
Floating-point number parsing with perfect accuracy at a gigabyte per second

Daniel Lemire
professor, Université du Québec (TÉLUQ)

Montreal

blog: https://lemire.me

twitter: @lemire
GitHub: https://github.com/lemire/

work with Michael Eisel, Ivan Smirnov, Nigel Tao, R. Oudompheng, Carl Verret and
others!

https://lemire.me/
https://twitter.com/lemire
https://github.com/lemire/

How fast is your disk?

PCIe 4 disks: 5 GB/s reading speed (sequential)

2

Fact

Single-core processes are often CPU bound

3

How fast can you ingest data?

{ "type": "FeatureCollection",
 "features": [
[[[-65.613616999999977,43.420273000000009],
[-65.619720000000029,43.418052999999986],
[-65.625,43.421379000000059],
[-65.636123999999882,43.449714999999969],
[-65.633056999999951,43.474709000000132],
[-65.611389000000031,43.513054000000068],
[-65.605835000000013,43.516105999999979],
[-65.598343,43.515830999999935],
[-65.566101000000003,43.508331000000055],
...

4

How fast can you parse numbers?

std::stringstream in(mystring);
while(in >> x) {
 sum += x;
}
return sum;

50 MB/s (Linux, GCC -O3)

Source: https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-

a-string-in-c/

5

https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-a-string-in-c/

Some arithmetic

5 GB/s divided by 50 MB/s is 100.

Got 100 CPU cores?

Want to cause climate change all on your own?

6

How to go faster?

Fewer instructions (simpler code)

Fewer branches

7

How fast can you go?

AMD Rome (Zen 2). GNU GCC 10, -O3.

function bandwidth instructions ins/cycle

strtod (GCC 10) 200 MB/s 1100 3

ours 1.1 GB/s 280 4.2

17-digit mantissa, random in [0,1].

8

Floats are easy

Standard in Java, Go, Python, Swift, JavaScript...

IEEE standard well supported on all recent systems

64-bit floats can represent all integers up to exactly.253

9

Floats are hard

> 0.1 + 0.2 == 0.3
false

10

Generic rules regarding "exact" IEEE support

Always round to nearest floating-point number (*,+,/)

Resolve ties by rounding to nearest with an even decimal mantissa/significand.

11

Benefits

Predictable outcomes.

Debuggability.

Cross-language compatibility (same results).

12

Challenges

Machine A writes float to string

Machine B reads string gets float

Machine C reads string gets float

Do you have and ?

x

x′

x′′

x = x′ x = x′′

13

What is the problem?

Need to go from

w × 10q

(e.g., 123e5)

to

m× 2p

14

Example

0.1 → 7205759403792793 × 2−56

0.10000000000000000555

0.2 → 7205759403792794 × 2−55

0.2000000000000000111

0.3 → 5404319552844595 × 2−54

0.29999999999999998889776975

15

Problems

Start with 32323232132321321111e124.

Lookup as a float (not exact)

Convert 32323232132321321111 to a float (not exact)

Compute

Approximation Approximation = Even worse approximation!

10124

(10) ×124 (32323232132321321111)

×

16

Insight

You can always represent floats exactly (binary64) using at most 17 digits.

Never to this:

3.141592653589793238462643383279502884197169399375105820974944592
3078164062862089986280348253421170679

17

 credit: xkcd
18

We have 64-bit processors

So we can express all positive floats as
12345678901234567E+/-123 .

Or

where mantissa

But fits in a 64-bit word!

w × 10q

w < 1017

1017

19

Factorization

10 = 5 × 2

20

Overall algorithm

Parse decimal mantissa to a 64-bit word!

Precompute for all powers with up to 128-bit accuracy.

Multiply!

Figure out right power of two

Tricks:

Deal with "subnormals"

Handle excessively large numbers (infinity)

Round-to-nearest, tie to even

5q

21

Check whether we have 8 consecutive digits

bool is_made_of_eight_digits_fast(const char *chars) {
 uint64_t val;
 memcpy(&val, chars, 8);
 return (((val & 0xF0F0F0F0F0F0F0F0) |
 (((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4))
 == 0x3333333333333333);
}

(Works with ASCII, harder if input is UTF-16 as in Java/C#)

22

Then construct the corresponding integer

Using only three multiplications (instead of 7):

 uint32_t parse_eight_digits_unrolled(const char *chars) {
 uint64_t val;
 memcpy(&val, chars, sizeof(uint64_t));
 val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8;
 val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16;
 return (val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32;
}

23

Positive powers

Compute where is only approximate (128 bits)

99.99% of the time, you get provably accurate 55 bits

w × 5q 5q

24

Negative powers

Compilers replace division by constants with multiply and shift

credit: godbolt

Reading: Integer Division by Constants: Optimal Bounds, https://arxiv.org/abs/2012.12369

25

https://arxiv.org/abs/2012.12369

Negative powers

Precompute (reciprocal, 128-bit precision)

99.99% of the time, you get provably accurate results

2 /5b q

26

What about tie to even?

Need absolutely exact mantissa computation, to infinite precision.

But only happens for small decimal powers () where absolutely exact

results are practical.

q ∈ [−4, 23]

27

What if you have more than 19 digits?

Truncate the mantissa to 19 digits, map to .

Do the work for

Do the work for

When get same results, you are done. (99% of the time)

w

w × 10q

(w + 1) × 10q

28

Overall

With 64-bit mantissa.

With 128-bit powers of five.

Can do exact computation 99.99% of the time.

Fast, cheap, accurate.

29

Full product?

64-bit 64-bit 128-bit product

GNU GCC: __uint128_t .

Microsoft Visual Studio: _umul128

ARM intrinsic: __umulh

Go: bits.Mul64

C#: Math.BigMul

× →

30

Leading zeros

How many consecutive leading zeros in 64-bit word?

GNU GCC: __builtin_clzll

Microsoft Visual Studio: _BitScanReverse64

C++20: std::countl_zero

Go: bits.LeadingZeros64

C#: BitOperations.LeadingZeroCount

31

https://github.com/lemire/fast_float

GNU GCC

LLVM clang

used by Apache Arrow, Yandex ClickHouse, Microsoft LightGBM

32

https://github.com/lemire/fast_float

Go

Algorithm adapted to Go's standard library (ParseFloat) by Nigel Tao and others

Release notes (version 1.16): ParseFloat (...) improving performance by up to a factor
of 2.

Perfect rounding.

Blog post by Tao: The Eisel-Lemire ParseNumberF64 Algorithm

33

https://nigeltao.github.io/blog/2020/eisel-lemire.html

Rust

function speed

from_str (standard) 130 MB/s

lexical (popular lib.) 370 MB/s

fast-float 1200 MB/s

34

R

rcppfastfloat: https://github.com/eddelbuettel/rcppfastfloat

3x faster than standard library

35

https://github.com/eddelbuettel/rcppfastfloat

C#

FastFloat.ParseDouble is 5x faster than standard library (Double.Parse)

https://github.com/CarlVerret/csFastFloat/

credit: Carl Verret, Egor Bogatov (Microsoft) and others

36

https://github.com/CarlVerret/csFastFloat/

Further reading

Daniel Lemire, Number Parsing at a Gigabyte per Second, Software: Practice and

Experience (to appear) https://arxiv.org/abs/2101.11408

Blog: https://lemire.me/blog/

37

https://arxiv.org/abs/2101.11408
https://lemire.me/blog/

