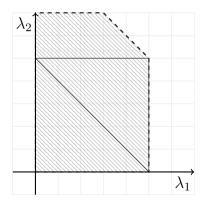
Un seuil

- ▶ Regarder toutes les valeurs possibles peut être très long.
- ▶ On ajoute une étape, donc il faut être efficace.
- ▶ On introduit un seuil pour choisir quelle valeur prendre.



Notre objectif

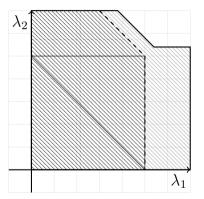
L'objectif est que l'optimisation de multiplicateur de Lagrange tombe dans la zone de filtrage:



Dans cette zone, on filtre la valeur testée.

Le nombre de pas

On a aussi un critère de convergence sur le nombre de pas qu'on permet pour se rendre dans la zone de filtrage.



Un gros problème

La fonction $\rho_j(\lambda) = h''(\lambda) + |q_j(\lambda)|$ n'est pas **concave** (et ni convexe). Alors on perd la propriété de converger à un maximum global.



Expériences et résultats

- Le problème des reines dominantes
- Le problème de disposition d'entrepôts

Le problème des reines dominantes

Le problème des reines dominante a vise à couvrir complètement un échiquier $n \times n$ avec le moins de reines possible.

$\displaystyle \displaystyle \displaystyle \mathop{\underline{\underline{W}}}_{1}$	${\underline{\underline{W}}}_2$	$\frac{\mathbf{W}}{3}$	${\displaystyle \mathop{\underline{\mathbb{W}}}}_{4}$	₩ ₅	₩ ₆
₩ ₇	₩ ₈	₩9	₩ ₁₀	₩ 11	₩ ₁₂
₩ ₁₃	₩ ₁₄	₩ ₁₅	₩ ₁₆	₩ ₁₇	₩ ₁₈
₩ ₁₉	₩ ₂₀	₩ ₂₁	₩ ₂₂	₩ ₂₃	₩ ₂₄
₩ ₂₅	₩ ₂₆	₩ ₂₇	₩ ₂₈	₩ ₂₉	₩ ₃₀
₩ ₃₁	₩ ₃₂	₩ ₃₃	₩ ₃₄	₩ ₃₅	₩ ₃₆

₩ 1	1				1
1	1	27	17	17	17
1	17	1	17	₩ ₁₇	17
1	27	27	1	17	17
M	27	₩ ₂₇	27		27
	17	27	27	17	1

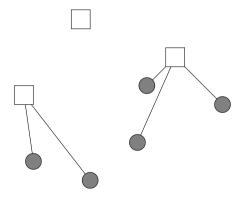
Résultats

		Harm	nonic		Geometric				Newton			
n/v F	Nodes	Fails	Iters	Time	Nodes	Fails	Iters	Time	Nodes	Fails	Iters	Time
7/4 Y <i>LR</i> ⁰	142	112	170k	0.165	166	135	84k	0.089	176	145	19k	0.026
LR^+	31	4	19k	0.024	31	4	6k	0.011	31	4	2k	0.005
8/5 Y LR ⁰	267	225	329k	0.301	362	320	186k	0.197	283	241	33k	0.045
LR^+	41	6	26k	0.040	76	41	24k	0.028	41	6	3k	0.007
8/4 N LR ⁰	2k	2k	2.4M	3.497	3k	3k	1.6M	2.461	2k	2k	279k	0.765
LR^+	1.2k	1.2k	1.5M	2.066	1k	1k	698k	1.177	1k	1k	146k	0.362
9/5 Y <i>LR</i> ⁰	1k	953	1.1M	2.188	1k	969	544k	1.315	956	909	113k	0.443
LR^+	490	443	576k	0.880	561	514	304k	0.556	441	394	57k	0.167
$10/5 \; {\sf Y} \; LR^0$	113k	113k	133M	300	195k	195k	107M	300	944k	944k	91M	300
LR^+	9.4k	9.4k	11M	26.9	761	725	471k	3.711	844	808	121k	2.59
$11/5 \; {\sf Y} \; LR^0$	32k	32k	38M	102.2	54k	54k	30M	83.1	83k	83k	7.34M	37.4
LR^+	4k	4k	5.6M	28.7	3.4k	3.4k	2.1M	11.6	4k	4k	461k	9.61

Table: Dominating queens instances on $n \times n$ chessboards with v queens. If the instance is feasible we wrote Y and if not N. The time is in seconds.

Le problème de disposition d'entrepôts

On a des clients et d'entrepôts et on minimise les coûts de transport pour amener les produits des entrepôts aux clients.



Comparaison de LR^0 et LR^+

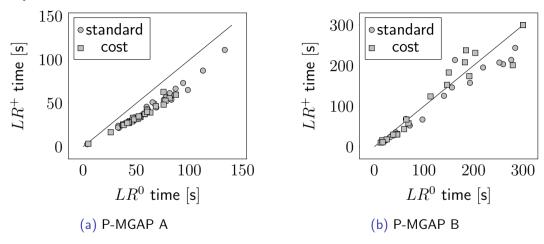


Figure: Time comparison of LR^0 and LR^+

Résultats sur les trois classes

Problem	Heuristics	Optimal		Proof		# of		Av. time gain of	Av. node
				optimal		better		LR^+ on LR^{0*}	reduction from
						solutions			LR^0 to LR^{+*}
		LR^0	LR^+	LR^0	LR^+	LR^0	LR^+	[%]	[%]
\overline{A}	standard	27	27	27	27	0	1	28.4	71.5
	cost	29	30	27	27	0	1	33.2	72.0
В	standard	28	28	18	18	0	2	15.6	72.6
	cost	28	28	18	18	0	0	8.10	71.3
\overline{C}	standard	5	6	0	0	0	8	_	_
	cost	8	12	0	0	0	13	_	_

Table 3: Results of the three classes of problem of the facility location problem. Each class has 30 instances and the solutions are known.

^{*} On the instances which we were able to prove the optimality.

Conclusion

- ► Notre algorithme est plus rapide.
- Notre algorithme réduit significativement la taille de l'arbre de recherche.
- Nous allons nous pencher sur le problème du Sac à Dos.