Improving filtering algorithms for the
Disjunctive Constraint

Hamed Fahimi

OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

B) PRELIMINARIES

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

&) CONCLUSION

pr— . v A 2P, W 2R RO s e

OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

B) PRELIMINARIES

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

&) CONCLUSION

pr— . v A 2P, W 2R RO s e

What is Scheduling?

A hands-on application of scheduling!

®* Where? In the wood product industry!

®* The wood 1s wet at first and must be dried before being cut and used
for construction.

® The task 1s to put the wood 1n a dryer and make sure it 1s solid and
it won’t deform. The resource is the dryer.

® There are so many loads to be put in the dryer. So, we have as many
tasks as the number of loads.

A hands-on application of scheduling!

® The earliest starting time of a task is when the truck arrives with
the wood.

® For each load, there 1s a deadline which is the time that the
customer wants to have it ready.

® The processing time is the amount of time that the wood remains in
the dryer to lose moisture and dry out.

IMlustration of a task and its parameters

IMlustration of a task and its parameters

IMlustration of a task and its parameters

23

IMlustration of a task and its parameters

23

IMlustration of a task and its parameters

23

IMlustration of a task and its parameters

23

IMlustration of a task and its parameters

J;/ 21

23

IMlustration of a task and its parameters

Sa

| %{ J/

Pa=

21

23

IMlustration of a task and its parameters

J;/ 21

23

IMlustration of a task and its parameters

J;/ 21

23

IMlustration of a task and its parameters

SA Ca d,

[.

J;/ 21

23

IMlustration of a task and its parameters

I eCt, d,

|

t

21

23

IMlustration of a task and its parameters

B Ist, d,

]

1 6 16 21

23

IMlustration of a task and its parameters

eCtA 1StA dA

.

6 | *) 16 21

23

IMlustration of a task and its parameters

1 ect, Ist, d,

T

1 6 | ﬁ ” 16 21 23
Pa=3

* We call the interval [r, d,) the allowed execution interval of
task A..

IMlustration of a task and its parameters

1 ect, Ist, d,

T

1 6 | ﬁ ” 16 21 23
Pa=3

* We call the interval [r, d,) the allowed execution interval of
task A..

®* = The release time;
e The deadline;
® The number of colored cells = Processing time;

® Gray cells: Out of the allowed execution interval of the task.

Disjunctive scheduling

Disjunctive scheduling

A~
A, — -~
Il % 5 18 20
* A feasible schedule!
1 3 6 10 12 19

Disjunctive scheduling

> > >
v

* An alternative feasible schedule!

b

18

20

2 4 5

13

18

Scheduling classification with the tasks

» Non-Preemptive Scheduling:

26

Scheduling classification with the tasks

» Non-Preemptive Scheduling:

Scheduling classification with the tasks

» Preemptive Scheduling:

N | L]

k4
Interrupting A,

Scheduling classification with the tasks

» Preemptive Scheduling:

k4
Interrupting A,

£
Resuming A,

OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

P L PPV S YV NOOY

30

Definition of Constraint Programming

*Let X = {X,,...,X,} be a set of variables. A constraint C is a
condition, imposed over a subset X C X, which describes a relation
between the elements of X..

® An instance of a CSP is described by the sets
X={X;,....X } D= {D(X,),..., D(X))}
C= {CD' : .,Cm} X'= {XCI 5o -:XCm}

® An assignment of values to the variables, which satisfies all of the
constraints of a CSP, 1s called a solution. A solution for the
constraint C 1s called a support.

31

Example (Disjunctive problem)

Example (Disjunctive problem)

A=
A, -
|EeD 5 18 20

. $={S,,S,,S;}
.+ S, E[1,4],S,E€ [5,13], S, E[2,12]

* Si+p=S) v S5+ p=S) (for1y=1,23 & 1))

Example (Disjunctive problem)

A=
A, -
A I~ HERERENN =
IEEe2 5 18 20
* S={S.,S,,S;}
* S,€[1,4],S,€[5,13], S;E€[2,12]
* Si+p=S) v S5+ p=S) (for1y=1,23 & 1))
1 3 6 10 12 19

* (1, 6, 12) is a support.

Disjunctive Constraint

*Letl={A,,...,A,} be a set of tasks with unknown starting times
S., and known processing time p, (1= 1= n).

* Variables: X = {S,...,S };
* Domains: D(S.)=[r,, Ist];
¢ Constraint: No more than one task executes at each time t.

* The constraint DISJUNCTIVE([S,....,S,]) 1s satisfied, if for all
pairs of tasks (1 = j)
S. + p, sSj or Sj+pjs S.

35

Constraint filtering

* Initially, the domains of a CSP may include values which are not
consistent with some constraints of the problem.

* To reduce the search space, solvers use filtering algorithms
associated to each constraint.

* Filtering algorithms keep on excluding values of the domains that
do not lead to a feasible solution, until it is not possible to prune
the domains of variables further.

36

Example (Disjunctive constraint)

NEm = Ee
A, — —
IS 4 5 7 18 20

* There is no chance to start task A; at its release time, as A,
would not execute. Thus, the values {2, 3} should be filtered from

the domain of A; .

37

Example (Disjunctive constraint)

NEm = me
A, — -
1 2 3 4 5 7 18

* There 1s no chance to start task A, at its release time, as A,
would not execute. Thus, the values {2, 3} should be filtered from

the domain of A; .

* The values {2, 3} are out of the allowed execution interval of A;.

38

Disjunctive Constraint

* It is NP-Complete to determine whether there exists a solution to
Disjunctive constraint.

® [t 1s NP-Hard to filter out all values that do not lead to a solution.

® Nonetheless, there exist rules that detect in polynomial time some
filtering of the domains of the tasks.

® Our goal 1s to improve some existing filtering algorithms for the
Disjunctive constraint.

39

OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

B) PRELIMINARIES

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

P L PPV S YV NOOY

40

Preliminaries

* We aim to design filtering algorithms, which are faster than the
previously known algorithms.

* To achieve this goal, there are two major operations, to take advantage
of:

* Sorting in linear time;

* Union-Find data structure.

* Since all the time points can be encoded with fewer than 32 bits, radix
sort sorts them 1n linear time.

41

Union-Find Data structure

Function Operation Complexity
(Gabow & Tarjan,
1983)
Union-Find(n) Initializes n disjoint O(n)

sets

{0}, {1},...,{n- 1}

Union-Find Data structure

Function Operation Complexity
(Gabow & Tarjan,
1983)
Union-Find(n) Initializes n disjoint O(n)
sets
{0}, {1},...,{n-1}
Union(a, a+1) Merges the set that O(1)

contains the element
a with the set that
contains the element
a+1

Union-Find Data structure

Function Operation Complexity
(Gabow & Tarjan,
1983)
Union-Find(n) Initializes n disjoint O(n)
sets
{0}9 {1}97 {n - 1}
Union(a, a+1) Merges the set that O(1)
contains the element
a with the set that
contains the element
a+1
FindSmallest(a) | Returns the smallest O(1)

element of the set
that contains a

Union-Find Data structure

Function Operation Complexity
(Gabow & Tarjan,
1983)
Union-Find(n) Initializes n disjoint O(n)
sets
{0}9 {1}97 {n - 1}
Union(a, a+1) Merges the set that O(1)
contains the element
a with the set that
contains the element
a+1
FindSmallest(a) | Returns the smallest O(1)
element of the set
that contains a
FindGreatest(a) | Returns the greatest O(1)

element of the set
that contains a

OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

P L PPV S YV NOOY

46

Time-Tabling

® A technique to filter the Disjunctive constraint.

® [t consists of finding the necessary usage of the resource over a
time interval.

47

Time-Tabling

Bl B
-
0O 1 2 3

Time-Tabling

-

-~ -
=
0O 1 2

3 4

* If Ist, < ect. for a task 1, then the interval [lst,ect,) 1s called the
fixed part of 1.

Time-Tabling

< First filtering

Time-Tabling

< Second filtering

Time-Tabling

® Ouellet & Quimper presented an algorithm for Time-Tabling on a
more general case in O(nlog(n)).

®* We took advantage of Union-Find to achieve a linear time
algorithm for Time-Tabling in the Disjunctive case.

52

The strategy of our Time-Tabling
alogorithm

The strategy of our Time-Tabling

algorithm
B
. 5 0 S
A, - ha
01 2 6 15 19 22

* First, we list the fixed parts of the tasks which have fixed part.

The strategy of our Time-Tabling

algorithm
A, - -
A - | [=
A, - -
012 6 15 19 22

* First, we list the fixed parts of the tasks which have fixed part.

* A, and A, have fixed parts.

The strategy of our Time-Tabling

algorithm
B
. 5 0 S
A, - <
01 2 6 15 19 22

* First, we list the fixed parts of the tasks which have fixed part.

* A, and A, have fixed parts.

Fixed(A,)

The strategy of our Time-Tabling

algorithm
A, - -
A - | [=
A, - -
012 6 15 19 22

* First, we list the fixed parts of the tasks which have fixed part.

* A, and A, have fixed parts.

\10 14

}

|
Fixed(A,) Fixed(A,)

* We process the tasks in increasing order of processing times.

The strategy of our Time-Tabling

algorithm
=
. 5 0 S
A, - =
01 2 6 15 19 22

Fixed(A,)

/

/
o

IA

* A, cannot be scheduled at 2.

The strategy of our Time-Tabling

algorithm
=
. 5 0 S
A, - =
01 2 6 15 19 22

/

* A, does not fit in [5,9].

The strategy of our Time-Tabling

algorithm
=
. 5 0 S
A, - =
01 2 6 15 19 22

Fixed(A,)
NG
- % =
N\
/4 N\

¢ A, cannot be scheduled at 10.

The strategy of our Time-Tabling

algorithm
- L B
. 5 0 S
A, - ha
01 2 6 15 19 22

Fixed(A,)

* Hence, A; jumps over two fixed parts.

The strategy of our Time-Tabling

algorithm
- L B
. 5 0 S
A, - ha
01 2 6 15 19 22

Fixed(A,)

* The domain of A, after filtering.

The strategy of our Time-Tabling
algorithm

A, 0 A S O S

Q

01 2 6 15 19

1 4 10 14}

|
Merged(Fixed(A), Fixed(A,))

* Since the tasks are being processed in increasing order of
processing times, the next tasks will not fit in [0,14], neither. At
this point, Union-Find merges the fixed parts of A, and A, to one

set 1n constant time!

The strategy of our Time-Tabling
algorithm

® Jumping over a fixed part takes constant time.

® Merging the fixed parts reduces the number of jumps.

® That 1s how we achieve a linear time algorithm!

O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?

65

O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?

® This value is called the "Earliest Completion Time" of a set of tasks.

66

O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?

® This value is called the "Earliest Completion Time" of a set of tasks.

e Vilim introduced a data structure called ®-Tree that computes the
earliest completion time of a set of task ©.

67

O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?

® This value is called the "Earliest Completion Time" of a set of tasks.

e Vilim introduced a data structure called ®-Tree that computes the
earliest completion time of a set of task ©.

® One can insert a task into ® or remove a task from © and update the
computation in O(log(n)) time.

68

Time line

® We introduced this idea to improve upon the ©O-tree.

® What does it do?

® This data structure is initialized with an empty set of tasks © = .

® It is possible to add, in constant time, a task to ©. The task will be
scheduled at the earliest time as possible with preemption.

® It 1s possible to compute the earliest completion time of ® in constant
time, at any time.

69

Time line

15

Time line

-«

15

est. | lIct, | p;
5 8 2
1 10 6
4 15 5

Time line

- <«

1 4 5 8 It 15

* The time line is a line with markers for est. | lIct, | p;

important dates. The important dates are the 5 8 2
release times of the tasks and one time point that

. 1 10 6

1s late enough.
4 15 5

Bt) s

Time line

- <«

1 4 5 8 It 15

* The time line is a line with markers for est. | lIct, | p;

important dates. The important dates are the 5 8 2
release times of the tasks and one time point that

. 1 10 6

1s late enough.
4 15 5

O e] X 8

Time line

N <«

* The time line is a line with markers for est. | lIct, | p;

important dates. The important dates are the 5 8 2

release times of the tasks and one time point that) 10 6
1s late enough.

4 15 5

{1} = {4} = {5} = {}

Time line

N <«
* The time line is a line with markers for est. | lIct, | p;
important dates. The important dates are the 5 8 2
release times of the tasks and one time point that) 10 6
1s late enough.
4 15 5
28

1} = {4} = {5} — {28}

Time line

- <
1 4 5 8 It 15

* Between each two consecutive time points, est. | lIct, | p;
there 1s a capacity that denotes the amount of 5 Q)
time that the resource is available through.) 10 6
4 15 5

1 4 5 28

{1} 3 {41 5 {5} {28)

Time line

- «
1 4 5 8 10 115
* Initially, the capacities are equal to the est. | lIct, | p;
difference between the consecutive time points. 5])
1 10 6
4 15 5
1 4 5 28

{1} 3 {41 5 {5} {28)

Time line

- <«

1 4 5 8 10 15

* We schedule the tasks, one by one. After est. | lIct, | p;
scheduling, the free times will reduce. 5] 0
1 10 6
— 15 5

1 4 5 28

{1} 3 {41 5 {5} {28)

Time line

- <«

1 4 5 8 10 15

* We schedule the tasks, one by one. After est. | lIct, | p;
scheduling, the free times will reduce. 5] 0
1 10 6
— 15 5

1 4 5 28

{1} 2 {4} 5 {5} > {28}

Time line

- <«

1 4 5 8 10 15

* Once a capacity equals null, the corresponding est; | Ict, | p;
time points will be merged by Union-Find. 5])
1 10 6
4 15 5

1 45 28

{1} 2 {4} 5 {5} > {28}

Time line

- <«

1 4 5 8 10 15

* Once a capacity equals null, the corresponding est; | Ict, | p;
time points will be merged by Union-Find. 5])
1 10 6
4 15 5

1 45 28

(145} {28)

Time line

- -

1 4 5 8 e 15
* That allows to run a linear search over the time est. | lIct, | p;
line for periods that have free time. This search 5] 9)
will jump over the occupied regions in constant) 10 6

time.

4 15 5

1 4 5 28

(145} {28)

Time line

- -

1 4 5 8 e 15
* That allows to run a linear search over the time est. | lIct, | p;
line for periods that have free time. This search 5] 9)
will jump over the occupied regions in constant) 10 6

time.

4 15 5

1 4 5 28

[145) = {28}

Time line

- -

1 4 5 8 e 15
* That allows to run a linear search over the time est. | lIct, | p;
line for periods that have free time. This search 5] 9)
will jump over the occupied regions in constant) 10 6

time.

4 15 5

1 4 5 28

[145) = {28}

* The earliest completion time will be computed in constant time

by 28-14 = 14!

©-Tree and TimeLine comparison

Operation O-Tree Time line
Adding a task to O(log(n)) O(1)
the schedule
Computing the O(1) O(1)
earliest

completion time

Removing a task
from the schedule

O(log(n)) steps

Not supported !

85

©-Tree and TimeLine comparison

Operation O-Tree Time line
Adding a task to O(log(n)) O(1)
the schedule
Computing the O(1) O(1)
earliest

completion time

Removing a task | O(log(n)) steps | Not supported !
from the schedule

* Time line 1s therefore faster than a ®—tree, but can only be used
in the occasions where the removal of a task i1s not required.

Overload Checking

10

Overload Checking

A m E
A, .~ | | | | * |
4 8 10
0=1{A,A} dg - 15 = 10-1=9 < p,, = 6+4

Overload Checking

A, - -~
A, .~ | | | | * |
B2 4 8 10
0 =1{A,A} dg - 15 = 10-1=9 < p,, = 6+4

= There 1s not a valid schedule for Q.

Overload Checking

® Overload Checking is not a filtering algorithm, as it does not
propagate.

® It triggers a backtrack if the test fails.

90

Overload Checking

® Overload Checking 1s not a filtering algorithm, as it does not
propagate.

® It triggers a backtrack if the test fails.

~— —

@ = 0;
for je T innon-decreasing order of Ict; do begin
® = QU
if ecty > Ict; then
fail: {No solution exists}
end :

NN B W=

91

The strategy of our Overload check
algorithm

®* We implement the overload check algorithm just asVilim does. The
only difference 1s that we simply substitute the O-tree with the time
line.

® Overload Check with implementing time line runs in linear time!

92

Example

10

Example

1

7 10

0y 5 {1} 3> (315 21

21

Example

e
- -
0 1 9 10
s 3 7 10 21

0y & {11 % 3y 2 21

Example

e
- -
0 1 9 10
01 3 7 10 21

(0 5 (131 2 (21)

* Earliest completion time of @ =21 -17=4.

Example

e
- -
0 1 9 10
01 3 7 10 21

0y 5 (1313 (1)

* FEarliest completion time of ® =21 -13= 8.

Example

1 3 7 10

(0} > (13} (21)

21

Example

0 1 3 7 10

{0,1,3}1i {21}

» Earliest completion time of ®@ =21 -10=11 > 10.

21

Example

-
9 10
0 1 3 7 10 21

{(),1,3}.11 {21}

* Earliest completion time of ® =21 -10=11 > 10.

* QOverload check fails! Thus, no valid schedule exists.

Detectable Precedences

*Let A; and A, be two tasks. It ect; > Ist;, the precedence A; << A; 18
called detectable.

Detectable Precedences

*Let A; and A, be two tasks. It ect; > Ist;, the precedence A; << A; 18
called detectable.

Detectable Precedences

*Let A; and A, be two tasks. It ect; > Ist;, the precedence A; << A; 18
called detectable.

lstj

\
1»\

ect.

Detectable Precedences

*Let A; and A, be two tasks. It ect; > Ist;, the precedence A; << A; 18
called detectable.

lstj

\
1»\

ect.

* Vilim introduced this idea and presented an algorithm in
O(nlog(n)), using the notion of O-tree.

Example

A -

\0 25

!
pa= 11

B = e

0 1 25 27

pg=10

C E .

0 1 14 21 258E=N0f] S

Example

- A<<C, B<<C.

A -

\ 0 25

|
pr=11

B — <

0 1 25 27

pg=10

C —

0 1 14 21 25" 35

Example

A= -
\0 } 25
i
pr=11
B -+ f
0 1 25 27
pg=10
C 4
0 1 14 21 25 27 35
- A<<C, B<<C. Pc=

* Since {A , B } << C, the domain of C will be filtered to
esto = est, +p, T pg = 21.

Example

\ 0 } 25
i
pr=11

B -

0 1 25 27

pg=10

C 4

0 1 14 21 25 27 35

* The domain of C after filtering.

e

*The tasks sorted A1

by earliest A
: 2

completion

times As

Detectable Precedences

-

*The tasks sorted A1

by earliest A
: 2

completion

times As

*The tasks sorted Al
by latest starting A,
times A3

Detectable Precedences

o
<
0 1 5 8 10
- -
-
0 1 5 8 10

Detectable Precedences

*The tasks sorted A &=
b liest
y ear 1§s A, -
completion
times As S
0 1 5 8 10
“The tasks sorted A1 | - ¢
by latest starting A, - <«
times
0 1 5 8 10

* No task has a fixed part;

*The tasks sorted A1

by earliest A
: 2

completion

times As

*The tasks sorted Al
by latest starting A,
times A3

Detectable Precedences

&=
<

0O 1 2 5 8 10
> -

0O 1 2 5 8 10

* Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .

*The tasks sorted A1

by earliest A
: 2

completion

times As

*The tasks sorted Al
by latest starting A,
times A3

* While iterating over the next task i, all the tasks k for which the

Detectable Precedences

&=
<

0O 1 2 5 8 10
> -

0O 1 2 5 8 10

detectable precedence A, << A. exists, will be scheduled.

Detectable Precedences

*The tasks sorted A &=
by earhe.st A, Py
completion
times Aj S
5 8 10
“The tasks sorted A1 - A -
by latest starting A, - -
times
A3 — /3'_
0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect, ?

Detectable Precedences

*The tasks sorted A &=
by earhe.st A, Py
completion
times Aj S
5 8 10
“The tasks sorted A1 - A -
by latest starting A, - -
times
A3 — /3'_
0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect, ? No!

Detectable Precedences

*The tasks sorted A,

by earhe.st A, -

completion

times A, S
8 10

*The tasks sorted Al

by latest starting A,

times A3

= S

0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect, ?

Detectable Precedences

*The tasks sorted A,

by earhe.st A, -

completion

times A, S
8 10

*The tasks sorted Al

by latest starting A,

times A3

= S

0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect, ? No!

Detectable Precedences

*The tasks sorted A &=
by earhe.st A, Py
completion
times Aj S
0O 1 2 5 8 10
“The tasks sorted 1 | A
by latest starting A, - - -
times
A3 — /3'_
0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect; ?

Detectable Precedences

*The tasks sorted A &=
by earhe.st A, Py
completion
times Aj S
0O 1 2 5 8 10
“The tasks sorted 1 | A
by latest starting A, - - -
times
A3 — /3'_
0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect; ? Yes!

*The tasks sorted A

by earliest A
-)

completion

times A,

“The tasks sorted A1
by latest starting A,
times A,

* While iterating over the next task i, all the tasks k for which the

Detectable Precedences

&=
-

0O 1 2 5 8 10
> -

0O 1 2 5 8 10

detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect; ? Yes!
* The red task will be scheduled on the time line.

0

1

2

*The tasks sorted A1

by earliest A
: 2

completion

times As

*The tasks sorted Al
by latest starting A,
times A3

* While iterating over the next task i, all the tasks k for which the

Detectable Precedences

&=
<

0O 1 2 5 8 10
> -

0O 1 2 5 8 10

detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect; ? No!

0

1

2

Detectable Precedences

*The tasks sorted A1

-

by earliest

A
completion % ha
times A, 5
0O 1 2 5 8 10
“The tasks sorted 1 | % - -
by latest starting A, - - -
times
A, - -
0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* The detectable precedence rule prunes the earliest starting time of
the green task up to the earliest completion time of the time line.

0O 1 2 5 8

* The
tasks
sorted by
earliest
completio
n times

Detectable Precedences (with fixed part)

=
-
<
- -
0) 9 12131415 19 20 30

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

5
-
-
<
——"v[S o
0) 9 12131415 19 20 30
_.>
e

12131415

1920 30

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

5
-
-
<
——"v[S o
0) 9 12131415 19 20 30
_i
Q
0 2 9 12131415 1920 30

* The yellow task has a fixed part;

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

5
—
s
|
= S
0 D 9 12131415 19 20 30
Q
> HRRRRRRS
0 P 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

12

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

e

e
<

- S o
0 2 9 12131415 19 20 30

%

- HERERRRS
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ?

12

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

e

e
<

- S o
0 2 9 12131415 19 20 30

%

- HERERRRS
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ? No!

12

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

e

e
<

- S o
0 2 12131415 19 20 30

%

- HERERRRS
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect, ?

12

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

e

e
<

- S o
0 2 12131415 19 20 30

%

- HERERRRS
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ? No!

12

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

e

e
<

- S o
0 2 9 12131415 19 20 30

%

- HERERRRS
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect;?

12

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

e

e
<

- S o
0 2 9 12131415 19 20 30

%

- HERERRRS
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ? Yes!

12

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

5
—
s
|
= S
0 D 9 12131415 19 20 30
Q
> HRRRRRRS
0 P 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ? Yes!

* The red task will be scheduled on the time line.

2

54

Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

_Vl
0 2 9 12131415 19 20 30

* The
tasks
sorted by
latest >

= * HENERERS
times

DR 9 12131415 1920 30
* Simultaneously iterate over all the tasks 1 from the first table and

on all the tasks k from the second table .
* Checking 1if Ist, < ect; ?

{

Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

_Vl
0 2 9 12131415 19 20 30

* The
tasks
sorted by
latest >

= * HENERERS
times

DR 9 12131415 1920 30
* Simultaneously iterate over all the tasks 1 from the first table and

on all the tasks k from the second table .
* Checking if Ist, < ect; ? Yes!

{

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

—

30

0 2

2 12131415

1920

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .
* Checking if Ist, < ect; ? Yes!

* The yellow task has a fixed part. We call it the blocking task. It will not be
scheduled before being filtered.

0

54

30

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

30

—

0

2

9 12131415 1920

30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect; ? Yes!
* Filtering of the current task (green) will be postponed!

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

30

—

0

2

9 12131415 1920

30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ?

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

30

—

0

2

9 12131415 1920

30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ? Yes!

54

Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

30

* The
tasks
sorted by
latest

times
0 2 9 12131415 1920 30
* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .
* Checking if Ist; < ect; ? Yes!

* The blue task will be scheduled on the time line.

0 54

Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

30

* The
tasks
sorted by
latest

= * HENERERS
times

DR 9 12131415 1920 30
* Simultaneously iterate over all the tasks 1 from the first table and

on all the tasks k from the second table .
* Checking if Ist, < ect; ? No!

0 54

Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

0 2 9 30

* The
tasks
sorted by
latest =

- - HRRERRNS
times
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Processing of the green task is over! Note that it is not filtered yet,
since there exists a blocking task which has not been scheduled yet.

0 54

Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

0 2 9 30

* The
tasks
sorted by
latest >

- - HRRERRNS
times
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

It will be filtered after the blocking task is processed.

0 54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

30

—

0 2 9 12131415 1920

30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ?

0

54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

30

—

0 2 9 12131415 1920

30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ? No!

0

54

Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

0 2 9 30

* The
tasks
sorted by
latest =

= * HENERERS
times

DR 9 12131415 1920 30
* Simultaneously iterate over all the tasks 1 from the first table and

on all the tasks k from the second table .

* The yellow task is the blocking task. It will be first filtered to the
earliest completion time of time line.

0 54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

.
-
-
<
4 &=
0) 9 12131415 19 20 30
_>
- HERRRRES
0 2 9 12131415 1920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* The yellow task is then scheduled on the time line.

0

18 54

* The
tasks
sorted by
earliest
completio
n times

* The
tasks
sorted by
latest
starting
times

Detectable Precedences (with fixed part)

e

4'r

— =

[

0 2 9 12131415 1819 20 30
a

P | [| N

0 2 9 12131415 181920 30

* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Now, the postponed task (green) is filtered to the earliest completion

time of time line.

0

18 54

OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

P L PPV S YV NOOY

149

Problem definitions

® To compare the linear algorithm with their counterparts, we ran the
experiments on job-shop and open-shop scheduling problems.

® In these problems, 7 jobs consisting of a set of non-preemptive
tasks, execute on m machines. Each task executes on a
predetermined machine with a given processing time.

® In the job-shop problem, the tasks belonging to the same job
execute in a predetermined order. In the open-shop problem, the
number of tasks per job is fixed to m and the order in which the
tasks of a job are processed 1s immaterial.

® In both problems, the goal 1s to minimize the makespan, i.e. the
time when the last task completes.

Modeling the problems

* We model the problems with one starting time variable S, ; for each task j of
job 1.

® We post a DISJUNCTIVE constraint over all starting time variables of
tasks running on the same machine.

® For the job-shop scheduling problem, we add the precedence

constraints S;; + p;; < S; ;1.

® For the open-shop scheduling problem, we add a DISJUNCTIVE
constraint among all tasks belonging to the same job.

® For both problems, there 1s also a constraint posted to minimize the
makespan.

151

Example of a Job-shop scheduling
problem

Experiments

® After 10 minutes of computations, the program halts.

® The problems are not solved to optimality.

®* The number of backtracks that occur will be counted.

®* We compare two algorithms which explore the same tree in the
same order.

Experiments

® A larger portion of the search tree will be traversed within 10
minutes with the faster algorithm.

® The bigger the portion of the search tree which has been explored,
the more the number of backtracks, the faster the algorithm!

® Normally, we should notice that our algorithms get faster as the
number of tasks increases.

® This expectation was verified by running the experiments on two
benchmark problems!

Results for open shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
4 x 4 0.96 1.00 1.00
DX 1.03 1.12 7S
77 1.02 1.16 2.09
10 x 10 | 1.06 1.33 2.14
15 x 15 | 1.03 1.39 215
20 x 20 | 1.06 1.56 23y

155

Results for open shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
4 x 4 0.96 1.00 1.00
5 XD 1.03 1.12 7S
77 1.02 1.16 2.09
10 x 10 | 1.06 1.33 2.14
15 x 15 | 1.03 1.39 215
20 x 20 | 1.06 1.56 23y

* The results of three methods on open-shop benchmark problem
with n jobs and m tasks per job. The numbers indicate the ratio of
the cumulative number of backtracks between all instances of size
nm after 10 minutes of computations.

156

Results for job shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
10 x5 | 1.07 1.27 2.11
15 x5 | 1.02 1.35 2920
20 x5 | 1.00 1.55 2112
10 x 10 | 1.01 1.25 2.18
15 x 10 | 1.26 1.42 1.97
20 x 10 | 1.00 1.47 2.14
30 x 10 | 1.08 1.56 20
50 x 10 | 1.05 1.48 3.18
15 x 15 | 0.95 1.48 2.16
20 x 15 | 1.04 1.61 2315
20 x 20 | 1.09 1.46 laZd

Results for job shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
RS | 1.07 1.27 2.11
15 x5 | 1.02 1.35 2920
20 x5 | 1.00 1.55 2112
10 x 10 | 1.01 1.25 2.18
15 x 10 | 1.26 1.42 1.97
20 x 10 | 1.00 1.47 2.14
30 x 10 | 1.08 1.56 2.36
50 x 10 | 1.05 1.48 3.18
15 x 15 | 0.95 1.48 2.16
20 x 15 | 1.04 1.61 2315
20 x 20 | 1.09 1.46 laZd

* The results of three methods on job-shop benchmark problem with
n jobs and m tasks per job. The numbers indicate the ratio of the
cumulative number of backtracks between all instances of size nm
after 10 minutes of computations.

OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

P L PPV S YV NOOY

159

Conclusion

® Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.

160

Conclusion

® Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.

®* We came up with three faster algorithms to filter the disjunctive constraint.

Algorithm Previous Now
complexity complexity
Time-Tabling | O(nlog(n)) O(n)
(Ouellet & (Fahimi &
Quimper) Quimper)
Overload check | O(nlog(n)) O(n)
Vilim (Fahimi &
Quimper)
Detectable O(nlog(n)) O(n)
precedences Vilim (Fahimi &
Quimper)

