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What is clustering ?

According to the label information we have 3 categories of learning

I Supervised learning
Learning from labeled data.

I Semi-supervised learning
Learning from both labeled and unlabeled data.

I Unsupervised learning
Learning from unlabeled data.
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Label information

Taken from [Jain,2010]

[Jain,2010] Jain, A.K., 2010. Data clustering : 50 years beyond
k-means. Pattern Recognition Letters 31, 651666.
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Semi-supervised learning and manifold assumption

Taken from [Jain,2010]
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Unsupervised learning or clustering

Taken from [Jain,2010]
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What is clustering ?
I Clustering is grouping similar objects together.

I Clusterings are usually not ”right” or ”wrong”, different
clusterings/clustering criteria can reveal different things about
the data.

I There is no objectively ”correct” clustering algorithm, but
”clustering is in the eye of the beholder”.

I Clustering algorithms :

I Employ some notion of distance between objects.

I Have an explicit or implicit criterion defining what a good
cluster is.

I Heuristically optimize that criterion to determine the
clustering.
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Comparing various clustering algorithms

Taken from [Jain,2010]
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Matrix factorization

I NMF (Non-negative Matrix Factorization)

Question :
Given a non-negative matrix V , find non-negative matrix
factors W and H,

V ≈WH

Answer :
Non-negative Matrix Factorization (NMF)

Advantage of non-negativity Interpretability

I NMF is NP-hard
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Matrix factorization
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Matrix factorization

I Generally, factorization of matrices is not unique

I Principal Component Analysis

I Singular Value Decomposition

I Nyström Method

I Non-negative Matrix Factorization differs from the above
methods.

I NMF enforces the constraint that the factors must be
non-negative.

I All elements must be equal to or greater than zero.
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Matrix factorization

I Is there any unique solution to the NMF problem ?

I

V ≈WD−1DH

I NMF has the drawback of being highly ill-posed.
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NMF is interesting because it does data clustering

Data Clustering = Matrix Factorizations

Many unsupervised learning methods are closely related in a simple
way (Ding, He, Simon, SDM 2005).
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Numerical example

taken from Katsuhiko Ishiguro, et al. Extracting Essential Structure
from Data.
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Heat map of NMF on the gene expression data

The left is the gene expression data where each column
corresponds to a sample, the middle is the basis matrix, and the

right is the coefficient matrix.
taken from Yifeng Li, et al. The Non-Negative Matrix

Factorization Toolbox for Biological Data Mining
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Heat map of NMF clustering on a yeast metabolic

The left is the gene expression data where each column
corresponds to a gene, the middle is the basis matrix, and the right

is the coefficient matrix.
taken from Yifeng Li, et al. The Non-Negative Matrix

Factorization Toolbox for Biological Data Mining
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How to solve it

Two conventional and convergent algorithms

I Square of the Euclidean distance

||A− B||2 =
∑
ij

(Aij − Bij)
2

I Generalized Kullback-Leibler divergence

D(A||B) =
∑
ij

(Aij log
Aij

Bij
− Aij + Bij)
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How to minimize it

I Minimize ||V −WH||2 or D(V ||WH)

I Convex in W only or H only (not convex in both variables)

I Goal-finding local minima (tough to get global minima)

I Gradient descent ?
I Slow convergence

I Sensitive to the step size

I inconvenient for large data
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Cost functions and gradient based algorithm for square
Euclidean distance

I Minimize ||V −WH||2

I W new
ik = Wik − µik5W

where 5W is the gradient of the approximation objective
function with respect to W .

I Without loss of generality, we can assume that 5W consists
of 5+ and 5−, positive and unsigned negative terms,
respectively. That is,

5W = 5+ −5−

I According to the steepest gradient descent method
W new

ik = Wik − µik(5+
ik −5

−
ik) can minimize the NMF

objectives.

I By assuming that each matrix element has its own learning
rate µik = Wik

5+
ik

we have,

W new
ik = Wik

5−ik
5+

ik

(Multiplicative update rule)
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Multiplicative vs. Additive rules

By taking the gradient of the cost function with respect to W we
have,

5W = WHHT − VHT

W new
ik = Wik − µik((WHHT )ik − (VHT )ik)

µik =
Wik

(WHHT )ik

W new
ik = Wik

(VHT )ik
(WHHT )ik

Similar for H,

Hnew
ik = Hik

(W TV )ik
(W TWH)ik

(1)
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Cost functions and gradient based algorithm for square
Euclidean distance

I The provided justification for multiplicative update rule does
not have any theoretical guarantee that the resulting updates
will monotonically decrease the objective function !

I Currently, the auxiliary function technique is the most widely
accepted approach for monotonicity proof of multiplicative
updates.

I Given an objective function J (W ) to be minimized,
G(W ,W t) is called an auxiliary function if it is a tight upper
bound of J (W ), that is,

I G(W ,W t) ≥ J (W )
I G(W ,W ) = J (W )

for any W and W t .
I Then iteratively applying the rule

W new = arg minW t G (W t ,W ), results in a monotonically
decrease of J (W ).
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Auxiliary function

Paraboloid function J (W ) and its corresponding auxiliary function
G(W ,W t), where G(W ,W t) ≥ J (W ) and G(W t ,W t) = J (W t)

taken from Zhaoshui He, et al. IEEE TRANSACTIONS ON
NEURAL NETWORKS 2011
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Auxiliary function

Using an auxiliary function G(W ,W t) to minimize an objective
function J (W ). The auxiliary function is constructed around the
current estimate of the minimizer ; the next estimate is found by
minimizing the auxiliary function, which provides an upper bound

on the objective function. The procedure is iterated until it
converges to a stationary point (generally, a local minimum) of the

objective function.
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Updates for H of Euclidean distance

If K (ht) is the diagonal matrix

Kii (h
t) =

(W tWht)i
hti

then

G (h, ht) = J(ht) + (h − ht)T 5 J(ht) +
1

2
(h − ht)TK (ht)(h − ht)

is an auxiliary function for

J(h) =
1

2

∑
i

(vi −
∑
k

Wikhi )
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Proof

I The update rule can be obtained by taking the derivative of
the G (h, ht) w.r.t h and then set it to zero,

5J(ht) + (h − ht)K (ht) = 0

h = ht − K (ht)−1 5 J(ht)

I Since J(ht) is non-increasing under this auxiliary function, by
writing the components of this equation explicitly, we obtain,

ht+1
i = hti

(W tV )i
(W tWht)i

I Can be shown similarly for W of Euclidean distance.
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A geometric interpretation of NMF
I Given M and its NMF M ≈ UV one can scale M and U such

that they become column stochastic implying that V is
column stochastic :

M ≈ UV ⇐⇒ M ′ = MDm = (UDu)(D−1u VDm) = U ′V ′

M(:, j) =
k∑

i=1

U(:, i)V (i , j) with
k∑

i=1

V (i , j) = 1

I Therefore, the columns of M are convex combination of the
columns of U.

I In other terms, conv(M) ⊂ conv(U) ⊂ ∆m where ∆m is the
unit simplex.

I Solving exact NMF is equivalent to finding a poltyope
conv(U) between conv(M) and ∆m with minimum number of
vertices.

Presented by Mohammad Sajjad Ghaemi, Laboratory DAMAS Clustering and Non-negative Matrix Factorization 29/36



A geometric interpretation of NMF
I Given M and its NMF M ≈ UV one can scale M and U such

that they become column stochastic implying that V is
column stochastic :

M ≈ UV ⇐⇒ M ′ = MDm = (UDu)(D−1u VDm) = U ′V ′

M(:, j) =
k∑

i=1

U(:, i)V (i , j) with
k∑

i=1

V (i , j) = 1

I Therefore, the columns of M are convex combination of the
columns of U.

I In other terms, conv(M) ⊂ conv(U) ⊂ ∆m where ∆m is the
unit simplex.

I Solving exact NMF is equivalent to finding a poltyope
conv(U) between conv(M) and ∆m with minimum number of
vertices.

Presented by Mohammad Sajjad Ghaemi, Laboratory DAMAS Clustering and Non-negative Matrix Factorization 29/36



A geometric interpretation of NMF
I Given M and its NMF M ≈ UV one can scale M and U such

that they become column stochastic implying that V is
column stochastic :

M ≈ UV ⇐⇒ M ′ = MDm = (UDu)(D−1u VDm) = U ′V ′

M(:, j) =
k∑

i=1

U(:, i)V (i , j) with
k∑

i=1

V (i , j) = 1

I Therefore, the columns of M are convex combination of the
columns of U.

I In other terms, conv(M) ⊂ conv(U) ⊂ ∆m where ∆m is the
unit simplex.

I Solving exact NMF is equivalent to finding a poltyope
conv(U) between conv(M) and ∆m with minimum number of
vertices.

Presented by Mohammad Sajjad Ghaemi, Laboratory DAMAS Clustering and Non-negative Matrix Factorization 29/36



A geometric interpretation of NMF
I Given M and its NMF M ≈ UV one can scale M and U such

that they become column stochastic implying that V is
column stochastic :

M ≈ UV ⇐⇒ M ′ = MDm = (UDu)(D−1u VDm) = U ′V ′

M(:, j) =
k∑

i=1

U(:, i)V (i , j) with
k∑

i=1

V (i , j) = 1

I Therefore, the columns of M are convex combination of the
columns of U.

I In other terms, conv(M) ⊂ conv(U) ⊂ ∆m where ∆m is the
unit simplex.

I Solving exact NMF is equivalent to finding a poltyope
conv(U) between conv(M) and ∆m with minimum number of
vertices.

Presented by Mohammad Sajjad Ghaemi, Laboratory DAMAS Clustering and Non-negative Matrix Factorization 29/36



A geometric interpretation of NMF
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Separability Assumption

I If matrix V satisfies separability condition, it is possible to
compute optimal solutions in polynomial time.

I r-separable NMF

There exists an NMF (W ,H) of rank r with V = WH where
each column of W is equal to a column of V .

I V is r-separable ⇐⇒ V ≈WH = W [Ir ,H
′]Π = [W ,WH ′]Π

For some H ′ ≥ 0 with columns sum to one, some permutation
matrix Π, and Ir is the r-by-r identity matrix.
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A geometric interpretation of separability
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Separability Assumption

I Under separability, NMF reduces to the following problem :

Given a set of points (the normalized columns of V ), identify
the vertices of its convex hull.

I We are still very far from knowing the best ways to compute
the convex hull for general dimensions, despite the variety
methods proposed for convex hull problem.

I However, we want to design algorithms which are

I Fast : they should be able to deal with large-scale real-world
problems where n is 106 – 109.

I Robust : if noise is added to the separable matrix, they should
be able to identifying the right set of columns.
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Separability Assumption

I For a separable matrix V , we have,

V ≈ WH

= W [Ir ,H
′]Π

= [W ,WH ′]Π

= [W ,WH ′]

(
Ir H ′

0(n−r)×r 0(n−r)×(n−r)

)
Π

= VX

where Π is a permutation matrix, the columns of H ′ ≥ 0 sum
to one.

I Therefore for r-separable NMF, we need to solve the following
optimization problem according to some constraints,

||V (:, i)− VX (:, i)||2 ≤ ε for all i .
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Question

Question ?
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