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Introduction

@ One of many visions of what problem solving is:

Real-World

issues

Real-World

Solutions Data

AN

Solving Models
techniques + Formalisms
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Introduction

@ The most important part is the last link...

Real-World

issues

Real-World
Data

Solving Models
techniques + Formalisms

Solutions
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Introduction

e Fortunately for us, that link depends on everything we like... :)
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Introduction

e Fortunately for us, that link depends on everything we like... :)

Real-World

issues

Real-World

luti
Solutions Data

Solving Models
techniques + Formalisms

@ Today's focus is “How to get that last link™
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Introduction

@ In combinatorial optimization, one way to get that link is...

Real-World

issues

Variables Real-World
assignements Data

Search trees Variables
+ Heuristics + Constraints
+ Filtering + ... + Objectives

@ ... constraint programming (CP)!
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Introduction

@ An application of CP to real-world issues:

Search and rescue,
surveillance, ...

Maps, sensor’s specs,

Search plans whereabouts, ...

Choco Solver
+ Total detection
+ Filtering + ...

OSP problem
+ CP models

OSP = Optimal search path problem
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Outline

@ Introduction
© Constraint Programming
© An Application to Search Theory

Conclusion
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Constraint Programming

Define the problem
Model the problem
e Variables, constraints(, objective function)

Solve the problem
e Search tree, heuristic, filtering, ...
@ Obtain a solution:

e Each variable is assign to one value
e The assignment satisfies all constraints
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The Hamiltonian Cycle Problem

@ Given a graph G = (V(G),£(G)).
@ Find a cycle on G that visits each vertex exactly once.
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The Hamiltonian Cycle Problem Model

@ Given a graph G = (V(G),£(G)).
@ Find a cycle on G that visits each vertex exactly once.

@ A solution: Follow the cycle abcdefa.
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The Variables

The Hamiltonian Cycle Problem Model

@ The variables T; defines our position at time 1 < i < 6.
@ Their domains are dom(T;) = {a, b, c,d, e, f}.

Variables Domain dom T;
T1 b ¢ d
T2
T3
Ts
Ts
Ts

L L L L LY
oo o o T
[T o N o B o N o
Q Q Q Q Q
® ® ® ® ® O
e e
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The Constraints

The Hamiltonian Cycle Problem Model

@ Visit each vertex exactly once:
A/lDifferent(Tl, TQ, T3, T47 T5, T(,)
@ This is a cycle:

(Ti, Tiy1) € £(G), Vi:1<i<6,
(T6, Tl) S g(G)

@ The domains:

dom(T;) ={a,b,c,d, e, f}, Vi:1<i<6.

M. Morin et al. (ULaval) On CP for Path Planning with Uncertainty February 15, 2013



Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(6), © (v
G)

(T(,, Tl)Eg( , ° e

dom(T;) ={a,b,c,d,e f}.

Variables Domain dom T;
T1 a b c d e f
T> a b ¢ d e f
T3 a b ¢ d e f
Ta a b ¢ d e f
Ts a b ¢ d e f
Te a b ¢ d e f
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(6), © (v
G)

(T(,, Tl)Eg( , ° e

dom(T;) ={a,b,c,d,e f}.

Variables Domain dom T; -
T1 a b c d e f ,
T a b ¢c d e f n @ ®» © @ «
T3 a b ¢ d e f
Ta a b ¢ d e f
Ts a b ¢ d e f
Te a b ¢ d e f
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent(Ty, Ta, T3, Ta, Ts, To), (O—®
(Ti, Tiv1) € £(G), (o) (»)
(T6,T1)€€(G),

dom(T;) ={a,b,c,d,e f}. O )
Variables Domain dom T; -

Tl a

T a b ¢c d e f n-0o 00 ee

T3 a b ¢ d e f

Ta a b ¢ d e f

Ts a b ¢ d e f

Te a b ¢ d e f
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent(Ty, Ta, T3, Ta, Ts, To), (O—®
(Ti, Tiy1) € £(G), ) (»)
(T6a Tl) € S(G)ﬂ
dom(T;) ={a,b,c,d,e f}. O )
Variables Domain dom T; B
Tl da _
T a b ¢c d e f n «~- 00000
T3 a b ¢ d e f T :
Ta a b ¢ d e f 2 &L W e !
Ts a b ¢ d e f
Te a b ¢ d e f
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o (»)
(T6a Tl)eg(G)a e e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; _

Tl a -
L I 000 e e
T3 a b c d e f
Ty a b ¢c d e f L0006 ee
Ts a b c d e f
Te a b c d e f
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent(Ty, Ta, T3, Ta, Ts, To), (O—®
(Ti, Tiy1) € £(G), ) (»)
(T6a Tl) € S(G)ﬂ
dom(T;) ={a,b,c,d,e f}. O )
Variables Domain dom T; B
Tl da _
T b ¢ d e f n» 00000
T3 a b ¢ d e f T :
Ta a b ¢ d e f 2 v @ D e !
Ts a b ¢ d e f
Te a b ¢ d e f
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o (»)
(T6a Tl)eg(G)a e e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; _

Tl a -
T b i+~ 0000
T3 a b c d e f
Ty a b ¢c d e f & 9000
Ts a b c d e f
Te a b c d e f
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) ®)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; B

Tl a i
I T 000 ee
T3 a b c d e f
Ta a b c d e f I 2 . . . ‘
T5 a b C d e f T a b . d e f
Te a b c d e f :
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) ®)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; B
Tl a i
I T 000 ee
T3 a
Ta a b c d e f I b\...‘
Ts a b c d e f
T a
Te a b c d e f 3 0000
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) ®)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; ~

Tl a i
I T 000 ee
T3 b ¢ d e f
Ta a b c d e f I 2 . . . ‘
T5 a b C d e f T b . d e f
Te a b c d e f :
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) ®)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; ~
Tl a i
I T 000 ee
T3 b
Ta a b c d e f I B . . . ‘
Ts a b c d e f
T
Te a b c d e f 3 9000
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) ®)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; B

Tl a i
I T 000 ee
T3 c d e f
Ta a b c d e f I 2 . . . ‘
T5 a b C d e f T . d e f
Te a b c d e f :
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Backtracking

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) ®)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; B
Tl a i
I T 000 ee
T3 C
Ta a b c d e f I b . . . ‘
Ts a b c d e f
T ¢
Te a b c d e f : ®00
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The Solution and its Search Tree

Solving the Hamiltonian Cycle Problem

Variables Domain dom T; Iy (a 0000

Tl a

T b T, b 000
T3 Cc

Ta d T3 ¢ . . ‘
Ts € T d

Te f ! 00
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All Search Trees Are Not Created Equals

Solving the Hamiltonian Cycle Problem

@ Performance metrics
e Total number of backtrackings
e Total solving time
@ Possible enhancements
e Variable selection heuristics
e Value selection heuristics
e Filtering
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Domain filtering

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(6), © (v
G)

(T(,, Tl)Eg( , ° e

dom(T;) ={a,b,c,d,e f}.

Variables Domain dom T;
T1 a b c d e f
T> a b ¢ d e f
T3 a b ¢ d e f
Ta a b ¢ d e f
Ts a b ¢ d e f
Te a b ¢ d e f
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Domain filtering

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(6), © (v
G)

(T(,, Tl)Eg( , ° e

dom(T;) ={a,b,c,d,e f}.

Variables Domain dom T; _
T1 a b c d e f ]
T a b ¢c d e f n o ® @© W «
T3 a b ¢ d e f
Ta a b ¢ d e f
Ts a b ¢ d e f
Te a b ¢ d e f
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Domain filtering

Solving the Hamiltonian Cycle Problem

AllDifferent(Ty, Ta, T3, Ta, Ts, To), (O—®
(Ti, Tiv1) € £(G), (o) (»)
(T6,T1)€€(G),

dom(T;) ={a,b,c,d,e f}. O ©
Variables Domain dom T; -

Tl a

T 4 b c d ¢ f n = @000 0

T3 4 b c d e f

N 4 b c d e f

Ts 4 b c d e f

Te 4 b c d e f
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Domain filtering

Solving the Hamiltonian Cycle Problem

AllDifferent(Ty, Ta, T3, Ta, Ts, To), (O—®
(Ti, Tiv1) € £(G), (o) (»)
(T6,T1)€€(G),
dom(T;) ={a,b,c,d,e f}. O )
Variables Domain dom T; B
Tl a
T b ¢ £ n = @000 0
T3 b ¢ d e f T :
T b c d e f 2 b e !
Ts b ¢ d e f
Te b ¢ d e f
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Domain filtering

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o (»)
(T6a Tl)eg(G)a e e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; ~

Tl a
N . 000ee
T3 5 c ll )é /
Ty 5 ¢ d e f L : ‘ ‘
T5 5 ¢ d e f
Ts B ¢ d ¢ f
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Domain filtering

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) (»)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T;
Tl da -
L - 000 ee
T c -
3 . T ® @ o

Ty
f
T ¢
; 3
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Domain filtering

Solving the Hamiltonian Cycle Problem

AllDifferent( Ty, Ta, T3, Ta, Ts, Te), O O
(Ti, Tiv1) € £(G), (o) ®)
(T(,, Tl)eg(G)a ° e
dom(T;) ={a,b,c,d,e f}.
Variables Domain dom T; B
Tl a i
I T - 000 ee
T3 C
T4 d e TZ ’ . ‘
T5 d e f
T ¢

T f :
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The Solution and its Search Tree

Solving the Hamiltonian Cycle Problem

Variables Domain dom T; n «» @000 00

no| b RO o
% ’ d I :
;Z - fa S
T . @
Ts f
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The Travelling Salesman Problem

@ Given a graph G = (V(G),£(G)), and a cost function c(x, y) on the
edges of G.

@ Find an hamiltonian cycle of minimal cost on G.
1
4 2
2 1
1 1
3

2
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The Travelling Salesman Problem Model

@ Given a graph G = (V(G),£(G)), and a cost function c(x, y) on the
edges of G.

@ Find an hamiltonian cycle of minimal cost on G.
1
4 2
2 1
1 1
3

2

@ A solution: Follow the cycle abcedfa.
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The Constraints

The Travelling Salesman Problem Model

@ Minimize the sum of the cost of each edge
min C,

where C = ¢[Tg, T1] + ey [ Ti, Teral-
@ Visit each vertex exactly once:

AllDifferent( Ty, To, T3, Ta, Ts, Te).
@ This is a cycle:

(Ti, Tiy1) € £(G), Vi:l1<i<6,
(T6, Tl) S g(G)

@ The domains:

dom(T;) ={a,b,c,d,e,f}, Vi:1<i<6.
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The Constraints

Solving he Travelling Salesman Problem

@ Use the same concepts of search trees:

e An objective function?

e It's just more variables and constraints...
@ However, the bound on the objective function is of capital importance.
@ The stronger the filtering, the best is the performance.

e A tight upper bound filters the domain of the decision variables.
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The Optimal Search Path Problem

Goals

Find a path that maximizes the probability of locating a survivor, a
robber, an object, etc.

@ Uncertain object detectability and location

@ Markovian motion model

@ Search theory (Stone [2004])

@ N'P-hard problem ([Trummel and Weisinger, 1986])
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The OSP Problem

Definitions

@ Ga=(V(Ga),E(Ga)) where V (Gp) is a set of discrete regions.
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The OSP Problem

Definitions

e 7 ={1,..., T} is the set of time steps available to search Ga.
@ y: € V(Ga) is the searcher's location at time t € 7.
e When y; = r € V(Gp), the vertex r is searched at time t.

e P=|yo,y1,...,y7] is the search path (plan).

e yo € V(Ga) is the searcher’s starting location.
e Forallte T, (yt717)/f) S g(GA)
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The OSP Problem

Definitions

@ The object’'s movements are independent of the searcher’s actions.

@ M is the Markovian motion model matrix.
0

O, O
O

O Oul=NI=
clNwRG~ O
GWI=G= O

QW[ HOTNN | =

Blue terms are a priori known probabilities.
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The OSP Problem

Definitions

@ The initial probability of containment distribution: pocj.
@ The local probability of success (Vt € T):
Prob. of success Prob. of success
—
posi(r) = poc(r) X  pod(r)
—— ——

Prob. of containment  Prob. of detection

@ The probability of detection (conditional to the presence of the
object):
pOd(I’)E(O,l], if)/t:f;
pod(r) =0, otherwise.

The local probability of containment (Vt € {2,..., T}):

poct(r) = Z M(s, r) [poct—1(s) — post—1(s)] -
seV(Ga)
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The OSP Problem

Problem Statement

Find an optimal search plan P = [yp, y1,. .., y7| maximizing the
cumulative overall probability of success (COS) defined as:

COS(P)=>_ > posr).

teT reV(Ga)
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The OSP Problem

Example
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The OSP Problem

Example

@ Let T =5, yp =3, poci(4) = 1.0, pod(y:) =0.9 (Vt € T), and
assume a uniform Markovian motion model between accessible
vertices.
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The OSP Problem

Example

@ Let T =5, yp =3, poci(4) = 1.0, pod(y:) =0.9 (Vt € T), and
assume a uniform Markovian motion model between accessible

vertices.
@ P* is the optimal search plan:

P* = [y0>yla"'7y5] = [37677>77777]'

February 15, 2013
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The OSP Problem

Example

Probability distribution at t =0

C%s N T T
poco n ~

poco %(1) . I P*:[yo,yl,...,yg,]:[3,6,7,7,7,7].
poco n
poco(9)
poco(8)

o
o
8
~
|
O 0000000000000
T

| |
0 05 1

probability
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The OSP Problem

Example

Probability distribution at t =1

C]%S N T M

poci ~ = .

poci %é - L P* = [)/07}/17---;)/5]:[37677777777]-

poci ~
poci
poci
pocy
poci
pocy
poci
pocy
poci
pocy
poci

|
©O o o0ooooo oo
T

U

OFRNWHAOCIO N0 O
|

o o o o

| |
0 05 1

probability
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The OSP Problem

Example

Probability distribution at t =2

cOS —:]‘045 T
poc2(12) [ o I "
pocz(11) || o = P :[)/07}/17---a)’5]:[37677777777]-
poc2(10) | o I

poc2(9) || o =
poc2(8) | o I
poca(7) || 0.05 =
poc2(6) | o I
poc2(5) | o =
poca(4) 05
poc2(3) || o =
poc2(2) | o I
poca(1) -{| o =
poc2(0) | o ‘ I

0 05 1

probability
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The OSP Problem

Example

Probability distribution at t = 3

CoS | 0.6b6
pocs(12) [ o = "
pocs(11) || o = P :[)/07}/17---a)’5]:[37677777777]-
poc3(10) | o =

pocs(9) || o =
pocs(8) ] 0.012 =
pocs(7) | 0.026 =
pocs(6) || 0.012 =
pocsz(5) | o =
pocs(4 7:] 0.263 |
pocs(3) || o =
pocsz(2) | o I
pocs(1) -{| o =
pocz(0) | o ‘ I

0 05 1

probability
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The OSP Problem

Example

Probability distribution at t = 4

COS ols17
poca(12) [ 0.001 I N
pocs(11) || 0.001 = P* = [yo,y1,...,y5] = [3,6,7,7,7,7].
pocs(10) | 0.001 I

pocs(9) - 0.001 I
poca(8) | 0.013 I
pocs(7) || 0.015 =
poca(6) | 0.008 I
poca(5) | 0.001 .
pocs(4) ||| 0138 -
pocs(3) - 0.001 I
poca(2) | 0.001 I
pocs(1) | 0.001 .
poca(0) 0.001 I

0 05 1

probability
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The OSP Problem

Example

Probability distribution at t =5

CoS | 4889
pocs(12) [ 0.002 = N
pocs(11) | 0.002 P* = [)/07}/1,---;)’5]:[37677777777]-
pocs(10) | 0.002

pocs(9) - 0.001
pocs(8) | o.01
pocs(7) | 0.008
pocs(6) || 0.008
pocs(5) || 0.001
pocs(4) || 0.073
pocs(3) - 0.001
pocs(2) | 0.001
pocs(1) | 0.001
pocs(0) || 0.001 ‘
0 05 1
probability
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A CP Model for the OSP

@ The variables and the constraints are given by the problem definition.
e Two equivalent objective functions with a different performance:
e First choice: The double sum definition

max COS,
CoS=>" Y POS(r)
teT reV(Ga)

e Second choice: The sum and max definition

max COS,

COS =
2 3%, PO )
teT
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A CP Model for the OSP

Two equivalent objective functions

@ The searcher searches one vertex per time step.
@ Thus, there is only one vertex r such that POS:(r) # 0.

o Consequently,

maxz Z POSt(r)EmaxZ max POS(r).

teT reV(Ga) te7 r€V(Ca)
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A CP Model for the OSP

A different performance

o First choice: Poor filtering = poor bound:

sup(dom(COS)) Z Z sup(dom(POS(r))).
teT reV(Ga)

@ Second choice: Better filtering = better bound:

sup(dom(COS)) Z max sup(dom(POS;(r))).
teTfEV(GA)
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A CP Model for the OSP

A different performance

@ Suppose T = 2, and assume a 2 vertices graph. Given the following
non null success probabilities variables:

dom(POS;(1)) = [0.0,0.2],
dom(POS;1(2)) = [0.3,0.4],
dom(POS,(1)) = [0.0,0.1],
dom(POS,(2)) =[0.1,0.2],

@ What is the value of sup(dom(COS)) with the > function?

M. Morin et al. (ULaval) On CP for Path Planning with Uncertainty February 15, 2013 56 /



A CP Model for the OSP

A different performance

@ Suppose T = 2, and assume a 2 vertices graph. Given the following
non null success probabilities variables:

dom(POS;(1)) = [0.0,0.2],
dom(POS;1(2)) = [0.3,0.4],
dom(POS,(1)) = [0.0,0.1],
dom(POS,(2)) =[0.1,0.2],

@ What is the value of sup(dom(COS)) with the > function?
@ The upper bound of the > objective function is

sup(dom( COS)) Z Z sup(dom(POS(r))),
teT reV(Ga)

sup(dom(COS)) =0.24+0.4+0.1+0.2=0.9.
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A CP Model for the OSP

A different performance

@ Suppose T = 2, and assume a 2 vertices graph. Given the following
non null success probabilities variables:

dom(POS;(1)) = [0.0,0.2],
dom(POS;(2)) = [0.3,0.4],
dom(POS,(1)) = [0.0,0.1],
dom(POS,(2)) = [0.1,0.2],

e What is the value of sup(dom(COS)) with the max function?
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A CP Model for the OSP

A different performance

@ Suppose T = 2, and assume a 2 vertices graph. Given the following
non null success probabilities variables:

dom(POS;(1)) = [0.0,0.2],
dom(POS1(2)) = [0.3,0.4],
dom(POS,(1)) = [0.0,0.1],
dom(POS,(2)) = [0.1,0.2],

e What is the value of sup(dom(COS)) with the max function?
@ The upper bound of the max objective function is
sup(dom(COS)) = Z max sup(dom(POS(r))),
teT reV(Ga)
sup(dom(COS)) = 0.4+ 0.2 = 0.6.
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The Total Detection Heuristic

@ Ignore negative information when searching.
@ What is the most promising vertex?

e The one with the highest total probability of detecting the object in the
remaining time.
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The Total Detection Heuristic

Variables and Values Ordering

@ Decision variables order:Yy, Y1,..., YT .

@ Values order:

argmax Y we(y’,0)POC(0), VteT.
y’€dom (Yt) OEV(GA)

e w¢(y’, 0) is the conditional probability that the searcher detects the
object before the end of the search given that, at time t, the searcher
is in y’ and the object in o.

e w¢(y’, 0) is computed using dynamic programming and the following
data:

o the Markovian motion model matrix M;
e the probability of detection pod.
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The Total Detection Heuristic

The Recurrence Relation

o Let w¢(y, 0) be the conditional probability that the searcher detects
the object before the end of the search given that, at time t, the
searcher is in y and the object in o:

pod(o), ifo=yandt=T,
aef |0, ifo£yandt=T,
we(y,0) = .
pe(y o), fotyandt<T,
pod(0) + (1 — pod(0))pt(y,0), ifo=yandt<T.
where

pt(y,0) = M(o,0') max w ' o).
i(y, o) o’;/\f(o) (0.0) max weia(y',o)
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The Total Detection Heuristic

Summary

@ Decision variables order: Yy, Y1,..., YT

@ Values order:

argmax Y w(y’,0)POC:(0), VteT.
y'€dom (Yy) 0€V(Gp)
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Experimentation

@ Three different probabilities of detection: pod(r) € {0.3,0.6,0.9}
(Vr e V(Ga)) -

@ Three different motion models:

1— .
M(s,r) = | @10 If (1) €E(Ca),
p7 ifs:r’

where deg(s) is the degree of s and p € {0.3,0.6,0.9} is the
probability that the object stays in its current location.

e Six different allowed time values: T € {9,11,13,15,17,19}.
@ Three different graph structures...
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Experimentation

Graph Structures

@ The 11 x 11 grid GT

O—O-@®
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Experimentation

Graph Structures

@ The 11 x 11 grid G*
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Experimentation

Graph Structures

@ The graph G’ (the Université Laval tunnels map)
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Experimentation

@ Java implementation:

e Choco solver (Laburthe and Jussien [2012])
o Java Universal Network/Graph (JUNG) 2.0.1 framework (O'Madadhain
et al. [2010])

@ 20 minutes time limit
@ A maximum of 5,000,000 backtracks
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Results and Discussion

Comparing the CP Models

@ The CpMax model uses the max objective function.

@ The CpSum model uses the > objective function.

Table: CpMax vs CpSum on a 11 x 11 GT grid with T = 17.

CpMax CpSum
pod(r) p Time to last ~ COS value | Time to last ~ COS value
incumbent (s) incumbent (s)
0.3 0.6 1199 0.128 991 0.127
0.9 1026 0.338 1166 0.338
0.6 0.6 1169 0.220 1016 0.217
0.9 1166 0.512 942 0.501
0.9 0.6 692 0.315 728 0.315
0.9 1170 0.628 880 0.625
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Results and Discussion

Comparing the CpMax Model and Total Detection

@ The CpMax model uses the max objective function.
@ The TDValSel+CpMax model uses the Total Detection value
selection heuristic.

COS value vs T (GT) Time (s) value vs T (G™)

1200
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D CpMax E 1000 | h E
2 g ]
=} <1 1
= 025f g g 800t 1
5 7 !
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020 g 2 600 1
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@ E 1
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Figure: CpMax vs Total Detection on a 11 x 11 G instance where
pod(y:) = 0.6 (Vt € T), and p = 0.6.
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Results and Discussion

Comparing the CpMax Model and Total Detection

@ The CpMax model uses the max objective function.

@ The TDValSel+CpMax model uses the Total Detection value
selection heuristic.

COS value vs T (G*)
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Figure: CpMax vs Total Detection on a 11 x 11 G* instance where pod(y;) = 0.6
(Vt € T), and p = 0.6.
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Results and Discussion

Comparing the CpMax Model and Total Detection

@ The CpMax model uses the max objective function.
@ The TDValSel+CpMax model uses the Total Detection value
selection heuristic.

COS value vs T (GF) Time (s) value vs T (GF)
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Figure: CpMax vs Total Detection on a G' instance where pod(y;) = 0.6
(Vt € T), and p = 0.6.
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OSP-related work

Single searcher OSP problem solving

@ Indivisible effort:
e Branch and bound (BB) algorithm [Stewart, 1979]

e Path constraints are relaxed, use [Brown, 1980] algorithm
(sub-optimal) [Stewart, 1979]

e Indivisibility constraint relaxation, path constraints are maintained
[Eagle and Yee, 1990]

@ Reduction to a longest path problem [Martins, 1993] [Lau et al., 2008]

e Lagrangian relaxation [Sato, 2008]

e Dynamic programming [Eagle, 1984]
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OSP-related work

Single searcher OSP problem solving

@ Infinitely divisible
o Network flow [Stewart, 1979]
@ Arbitrarily divisible

e Sequential effort allocation (sub-optimal) (small amount of effort)
[Stewart, 1979]
o Network flow (sub-optimal) (large amount of effort) [Stewart, 1979]
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Conclusion

o Contributions and novelties:
e A new CP model to solve the OSP problem
e A tighter bound using the max objective function encoding
e The Total Detection heuristic
o Future work:
e Use the concept of the Total Detection heuristic to develop a better
bounding technique for the objective function.
This presentation is based on Morin et al. [2012]:
M. Morin, A.P. Papillon, F. Laviolette, |. Abi-Zeid, and C.G. Quimper, “Constraint
Programming for Path Planning with Uncertainty: Solving the Optimal Search Path
problem,” in Proceedings of the 18th Conference on Principles and Practice of
Constraint Programming, QuBec, Qc, Canada, 2012, pp. 988-1003.
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Thank you!

Photography by Yann Arthus-Bertrand

Stay tuned! :)
LAVAL http://www.MichaelMorin.info
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