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Context

Generative models are widely used.

Determining if a generative model generalizes well is a difficult
problem.

PAC-Bayes is a powerful tool in statistical learning theory.

Goal: Use PAC-Bayes to study the properties of generative models.
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Generative Modelling

Given finite iid samples:

The goal is to learn to generate samples from the same distribution.
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Generative Modelling: Intuition

The goal is to learn a neural network that transforms noise into data.
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Analyzing a Generative Model

Analyzing a generative model is a challenging because:

The data-generating distribution is unknown;

Unlike supervised learning, one cannot simply compute the accuracy
on the test set;

Different ways of defining the similarity between probability measures
yield different results and have different interpretations.
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PAC-Bayes

PAC-Bayes provides high-probability generalization bounds for
machine learning models.

The theory requires very few assumptions, e.g. no assumption on the
data-generating distribution.

The bounds are numerically computable.
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PAC-Bayes: Definitions

We consider the following concepts.

An instance space X and an unknown distribution P∗ on X .

A set S = {x1, . . . , xn} of observations iid sampled from P∗.

A class H of models, called the hypothesis class.

A loss function ` : H×X → [0,∞).

Instead of individual hypotheses h ∈ H, most PAC-Bayes bounds consider
aggregate hypotheses ρ ∈M1

+(H).
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PAC-Bayes: Risk

Given a loss function ` : H×X → [0,∞), the empirical and true risks of
ρ ∈M1

+(H) are defined as follows.

Empirical Risk

R̂S(ρ) = E
h∼ρ

[
1

n

n∑
i=1

`(h, xi )

]

True Risk

R(ρ) = E
h∼ρ

[
E

x∼P∗
[`(h, x)]

]
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Definition: The KL divergence

Definition

Given probability distributions P,Q on H with densities p and q,

KL(P ||Q) =

∫
H
p(h) log

p(h)

q(h)
dh.
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PAC-Bayes: Example

Theorem (Catoni (2003))

Given a distribution P∗ over X , a hypothesis class H, a loss function
` : H×X → [0, 1], a prior distribution π over H, a real number δ ∈ (0, 1),
and a real number λ > 0, with probability at least 1− δ over the choice of

S
iid∼ P∗⊗n, the following holds for any posterior distribution ρ ∈M1

+(H):

R(ρ) ≤ R̂S(ρ) +
λ

8n
+

KL(ρ ||π) + log 1
δ

λ
.
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Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
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GANs : Definitions

We consider the following concepts.

Instance Space: X , data-generating distribution P∗ ∈M1
+(X ), and

training set

S = {x1, . . . , xn}
iid∼ P∗.

Generator Family G: Each generator g ∈ G induces a distribution
Pg ∈M1

+(X ).

Critic Family F : A family F of functions f : X → R.
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The Wasserstein Distance

Definition

Let P,Q ∈M1
+(X ). The Wasserstein distance between P and Q is

defined as

W1(P,Q) = sup
f ∈Lip1(X )

[
E

x∼P
f (x)− E

x∼Q
f (x)

]
,

where

Lip1(X ) = {f : X → R s.t. |f (x)− f (y)| ≤ d(x, y)}.
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The Wasserstein GAN

The goal is to minimize the Wasserstein distance W1(P∗,Pg ).

Lip1(X ) is approximated by a subset F ⊆ Lip1(X ) parameterized by
a neural network.

The optimization objective is

min
g∈G

max
f ∈F

{
E

x∼P∗
[f (x)]− E

x̂∼Pg
[f (x̂)]

}
.

In practice, these expectations are approximated using finite samples.
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Risk

Given iid samples S = {x1, . . . , xn}
iid∼ P∗ and Sg = {x̂1, . . . , x̂n}

iid∼ Pg , let
P∗n and Pg

n denote the corresponding empirical distributions:

P∗n =
1

n

n∑
i=1

δxi and Pg
n =

1

n

n∑
i=1

δx̂i .
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1

n

n∑
i=1

δxi and Pg
n =

1

n

n∑
i=1

δx̂i .

We define the empirical risk of a hypothesis g ∈ G as :

WF (P∗n ,P
g ) = E

Sg
[dF (P∗n ,P

g
n )]

where

dF (P,Q) = sup
f ∈F

[
E

x∼P
[f (x)]− E

x∼Q
[f (x)]

]
.
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Theorem for Bounded Instance Spaces

The n-sized training set S is iid sampled from a distribution P∗ on X .

Each generator g ∈ G induces a distribution Pg ∈M1
+(X ).

The prior distribution π ∈M1
+(G) is independent of S .

λ > 0 and δ ∈ (0, 1) are some given real numbers.

The critic family F ⊆ Lip1 is symmetric.

(X , d) is a metric space with finite diameter ∆ = supx,x′∈X d(x, x′).
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Theorem for WGANs

Theorem (Mbacke et al. (2023a))

The following holds with probability ≥ 1− δ over the random draw of S ,
for any ρ ∈M1

+(G):

E
g∼ρ

E
S

[WF (P∗n ,P
g )] ≤ E

g∼ρ
[WF (P∗n ,P

g )] +
1

λ

[
KL(ρ ||π) + log

1

δ

]
+
λ∆2

4n
,

where
WF (P∗n ,P

g ) = E
Sg

[dF (P∗n ,P
g
n )] .
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We performed experiments with a WGAN on the following Gaussian
Mixtures:

Objective: Determine the order of magnitude of the numerical values of
the bounds.
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Numerical values for the ring dataset:

Numerical values for the grid dataset:
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Variational Autoencoders (VAEs) (Kingma and Welling, 2014)
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Variational Autoencoders: Definitions

We consider the following concepts.

An instance space X ⊆ RD , and a data-generating distribution
µ ∈M1

+(X ).

A latent space Z = RdZ .

A prior distribution p(z) = N (0, I) on the latent space.

A posterior qφ(z|x) is parameterized by the encoder.
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The Encoder

The encoder is a function

Qφ : X → R2dZ , Qφ (x) =

[
µφ (x)

σφ (x)

]
,

where the distribution qφ(z|x) = N
(
µφ (x) , diag(σ2

φ (x))
)

.
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The Decoder

The decoder is a function
gθ : Z → X .

We assume gθ is Kθ-Lipschitz:

‖gθ(z1)− gθ(z2)‖ ≤ Kθ ‖z1 − z2‖ .

S. Diarra Mbacke (ULaval) March 2024 31 / 44



The Optimization Objective

Given a training set S = {x1, . . . , xn}, minimize:

LVAE(φ, θ) =
1

n

n∑
i=1

 E
z∼qφ(z|xi )

`θrec(z, xi )︸ ︷︷ ︸
Reconstruction loss

+βKL(qφ(z|xi ) || p(z))︸ ︷︷ ︸
KL loss

.

We define the VAE’s reconstruction loss as follows: `θrec : Z ×X → [0,∞),

`θrec(z, x) = ‖x− gθ(z)‖ .
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The VAE’s generative model

Once trained, the VAE defines the following generative model:

gθ]p(z).

Our goal is to bound the distance:

W1(µ, gθ]p(z)).
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Generation Guarantees for Bounded Instance Spaces

µ ∈M1
+(X ) is the data-generating distribution;

S = {x1, . . . , xn}
iid∼ µ is a set of observed samples;

p(z) = N (0, I) is the prior distribution on Z;

λ > 0 and δ ∈ (0, 1);

X has finite diameter: ∆ = supx,x′∈X d(x, x′) <∞.
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Generation Guarantees for Bounded Instance Spaces

Theorem (Mbacke et al. (2023b))

With probability at least 1− δ over the random draw of S ∼ µ⊗n, the
following holds for any posterior qφ(z|x) :

W1(µ, gθ]p(z)) ≤ 1

n

n∑
i=1

{
E

qφ(z|xi )
`θrec(z, xi )

}
+

1

λ

(
n∑

i=1

KL(qφ(z|xi ) || p(z))

+ log
1

δ
+
λ2∆2

8n

)
+

Kθ
n

n∑
i=1

√
‖µφ (xi )‖2 +

∥∥∥σφ (xi )−~1
∥∥∥2
.
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Conclusion

Generative models are widely used in machine learning and difficult to
analyze.

PAC-Bayes is a powerful tool of statistical learning theory that can be
used to analyze generative models (GANs, VAEs, diffusion models
(Mbacke and Rivasplata, 2023)).

PAC-Bayes bounds for generative models are empirical, hence they
may enable new applications in practice.
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Questions?
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Experimental Details for WGANs

E
g∼ρ

E
S

[WF (P∗n ,P
g )] ≤ E

g∼ρ
[WF (P∗n ,P

g )] +
1

λ

[
KL(ρ ||π) + log

1

δ

]
+
λ∆2

4n
.

WGAN with probabilistic layers for the generator.

Lipschitz constraint with Björck Orthonormalization(Björck and Bowie,

1971) and GroupSort activations (Anil et al., 2019).

We used part of the training set to learn the prior π, and the
remaining part to compute the bound.

The standard deviation of the prior’s parameters
σ0 ∈ {10−7, 10−6, 10−5, 10−4, 0.001, 0.01, 0.1}.
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Reconstruction Guarantees for Bounded Instance Spaces

µ ∈M1
+(X ) is the data-generating distribution;

S = {x1, . . . , xn}
iid∼ µ is a set of observed samples;

p(z) ∈M1
+(Z) is the prior distribution on Z;

λ > 0 and δ ∈ (0, 1);

X has finite diameter: ∆ = supx,x′∈X d(x, x′) <∞.
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Reconstruction Guarantees for Bounded Instance Spaces

Theorem

Given a decoder θ, with probability at least 1− δ over the random draw of
S ∼ µ⊗n, the following holds for any posterior qφ(z|x):

E
x∼µ

E
qφ(z|x)

`θrec(z, x) ≤ 1

n

n∑
i=1

{
E

qφ(z|xi )
`θrec(z, xi )

}
+

1

λ

n∑
i=1

KL(qφ(z|xi ) || p(z))

+
1

λ
log

1

δ
+ KφKθ∆ +

λ∆2

8n
.

S. Diarra Mbacke (ULaval) March 2024 43 / 44



Regenerated Distribution

Define
µ̂φ,θ = 1

n

∑n
i=1 gθ]qφ(z|xi ).

The triangle inequality implies

W1(µ, gθ]p(z)) ≤W1(µ, µ̂φ,θ) + W1(µ̂φ,θ, gθ]p(z)).

S. Diarra Mbacke (ULaval) March 2024 44 / 44


	Context
	Preliminary Concepts
	Generative models
	PAC-Bayesian Theory

	Results for GANs
	Bound for Wasserstein GANs
	Numerical Experiments

	Results for VAEs
	Variational Autoencoders
	Bound for the Generative Model

	Conclusion
	References
	Appendix
	Reconstruction Guarantees for VAEs


