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What is Scheduling?



A hands-on application of scheduling!

®* Where? In the wood product industry!

®* The wood 1s wet at first and must be dried before being cut and used
for construction.

® The task 1s to put the wood 1n a dryer and make sure it 1s solid and
it won’t deform. The resource is the dryer.

® There are so many loads to be put in the dryer. So, we have as many
tasks as the number of loads.



A hands-on application of scheduling!

® The earliest starting time of a task is when the truck arrives with
the wood.

® For each load, there 1s a deadline which is the time that the
customer wants to have it ready.

® The processing time is the amount of time that the wood remains in
the dryer to lose moisture and dry out.
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IMlustration of a task and its parameters

1 ect, Ist, d,

T

1 6 | ﬁ ” 16 21 23
Pa=3

*  We call the interval [r, d,) the allowed execution interval of
task A..

®* = The release time;
e The deadline;
® The number of colored cells = Processing time;

® Gray cells: Out of the allowed execution interval of the task.
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Disjunctive scheduling
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Disjunctive scheduling
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Scheduling classification with the tasks

» Non-Preemptive Scheduling:
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Scheduling classification with the tasks

» Preemptive Scheduling:

k4
Interrupting A,

£
Resuming A,



OUTLINE

&) SCHEDULING

p—— P P

£ CONSTRAINT PROGRAMMING

e T T U SR TS SIS S — e

Ll PROPAGATION OF DISJUNCTIVE CONSTRAINT

P L PPV S YV NOOY

30



Definition of Constraint Programming

*Let X = {X,,...,X,} be a set of variables. A constraint C is a
condition, imposed over a subset X C X, which describes a relation
between the elements of X..

® An instance of a CSP is described by the sets
X={X;,....X } D= {D(X,),..., D(X))}
C= {CD' : .,Cm} X'= {XCI 5o -:XCm}

® An assignment of values to the variables, which satisfies all of the
constraints of a CSP, 1s called a solution. A solution for the
constraint C 1s called a support.
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Example (Disjunctive problem)




Example (Disjunctive problem)

A=
A, -
|EeD 5 18 20

. $={S,,S,,S;}
.+ S, E[1,4],S,E€ [5,13], S, E[2,12]

* Si+p=S) v S5+ p=S) (for1y=1,23 & 1))




Example (Disjunctive problem)

A=
A, -
A I~ HERERENN =
IEEe2 5 18 20
* S={S.,S,,S;}
* S,€[1,4],S,€[5,13], S;E€[2,12]
* Si+p=S) v S5+ p=S) (for1y=1,23 & 1))
1 3 6 10 12 19

* (1, 6, 12) is a support.



Disjunctive Constraint

*Letl={A,,...,A,} be a set of tasks with unknown starting times
S., and known processing time p, (1= 1= n).

* Variables: X = {S,...,S };
* Domains: D(S.)=[r,, Ist];
¢ Constraint: No more than one task executes at each time t.

* The constraint DISJUNCTIVE([S,....,S,]) 1s satisfied, if for all
pairs of tasks (1 = j)
S. + p, sSj or Sj+pjs S.
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Constraint filtering

* Initially, the domains of a CSP may include values which are not
consistent with some constraints of the problem.

* To reduce the search space, solvers use filtering algorithms
associated to each constraint.

* Filtering algorithms keep on excluding values of the domains that
do not lead to a feasible solution, until it is not possible to prune
the domains of variables further.
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Example (Disjunctive constraint)

NEm = Ee
A, — —
IS 4 5 7 18 20

* There is no chance to start task A; at its release time, as A,
would not execute. Thus, the values {2, 3} should be filtered from

the domain of A; .
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Example (Disjunctive constraint)

NEm = me
A, — -
1 2 3 4 5 7 18

* There 1s no chance to start task A, at its release time, as A,
would not execute. Thus, the values {2, 3} should be filtered from

the domain of A; .

* The values {2, 3} are out of the allowed execution interval of A;.
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Disjunctive Constraint

* It is NP-Complete to determine whether there exists a solution to
Disjunctive constraint.

® [t 1s NP-Hard to filter out all values that do not lead to a solution.

® Nonetheless, there exist rules that detect in polynomial time some
filtering of the domains of the tasks.

® Our goal 1s to improve some existing filtering algorithms for the
Disjunctive constraint.
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Preliminaries

* We aim to design filtering algorithms, which are faster than the
previously known algorithms.

* To achieve this goal, there are two major operations, to take advantage
of:

* Sorting in linear time;

* Union-Find data structure.

* Since all the time points can be encoded with fewer than 32 bits, radix
sort sorts them 1n linear time.
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Union-Find Data structure

Function Operation Complexity
(Gabow & Tarjan,
1983)
Union-Find(n) Initializes n disjoint O(n)

sets

{0}, {1},...,{n- 1}
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Union-Find Data structure

Function Operation Complexity
(Gabow & Tarjan,
1983)
Union-Find(n) Initializes n disjoint O(n)
sets
{0}9 {1}97 {n - 1}
Union(a, a+1) Merges the set that O(1)
contains the element
a with the set that
contains the element
a+1
FindSmallest(a) | Returns the smallest O(1)
element of the set
that contains a
FindGreatest(a) | Returns the greatest O(1)

element of the set
that contains a
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Time-Tabling

® A technique to filter the Disjunctive constraint.

® [t consists of finding the necessary usage of the resource over a
time interval.
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Time-Tabling
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Time-Tabling

-

-~ -
=
0O 1 2

3 4

* If Ist, < ect. for a task 1, then the interval [lst,ect,) 1s called the
fixed part of 1.



Time-Tabling

< First filtering



Time-Tabling

< Second filtering



Time-Tabling

® Ouellet & Quimper presented an algorithm for Time-Tabling on a
more general case in O(nlog(n)).

®* We took advantage of Union-Find to achieve a linear time
algorithm for Time-Tabling in the Disjunctive case.
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The strategy of our Time-Tabling
alogorithm
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The strategy of our Time-Tabling

algorithm
A, - -
A - | [ =
A, - -
012 6 15 19 22

* First, we list the fixed parts of the tasks which have fixed part.

* A, and A, have fixed parts.

\10 14

}

|
Fixed(A,) Fixed(A,)

*  We process the tasks in increasing order of processing times.
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The strategy of our Time-Tabling

algorithm
=
. 5 0 S
A, - =
01 2 6 15 19 22

Fixed(A,)
NG
- % =
N\
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¢ A, cannot be scheduled at 10.



The strategy of our Time-Tabling

algorithm
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Fixed(A,)

* Hence, A; jumps over two fixed parts.



The strategy of our Time-Tabling

algorithm
- L B
. 5 0 S
A, - ha
01 2 6 15 19 22

Fixed(A,)

* The domain of A, after filtering.



The strategy of our Time-Tabling
algorithm

A, 0 A S O S

Q

01 2 6 15 19

1 4 10 14}

|
Merged(Fixed(A ), Fixed(A,))

* Since the tasks are being processed in increasing order of
processing times, the next tasks will not fit in [0,14], neither. At
this point, Union-Find merges the fixed parts of A, and A, to one

set 1n constant time!



The strategy of our Time-Tabling
algorithm

® Jumping over a fixed part takes constant time.

® Merging the fixed parts reduces the number of jumps.

® That 1s how we achieve a linear time algorithm!



O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?
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O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?

® This value is called the "Earliest Completion Time" of a set of tasks.

66



O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?

® This value is called the "Earliest Completion Time" of a set of tasks.

e Vilim introduced a data structure called ®-Tree that computes the
earliest completion time of a set of task ©.
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O-Tree

® Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?

® This value is called the "Earliest Completion Time" of a set of tasks.

e Vilim introduced a data structure called ®-Tree that computes the
earliest completion time of a set of task ©.

® One can insert a task into ® or remove a task from © and update the
computation in O(log(n)) time.
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Time line

® We introduced this idea to improve upon the ©O-tree.

® What does it do?

® This data structure is initialized with an empty set of tasks © = .

® It is possible to add, in constant time, a task to ©. The task will be
scheduled at the earliest time as possible with preemption.

® It 1s possible to compute the earliest completion time of ® in constant
time, at any time.
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Time line

N <«
* The time line is a line with markers for est. | lIct, | p;
important dates. The important dates are the 5 8 2
release times of the tasks and one time point that ) 10 6
1s late enough.
4 15 5
28

1} = {4} = {5} — {28}




Time line
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* Between each two consecutive time points, est. | lIct, | p;
there 1s a capacity that denotes the amount of 5 Q )
time that the resource is available through. ) 10 6
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Time line
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* Initially, the capacities are equal to the est. | lIct, | p;
difference between the consecutive time points. 5 ] )
1 10 6
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* We schedule the tasks, one by one. After est. | lIct, | p;
scheduling, the free times will reduce. 5 ] 0
1 10 6
— 15 5

1 4 5 28

{1} 2 {4} 5 {5} > {28}
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* Once a capacity equals null, the corresponding est; | Ict, | p;
time points will be merged by Union-Find. 5 ] )
1 10 6
4 15 5

1 45 28
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Time line

- -

1 4 5 8 e 15
* That allows to run a linear search over the time est. | lIct, | p;
line for periods that have free time. This search 5 ] 9)
will jump over the occupied regions in constant ) 10 6

time.

4 15 5

1 4 5 28

[145) = {28}

* The earliest completion time will be computed in constant time

by 28-14 = 14!




©-Tree and TimeLine comparison

Operation O-Tree Time line
Adding a task to O(log(n)) O(1)
the schedule
Computing the O(1) O(1)
earliest

completion time

Removing a task
from the schedule

O(log(n)) steps

Not supported !
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©-Tree and TimeLine comparison

Operation O-Tree Time line
Adding a task to O(log(n)) O(1)
the schedule
Computing the O(1) O(1)
earliest

completion time

Removing a task | O(log(n)) steps | Not supported !
from the schedule

* Time line 1s therefore faster than a ®—tree, but can only be used
in the occasions where the removal of a task i1s not required.



Overload Checking
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Overload Checking

A m E
A, .~ | | | | * |
4 8 10
0=1{A,A} dg - 15 = 10-1=9 < p,, = 6+4




Overload Checking

A, - -~
A, .~ | | | | * |
B2 4 8 10
0 =1{A,A} dg - 15 = 10-1=9 < p,, = 6+4

= There 1s not a valid schedule for Q.




Overload Checking

® Overload Checking is not a filtering algorithm, as it does not
propagate.

® It triggers a backtrack if the test fails.
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Overload Checking

® Overload Checking 1s not a filtering algorithm, as it does not
propagate.

® It triggers a backtrack if the test fails.

~— —

@ = 0;
for je T innon-decreasing order of Ict; do begin
® = QU
if ecty > Ict; then
fail: {No solution exists}
end :

NN B W=
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The strategy of our Overload check
algorithm

®* We implement the overload check algorithm just asVilim does. The
only difference 1s that we simply substitute the O-tree with the time
line.

® Overload Check with implementing time line runs in linear time!
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Example

e
- -
0 1 9 10
01 3 7 10 21

(0 5 (131 2 (21)

* Earliest completion time of @ =21 -17=4.




Example

e
- -
0 1 9 10
01 3 7 10 21

0y 5 (1313 (1)

* FEarliest completion time of ® =21 -13= 8.
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Example

0 1 3 7 10

{0,1,3}1i {21}

» Earliest completion time of ®@ =21 -10=11 > 10.
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Example

-
9 10
0 1 3 7 10 21

{(),1,3}.11 {21}

* Earliest completion time of ® =21 -10=11 > 10.

* QOverload check fails! Thus, no valid schedule exists.
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Detectable Precedences

*Let A; and A, be two tasks. It ect; > Ist;, the precedence A; << A; 18
called detectable.

lstj

\
1»\

ect.

* Vilim introduced this idea and presented an algorithm in
O(nlog(n)), using the notion of O-tree.
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Example

- A<<C, B<<C.

A -

\ 0 25

|
pr=11
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Example

A= -
\0 } 25
i
pr=11
B -+ f
0 1 25 27
pg=10
C 4
0 1 14 21 25 27 35
- A<<C, B<<C. Pc=

* Since {A , B } << C, the domain of C will be filtered to
esto = est, +p, T pg = 21.



Example

\ 0 } 25
i
pr=11

B -

0 1 25 27

pg=10

C 4

0 1 14 21 25 27 35

* The domain of C after filtering.
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* Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .
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Detectable Precedences

*The tasks sorted A &=
by earhe.st A, Py
completion
times Aj S
0O 1 2 5 8 10
“The tasks sorted 1 | A
by latest starting A, - - -
times
A3 — /3'_
0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect; ? Yes!




*The tasks sorted A

by earliest A
- )

completion

times A,

“The tasks sorted A1
by latest starting A,
times A,

* While iterating over the next task i, all the tasks k for which the

Detectable Precedences

&=
-

0O 1 2 5 8 10
> -

0O 1 2 5 8 10

detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect; ? Yes!
* The red task will be scheduled on the time line.
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1
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by earliest A
: 2
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times As

*The tasks sorted Al
by latest starting A,
times A3

* While iterating over the next task i, all the tasks k for which the
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detectable precedence A, << A. exists, will be scheduled.

* Checking if Ist, < ect; ? No!
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Detectable Precedences

*The tasks sorted A1

-

by earliest

A
completion % ha
times A, 5
0O 1 2 5 8 10
“The tasks sorted 1 | % - -
by latest starting A, - - -
times
A, - -
0O 1 2 5 8 10

* While iterating over the next task i, all the tasks & for which the
detectable precedence A, << A. exists, will be scheduled.

* The detectable precedence rule prunes the earliest starting time of
the green task up to the earliest completion time of the time line.

0O 1 2 5 8
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* The yellow task has a fixed part;
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ?
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ? No!
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect, ?
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ? No!
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect;?
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ? Yes!
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ? Yes!

* The red task will be scheduled on the time line.
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* Checking 1if Ist, < ect; ?

{




Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

_Vl
0 2 9 12131415 19 20 30

* The
tasks
sorted by
latest >

= * HENERERS
times

DR 9 12131415 1920 30
* Simultaneously iterate over all the tasks 1 from the first table and

on all the tasks k from the second table .
* Checking if Ist, < ect; ? Yes!
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .
* Checking if Ist, < ect; ? Yes!

* The yellow task has a fixed part. We call it the blocking task. It will not be
scheduled before being filtered.
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect; ? Yes!
* Filtering of the current task (green) will be postponed!
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ?
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist; < ect; ? Yes!
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Detectable Precedences (with fixed part)
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .
* Checking if Ist; < ect; ? Yes!

* The blue task will be scheduled on the time line.
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* Simultaneously iterate over all the tasks 1 from the first table and

on all the tasks k from the second table .
* Checking if Ist, < ect; ? No!
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Processing of the green task is over! Note that it is not filtered yet,
since there exists a blocking task which has not been scheduled yet.
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

It will be filtered after the blocking task is processed.
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ?
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Checking if Ist, < ect, ? No!
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Detectable Precedences (with fixed part)

* The
tasks
sorted by
earliest
completio
n times

0 2 9 30
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DR 9 12131415 1920 30
* Simultaneously iterate over all the tasks 1 from the first table and

on all the tasks k from the second table .

* The yellow task is the blocking task. It will be first filtered to the
earliest completion time of time line.
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* The yellow task is then scheduled on the time line.
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* Simultaneously iterate over all the tasks 1 from the first table and
on all the tasks k from the second table .

* Now, the postponed task (green) is filtered to the earliest completion

time of time line.
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Problem definitions

® To compare the linear algorithm with their counterparts, we ran the
experiments on job-shop and open-shop scheduling problems.

® In these problems, 7 jobs consisting of a set of non-preemptive
tasks, execute on m machines. Each task executes on a
predetermined machine with a given processing time.

® In the job-shop problem, the tasks belonging to the same job
execute in a predetermined order. In the open-shop problem, the
number of tasks per job is fixed to m and the order in which the
tasks of a job are processed 1s immaterial.

® In both problems, the goal 1s to minimize the makespan, i.e. the
time when the last task completes.



Modeling the problems

* We model the problems with one starting time variable S, ; for each task j of
job 1.

® We post a DISJUNCTIVE constraint over all starting time variables of
tasks running on the same machine.

® For the job-shop scheduling problem, we add the precedence

constraints S;; + p;; < S; ;1.

® For the open-shop scheduling problem, we add a DISJUNCTIVE
constraint among all tasks belonging to the same job.

® For both problems, there 1s also a constraint posted to minimize the
makespan.
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Example of a Job-shop scheduling
problem




Experiments

® After 10 minutes of computations, the program halts.

® The problems are not solved to optimality.

®* The number of backtracks that occur will be counted.

®* We compare two algorithms which explore the same tree in the
same order.



Experiments

® A larger portion of the search tree will be traversed within 10
minutes with the faster algorithm.

® The bigger the portion of the search tree which has been explored,
the more the number of backtracks, the faster the algorithm!

® Normally, we should notice that our algorithms get faster as the
number of tasks increases.

® This expectation was verified by running the experiments on two
benchmark problems!



Results for open shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
4 x 4 0.96 1.00 1.00
DX 1.03 1.12 7S
77 1.02 1.16 2.09
10 x 10 | 1.06 1.33 2.14
15 x 15 | 1.03 1.39 215
20 x 20 | 1.06 1.56 23y
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Results for open shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
4 x 4 0.96 1.00 1.00
5 XD 1.03 1.12 7S
77 1.02 1.16 2.09
10 x 10 | 1.06 1.33 2.14
15 x 15 | 1.03 1.39 215
20 x 20 | 1.06 1.56 23y

* The results of three methods on open-shop benchmark problem
with n jobs and m tasks per job. The numbers indicate the ratio of
the cumulative number of backtracks between all instances of size
nm after 10 minutes of computations.
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Results for job shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
10 x5 | 1.07 1.27 2.11
15 x5 | 1.02 1.35 2920
20 x5 | 1.00 1.55 2112
10 x 10 | 1.01 1.25 2.18
15 x 10 | 1.26 1.42 1.97
20 x 10 | 1.00 1.47 2.14
30 x 10 | 1.08 1.56 20
50 x 10 | 1.05 1.48 3.18
15 x 15 | 0.95 1.48 2.16
20 x 15 | 1.04 1.61 2315
20 x 20 | 1.09 1.46 laZd




Results for job shop problem

n X m | OverloadCheck | Detectable Precedences | Time Tabling
RS | 1.07 1.27 2.11
15 x5 | 1.02 1.35 2920
20 x5 | 1.00 1.55 2112
10 x 10 | 1.01 1.25 2.18
15 x 10 | 1.26 1.42 1.97
20 x 10 | 1.00 1.47 2.14
30 x 10 | 1.08 1.56 2.36
50 x 10 | 1.05 1.48 3.18
15 x 15 | 0.95 1.48 2.16
20 x 15 | 1.04 1.61 2315
20 x 20 | 1.09 1.46 laZd

* The results of three methods on job-shop benchmark problem with
n jobs and m tasks per job. The numbers indicate the ratio of the
cumulative number of backtracks between all instances of size nm
after 10 minutes of computations.
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Conclusion

® Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.
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Conclusion

® Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.

®* We came up with three faster algorithms to filter the disjunctive constraint.

Algorithm Previous Now
complexity complexity
Time-Tabling | O(nlog(n)) O(n)
(Ouellet & (Fahimi &
Quimper) Quimper )
Overload check | O(nlog(n)) O(n)
Vilim (Fahimi &
Quimper)
Detectable O(nlog(n)) O(n)
precedences Vilim (Fahimi &
Quimper)







