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States and Actions

Markov Decision Process (MDP)



Notations
❖ S: set of states (e.g. position and velocity of the robot)!
❖ A: set of actions (e.g. force)!
❖ T: stochastic transition function

next state

❖ R: reward (or cost) function, 

current state current action



Policies
A policy is a function π that maps each state to an action,



Value function
The value (or utility) of a policy π is the sum of 
rewards that one expects to gain by following it. 

Goal: finding an optimal policy.
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Belief state

Example: the robot can sense an obstacle only after bumping into it.
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The target of the ball should be predicted in advance

Figure 2: Demonstration of the robot’s hitting plane and the human opponent’s target. The hitting point is the intersection

xhp of the coming ball’s trajectory and the virtual hitting plane 80 cm behind the table, which is considered the target where

the human opponent intents to shoot the ball. Our goal is to select an action according to the prediction of the target xhp.

Figure adapted from Mülling et al. (2011).

2009). The prediction of the human partner’s intention can be realized by modeling how the intention directs

the dynamics of hitting movement (Wang et al., 2013). In the table tennis scenario, this Intention-Driven

Dynamics Model (IDDM) leads to an online algorithm that, given a time series of observations, continually

predicts the human player’s intended target, i.e., where the human intends to shoot the ball (Wang et al.,

2013), as shown in Figure 2.

Anticipatory action selection needs to take into account the prediction uncertainty. The robot is likely

to fail to return the ball if it has initiated a forehand (“right” in Figure 2) hitting movement and the ball

is shot to its backhand (“left”) region, or vice versa. The prediction of the intended target tends to become

increasingly accurate and confident as the human opponent finishes his movement (Wang et al., 2013). On

the other hand, the robot requires a certain minimum time to execute its hitting movement. Therefore, the

essence of the anticipatory action selection is deciding when and how to initiate the hitting movement based

on the increasingly confident predictions.

1.2. Related Work and Contributions

Intention inference has been investigated in di↵erent settings, for example, using Hidden Markov Mod-

els (HMMs) to model and predict human behavior where di↵erent dynamics models were adopted to the

corresponding behaviors (Pentland and Liu, 1999). Online learning of intentional motion patterns and pre-

diction of intentions based on HMMs was proposed by Vasquez et al. (2008), which allows e�cient inference

in real time. The HMM can be learned incrementally to cope with new motion patterns in parallel with

prediction (Vasquez et al., 2009).

Anticipation is important in many human-robot interaction scenarios (e.g., Ziebart et al., 2009; Dragan

and Srinivasa, 2012; Wang et al., 2012b). Decision making can also be achieved jointly with intention

5

Once the opponent strikes 
the ball, it becomes too late 
for the robot to start reacting.



Observations

xt-1 xt+1xt

ot+1ot-1 ot

Intended 
Target

Hidden variables

...
Positions of the ball, 
the racket and joints of 
the opponent, tracked 
using a Kinect camera

Probabilistic graphical model of intention-driven dynamics

Observations ot  are generated according to a Gaussian Process.
From observations ot  , one can calculate a probability 
distribution on the intended target.



−0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

p
o

st
e

ri
o

r

X

approx. 320ms

 

 

backhand
middle
forehand

−0.2 0.4 X

approx. 160ms

−0.2 0.4 X

approx. 80ms (before hit)

Figure 4: Bar plots show the distribution of the target (X coordinate) at approximately 320ms, 160ms, and 80ms before the

player hits the ball. The prediction became increasingly confident as the player finishes the hitting movement, and the robot

later chose the default hitting movement accordingly. Figure adapted from Wang et al. (2013).

not limit the model’s capability to infer time-varying intention. In fact, the online inference method (Wang

et al., 2013) is able to deal with the change of intention. For more technical details of learning and approx-

imate inference, we refer the reader to Wang et al. (2013) and Wang (2013).

Assuming that the dynamics of the human player’s racket is driven by the intended target g, we can

apply the IDDM to predict the target g given a time series of observations z1:t that are generated from

corresponding latent states x1:t. While exact inference of the intention g and states x
t

is not tractable,

Wang et al. (2013) presented an e�cient online inference algorithm to update the belief p(g,x
t

|z1:t), i.e.,

the posterior probability of the intention g and the latent states x
t

once a new observation z
t

is obtained.

Figure 4 shows that the predictive uncertainties decrease as the human player finishes the hitting movement.

To summarize, the IDDM provides an estimate of the transition model T and of the measurement model ⌦

in the considered POMDP with Gaussian processes, which are used for updating the belief.
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Sample subsequent observation ot+1 ∼ P( .| xt+1)
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V(bt) > V(bt+1)
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strike back!
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Figure 8: Performance of the LSPI and MCP methods evaluated in ten repetitions on the test data with 207 valid trials, based

on sampled episodes on the training data. The numbers on the X-axis showed the number of sampled episodes on the training

data.

3.3. Discussion

We conducted a case study with a simplified human-robot table tennis scenario. We assume that the

recruited non-professional players do not deliberately mislead the opponent by changing their intended target

during the execution of stroke. More generally, IDDM assumes that the intention is time-invariant and the

main driving factor when learning the dynamics model. For example, the speed and spin of the table tennis

ball, which also a↵ect the dynamics of strokes, are not explicitly considered in the model2. This assumption

does not necessarily limit the capability of IDDM for intention inference (Wang et al., 2013) and planning.

Moreover, this assumption can be further relaxed by taking into account other driving factors as exogenous

variables in the dynamics model, leading to Hierarchical Gaussian Process Dynamics Models (H-GPDMs),

discussed by (Wang, 2013). Note that, however, the method is not applicable for adversarial planning, as the

assumption of time-invariant intention is violated in adversarial scenarios. Incorporation of game-theoretic

perspectives in the framework of H-GPDMs is a future direction of this work.

Despite the simplification, the case study clearly showed the importance of combining anticipation and

planning and the feasibility of presented methods. We discuss implications of the experimental results in

2The speed and spin of the ball are implicitly modeled by the data-driven, non-parametric dynamics model.
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Z. Wang, A. Boularias et al. (2015) in Artificial Intelligence Journal.
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Reward Transition Function (Dynamics) Policy

Optimal Control

Designing a useful reward function for 
complex behaviors is a tedious task.
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Inverse Optimal Control

R
def
= wT�

Assumption: The reward is a linear function of state-action features

reward
unknown 
weights

features (e.g. velocity, energy, 
distance from goal, ..)
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Inverse Optimal Control

R
def
= wT�

V (⇡) =
HX

t=0

Est [R(st,⇡(st))]

=
nX

k=1

wk

HX

t=0

Est [�k(st, at)]

| {z }
�(⇡)

= wT�(⇡)

Assumption: The reward is a linear function of state-action features

Value of policy π

expected features under ! !
(e.g. expected energy, distance, etc.)



Inverse Optimal Control: Problem Statement
Given an expert’s policy π∗, find reward weights w such that:!

Value of the expert’s policy Value of an arbitrary policy 

wT�(⇡⇤
) � max

⇡
wT�(⇡)

In other terms, expert’s policy π∗ has the highest possible value.!



Inverse problems are generally ill-posed

wT�(⇡⇤
) � max

⇡
wT�(⇡)

Given an expert’s policy π∗, find reward weights w such that:!

Value of the expert’s policy Value of an arbitrary policy 



Relative Entropy Inverse Optimal Control

Z

⌧
P (⌧)d⌧ = 1

kE⌧⇠P [�(⌧)]� �(⇡⇤)k  ✏

8⌧ : P (⌧) � 0

Expected features under P Expected features in the expert’s 
demonstration

Find P, a probability distribution on state-action trajectories    ⌧



Relative Entropy Inverse Optimal Control

Z

⌧
P (⌧)d⌧ = 1

kE⌧⇠P [�(⌧)]� �(⇡⇤)k  ✏

8⌧ : P (⌧) � 0

Expected features under P Expected features in the expert’s 
demonstration

min
P

DKL(PkQ)
Reference distribution

Solve

Subject to:

convex

Find P, a probability distribution on state-action trajectories    ⌧



Relative Entropy Inverse Optimal Control

P (⌧ |w) / Q(⌧) exp
�
wT�(⌧)

�
Solution

Reward weights w are obtained by gradient descent

Reference distribution

Expected return



Robot Table Tennis: Learning to Imitate an Expert Player

Goal: Learn a reward function from demonstrations of a professional player

Biol Cybern

as helicopter control (Abbeel et al. 2010), parking lot naviga-
tion (Abbeel et al. 2008), navigating a quadruped robot across
different terrains (Kolter and Ng 2011), human navigation
behavior (Rothkopf and Ballard 2013), routing preferences
of drivers (Ziebart et al. 2008), modeling goal-directed trajec-
tories of pedestrians (Ziebart et al. 2009) and user simulation
in spoken dialog management systems (Chandramohan et al.
2011). In most of these approaches, the underlying dynamics
of the system is assumed to be known. However, the dynam-
ics of human behavior is usually difficult to model. We avoid
modeling these complex dynamics by learning the strate-
gies directly from human demonstration. Thus, the dynam-
ics model underlying the task is implicitly encoded in the
observed data. To collect demonstrations, we asked skilled
and naive table tennis players to compete in several matches.
We recorded the ball trajectories as well as the Cartesian posi-
tion and orientation of the upper body joints for all players
with a VICON motion capture system (see Fig. 1).

This paper does not focus on the introduction of new
IRL methods for solving this kind of problem. We rather
intend to apply existing methods on this new challenging
problem. During the course of this paper, we will answer
the following questions: (1) Can we infer a reward func-
tion that captures expert-specific information using model-
free inverse reinforcement learning? (2) Using this reward
function, can we distinguish players with different playing
styles and skill levels? (3) Which parts of the sensory infor-
mation are the key elements for selecting the movement
parameters?

In the remainder of this paper, we will proceed as follows.
In Sect. 2, we present the theoretical background for mod-
eling decision processes, including MDPs and the used IRL
algorithms. We present the experimental setup and evalua-
tions in Sect. 3. In Sect. 4, we summarize our approach and
the results.

Fig. 1 Considered Scenario. Two people playing a competitive match
of table tennis. The movements of the player and the ball were recorded
with a VICON motion capture system and analyzed afterward

2 Modeling human strategies

As discussed in the introduction, we use model-free inverse
reinforcement learning (IRL) to learn human strategies. Here,
we will first introduce the notation and basic elements nec-
essary for the table tennis model. Subsequently, we will dis-
cuss different model-free IRL approaches and show how the
states, actions and reward features in the table tennis task can
be represented.

2.1 Preliminaries

To employ IRL, the problem at hand needs to be modeled
as a Markov decision problem (MDP). Formally, a MDP is
a tuple (S, A, T , R, d0, γ ), where S is the state space, A is
the action space, and T is a transition function

T (st , at , st+1) = Pr(st+1|st , at ),

with states st , st+1 ∈ S and actions at ∈ A. The function
R(s, a) defines the reward for executing action a in state s,
the initial state distribution d0(s) models the start conditions,
and the discount factor γ ∈ [0, 1) determines the effective
planning horizon.

A deterministic policy π is a mapping: S "→ A and defines
which action is chosen in a state s ∈ S. A stochastic policy is
a probability distribution over actions in a given state s and is
defined as π(s|a) = Pr(a|s). The performance of a policy is
measured with the so-called value function V π (s). The value
function of a policy π evaluated at state s is given by

V π (s) = E
[ ∞∑

t=0

γ t R(st , at )

∣∣∣∣π, T , s0 = s

]

,

and corresponds to the expected reward following policy π

starting from state s. The optimal value function is defined
by V ∗(s) = maxπ V π (s) ∀s ∈ S. The goal of an agent in
a MDP is to find the optimal policy π∗, i.e., a policy that
maximizes the value for every s ∈ S.

We assume that the reward function R is given by a linear
combination of m feature functions fi with weights wi . The
reward function is therefore defined by

R(s, a) =
m∑

i=1

wi fi (s, a) = wTf(s, a),

where w ∈ Rm and f(s, a) ∈ Rm . The features fi are fixed,
known, bounded basis functions mapping from S × A into
R. For a given trajectory τ = s1a1, . . . , sT aT , the feature
counts are given by f τ

i = ∑H
t=1 γ t fi (st , at ). Similarly to

the value function, we can define the feature count f π
i under

policy π by

123

Trajectories of the 
ball and the bodies 
of the players were 
captured using 
infrared markers.



Robot Table Tennis: Learning to Imitate an Expert Player
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Fig. 3 The state of the system is defined by the relative position of the
agent (dsx , dsy) and the relative position (dox , doy) and velocity (vo) of
the opponent toward the table, as well as the position (dbx , dby) and
velocity (vb) of the ball when bouncing on the table

or the spin of the ball. Modeling such hidden and uncer-
tain information in the state space leads to the formulation
of partial observable MDPs (PoMDPs, (Monahan 1982)).
Second, modeling such high-dimensional continuous state
domains in the context of PoMDPs requires a large data set
and is likely to be intractable. Hence, we approximate the
problem by assuming perfect knowledge about the environ-
ment and remove redundant and irrelevant information. We
assume that the player has to decide where and how to hit
the ball when the hitting movement is initiated and that the
decision depends on the following information: the planar
Cartesian position of the agent ds = [dsx , dsy], the oppo-
nent’s position do = [dox , doy] and velocity vo, the state of
the rally g ∈ {player serve, opponent serve, not served}, the
elbow position of the opponent eo = [eox , eoy ] as well as
the ball position db = [dbx , dby], velocity |vb| and direction
given by the angles θpy and θpz (see Fig. 3).

Thus, the state can be represented by the parameters
si = [db, |vb|, θpy, θpz, ds, do, eo, vo, g]. The variables θpy
and θpz are defined as the horizontal and vertical bouncing
angles of the ball at the moment of impact on the player’s
side of the table, respectively. θpz defines the bouncing angle
in the xz-plane and therefore corresponds to how flat the ball
was played. θpy defines the bouncing angle in the xy-plane
(see Fig. 5). Playing the ball diagonal to the backhand area of
the opponent results in a smaller negative angle for θpy, while
playing the ball diagonal to the forehand area results in an
increased angle. Playing the ball straight corresponds to an
angle of zero. Additionally, we define a set of terminal states
sT ∈ {W, L}. A rally will end when either the subject won
the rally (sT = W ), or the subject lost the rally (sT = L).

2.3.2 Actions

To perform a hitting movement, the system needs the fol-
lowing information: (i) where and when to hit the ball, (ii)

the velocity of the racket and (iii) the orientation of the
racket at impact. While the first may directly result from the
current state of the system, the second and third points are
determined by where and how the player decides to return
the ball to the opponent’s court. This decision includes the
desired bouncing point pb of the ball on the opponent’s court,
the corresponding bouncing angles θoy and θoz, the overall
velocity of the ball ||vb|| and the spin of the ball. Here, the
desired bouncing point refers to the bouncing point on the
opponent’s court desired by the player. Since the different
kinds of spin are hard to capture without an expert classi-
fying the sampled data, we discard the spin and use only
basic strategic elements. Therefore, an action can be defined
as a = [pb, ||vb||, θoy, θoz]. We do not distinguish between
serves and nonserves for the actions, as the first bounce of
the serve will be fully described by the second bounce.

2.3.3 Reward features

In order to estimate the desired unknown reward function, we
assume that the reward function is given by a linear combina-
tion of observable reward features. Usually, those reward fea-
tures are chosen manually by the experimenter. An automatic
approach for choosing these reward features was suggested
by Levine et al. (2010). Here, it was suggested to construct
the features from a logical combinations of components that
are the most relevant to the task. Nevertheless, this approach
also requires the definition of the most relevant components
of the state space beforehand. Even if it would be possible
to consider the whole state space as components, some fea-
tures might be the result of a nontrivial combination of these
elements. Other feature combinations might be redundant
and could dominate the behavior due to their multiple occur-
rences. Therefore, we choose the features manually taking
into account the logical combination of state components
that seemed most relevant for the task.

We choose the features as a combination of the state infor-
mation of the ball and the position of the opponent. In order to
be able to distinguish whatever the relevant features depend
on the opponent or not, we choose features that depend only
on the state information of the ball but are independent of the
opponent and features that depend on the state information
of the ball and the opponent. In the following, we list the
chosen reward features fi (s, a).

Position on the table This feature corresponds to the
bouncing point of the ball in the opponent’s court. Players
do not usually target a particular point on the table but rather
a small region. Therefore, we discretize the court into nine
regions (see Fig. 4). Each region i is identified by its cen-
ter ci. We use as features the relative distances between the
observed bouncing point pb of the ball on the opponent’s
court and each center ci, given by

123
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(a) Reward function for table preferences
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Fig. 7 Resulting parameter values for the individual features. a The
resulting reward function of the table preferences for Algorithm 3 (MM).
b The weights of all other features for Algorithm 3 (MM) and Algo-
rithm 4 (RE), respectively. c The differences of the average reward of
the expert and the naive player for each feature separately using the
reward function of the max-margin algorithm (green) and the relative

entropy algorithm (yellow). d The differences of the average rewards for
the most important features at different time steps before the terminal
state (win or loss) for the reward function yield with the max-margin
algorithm. a Reward function for table preferences. b Reward feature
weights. c Average reward differences. d Reward differences features
at different time steps (color figure online)

cant for both MMS (t (4) = −4.22, p = 0.008) and RE
(t (4) = −3.06, p = 0.03).

3.2.6 Distance to the edges of the table

The distance of the bouncing point of the ball to the edges
of the table had only a small positive influence in the reward
function yielded by the max-margin algorithm. The reward
function yielded by the RE algorithm assigned a little neg-
ative reward for playing the ball close to the edge in the
y-direction (i.e., along the width of the table) and a rel-
atively high negative reward for playing the ball close to
the edge in the x-direction (direction toward the player).
The average reward differences in the evaluations indicate

that the reward assigned by the reward function of the RE
method is to be favored (see Fig. 7b). However, the average
reward differences in x- and y-directions are not significant
for both MMS (t (4) = 2.07, p = 0.09; t4) = 1.18, p =
0.29) and RE (t (4) = −1.85, p = 0.12; t (4) = −0.91,

p = 0.40).

3.2.7 Distance to the opponent

Maximizing the difference between the position of the bounc-
ing point and the position of the opponent in the x-direction
(i.e., direction toward the opponent) received only a small
reward (Fig. 7a) and also had only a small effect in the eval-
uations (Fig. 7b). While the reward function of the maxi-

123

Red indicates good location for bouncing the ball.
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The close feature scores of subject Naive 2 the expert
also show that all tested algorithms are able to deal with
nonoptimal data containing strategies similar to the one of
the expert.

3.2.2 Comparison of the tested IRL methods

All three reward functions obtained in the evaluation show a
very small difference in the average reward of the expert and
Naive 2, followed by Skilled 1 and Naive 5. Furthermore, all
three methods showed relatively large differences between
the expert and the players Naive 1, Naive 3 and Naive 4.
However, they disagree in the ranking of these three play-
ers. While the reward function obtained by the MMG and
RE algorithm shows the highest difference for the expert and
Naive 4, the reward function obtained by the MMS algorithm
yields the highest difference between the expert and Naive 3.
Naive 4 being the worst player is in compliance with the scor-
ing results of Experiment 3, while Naive 3 being the worst
player is in compliance with the statement of the permanent
opponent.

3.2.3 Influence of the planning horizon

For the max-margin of the state values algorithm given by the
MMS algorithm, we evaluated the setup with three different
horizons. We chose the horizons of H = 1, H = 2 and
H = 3. The horizon of one only considers one state–action
pair. The horizon of two also considers the state–action pair
presented directly after the current one. A horizon of three
means that we consider up to two state–action pairs following
the current one.

The results of the average reward differences of the nonop-
timal policies and the expert for the whole game and the states
directly before the terminal are displayed in Table 2. In gen-
eral, the average reward difference was reduced slightly with
increasing horizon, while the average reward difference for
the last H − 1 states before the terminal state increases with
growing planning horizon, reaching its maximum with a hori-

zon of three. Horizons larger than three did not improve the
differences in the reward.

3.2.4 Individual reward features

Analyzing the reward weights individually, the different
methods showed similar weights for the most important fea-
tures (i.e., the features with the highest weights and highest
resulting reward differences). The largest influence resulted
from the bouncing angles θy and θz , the table preferences
and the distance between the desired bouncing point and the
racket of the opponent. For simplicity, we will only discuss
the parameter values for the individual features of the reward
functions obtained by the MMS and RE algorithm (MMG had
the worst performance in terms of individual feature classi-
fication).

The reward weights for the individual features are dis-
played in Fig. 7a, b. We also showed the average reward
differences for the spared test data sets for each feature indi-
vidually in Fig. 7b and for the different time steps in Fig. 7c.
The individual differences of each player are displayed in
Fig. 7d. Figure 8 shows the various characteristics of the
features for each subjects individually. We will discuss all
features in the next sections.

A paired t-test was performed on the average rewards of
the expert and the nonexert subject for each feature (Fig. 8).
The results are reported below.

3.2.5 Goal preferences on the table

The preferences of the locations on the table are indepen-
dent from the state information of the opponent, but they
do reflect parts of the strategy that will also be covered by
other features. The resulting reward functions of the differ-
ent algorithms showed a preference for the areas where the
opponent would have to return the ball using the backhand,
while the areas that are suited for returning the ball with
the forehand and the areas directly after the net are often
rather avoided (see Fig. 7a). The differences in the average
reward for the goal preferences on the table were signifi-

Table 2 Summary of the results for the different horizons with Algorithm 3

horizon Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Cooperative

Average reward difference 1 1.30 0.04 1.17 0.91 0.74 0.30 0.43

with respect to the expert 2 1.20 0.07 1.22 0.87 0.72 0.33 0.47

3 1.16 0.07 1.24 0.86 0.71 0.33 0.50

Average reward differences 2 0.91 −0.21 0.92 0.57 0.38 −0.12 0.23

directly before terminal state 3 1.12 0.04 1.23 0.89 0.76 0.24 0.53

The differences in the average reward with respect to the expert trained with the different horizons. The differences in the average reward directly
before the terminal define the differences of the reward of the expert and the spared test subject for the state before the terminal or the average
reward of the two states before the terminal for the horizons 2 and 3, respectively
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Average reward of each player is predicted from just the 
way she/he plays (without looking at the scores)

The skilled player is the most similar to 
the expert in terms of predicted rewards

K. Muelling, A. Boularias et al. (2014) in Biological Cybernetics 108(5): 603-619.



Example: Ball-in-a-Cup game (Kendama)



Example: Ball-in-a-Cup game (Kendama)

A human expert (Jens Kober) providing a demonstration
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A. Boularias et al. (2011) in Artificial Intelligence and Statistics (AISTATS).



Outline

1. Overview!

2. Optimal control!

3. Inverse optimal control!

4. Grasping !

5. Manipulation!

6. Navigation



Purposeful Grasping

Example: Use the handle if you plan to pour water.

Parameters of a grasping action (position and rotation of the hand) should 
be chosen depending on the intended goal.



Purposeful Grasping

3D image of an unknown object
Barrett® hand



Purposeful Grasping

segmented object
Barrett® hand

Vision: Segment the object into parts
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Learning Grasping Points with Associative Markov Networks

Joint distribution of the labels of 
all points                               Y = {y1, y2, . . . , yn}

Success examples

Failure examples

+1
+1

+1
+1+1-1

-1

-1

-1

-1

weight vectors

! An object is represented as a 
k-nearest neighbor graph (V, E)

Each node in the graph can be labeled                                          
as a success or failure with yi 2 {1,�1}

P (Y ) / exp

⇣X

i2V
y
i

wT

node

�
i

+

X

(i,j)2E
yi=yj

wT

edge

�
ij

⌘



Associative Markov 
Networks

Logistic Regression

A. Boularias et al. (2011) in IEEE International Conference on Intelligent Robots and Systems (IROS)
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A. Boularias et al. (2011) in IEEE International Conference on Intelligent Robots and Systems (IROS)
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An Autonomous Robot for Rubble Removal

Rubble removal is a major 
challenge in search-and-rescue 
missions

Tele-operation is 
tedious and requires a 
human expert

Source: Amedeo Troiani/Getty Images Europe
Source: AFP



An Autonomous Robot for Rubble Removal

Two Barrett® arms and hands with a Kinect® camera



An Autonomous Robot for Rubble Removal

Two Barrett® arms and hands with a Kinect® camera

Most autonomous 
grasping techniques use 
models of the objects

Objects found in rubble, 
such as rocks, are 
irregular and unknown 
to the robot. Therefore, we 
cannot rely on models!



Grasping Regular Objects: A Simple Heuristic

Take a 3D image 
of the scene

Segment the 3D point 
cloud into facets by 
using the mean-shift 
algorithm

Simulate grasping 
actions for each facet by 
checking for collisions



Grasping Regular Objects: A Simple Heuristic
Calculate the angles 
between the fingertips 
of the robotic hand and 
the extreme points of 
the object  

Execute the grasp that 
has the maximum 
contact angles



Grasping Regular Objects: A Simple Heuristic
Calculate the angles 
between the fingertips 
of the robotic hand and 
the extreme points of 
the object  

Execute the grasp that 
has the maximum 
contact angles

92% success rate with 
unknown objects!

A. Boularias et al. (2014) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)



Grasping Irregular Objects

 The number of grasping actions that need to be simulated and 
evaluated is very high (thousands) when the objects are irregular

 Simulation is too slow (0.1 second per action) for real-time requirements 



Pile of rocks Predicted success probabilities 
using k-Nearest Neighbors

Real-time prediction

Grasping Irregular Objects

Idea: Learn to predict the outcome of the simulation



Features of Grasping Actions

Extract all the points in the 3D cloud 
that may collide with the robot’s hand 
(the blue strip in the figures)

Feature matrix: elevations of the 
points of collision



Predicting Success Probabilities of Grasping Action

Learned probabilities, 
obtained in 2 seconds 

with k-NN
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Best grasping point 
according to the 
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Best grasping point 
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probabilities
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 Fine-tuning in Simulation 
Goal: best 

grasping point 
in simulation

Search, in simulation, for the best action by starting from 
the best action according to the learned probabilities
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Black-box Optimization

Input: position and rotation of the robotic hand

Output: stability of the simulated grasping action

Unknown function f



courtesy of advancedoptimizationatharvard.wordpress.com !

Bayesian Black-box Optimization
Gaussian Process

Compute a posterior probability distribution p on all 
possible objective functions f, given all the grasping 
actions that have been simulated and evaluated so far.



Bayesian Black-box Optimization

courtesy of advancedoptimizationatharvard.wordpress.com !

Gaussian Process

Compute a posterior probability distribution p on all 
possible objective functions f, given all the grasping 
actions that have been simulated and evaluated so far.



Bayesian Black-box Optimization

courtesy of advancedoptimizationatharvard.wordpress.com !

Gaussian Process

Compute a posterior probability distribution p on all 
possible objective functions f, given all the grasping 
actions that have been simulated and evaluated so far.



Bayesian Black-box Optimization

How should we choose the next point 
to evaluate?

Gaussian Process
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Error = (value of the actual best action)    (value of the best action found)
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Results of Experiments on Grasping Rocks

34% success rate without learning, using only the 
centers of the rocks, and without a time budget

A. Boularias et al. (2014) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)
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optimization, and a time budget of 1 second
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Results of Experiments on Grasping Rocks

34% success rate without learning, using only the 
centers of the rocks, and without a time budget

56% success rate with learning, Bayesian 
optimization, and a time budget of 1 second

74% success rate with learning, Bayesian 
optimization, and a time budget of 5 seconds

A. Boularias et al. (2014) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)
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Pushing objects
Pushing and moving objects is needed for 
grasping objects in confined environments.

Fixed 
obstacles
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Segmentation

Get an image of

the scene from

an RGB-D sensor

Segment the scene

image into objects

The objects are unknown. We make one assumption: 
the shape of an object is overall convex.

For real-time segmentation, we use a cascade of 
algorithms.



Segmentation
1. Detect and remove 
the support surface 
by using the RANSAC 
algorithm (Fischler 
and Bolles 1981).	
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Segmentation
1. Detect and remove 
the support surface 
by using the RANSAC 
algorithm (Fischler 
and Bolles 1981).	



2. Cluster the voxels 
into supervoxels with 
a fast, local, k-means 
based on depth and 
color properties 
(Papon et al. 2013).	


!

3. Cluster the 
supervoxels into 
facets (flat 
contiguous regions), 
using the mean-shift 
algorithm.	



4. Cluster the facets 
into objects, using 
the spectral 
clustering algorithm.	





Segmentation
❖ The proposed approach works also with natural objects, such as rocks.

Pile of rocks Segmented image



Extracting Features

Get an image of

the scene from

an RGB-D sensor

Segment the scene

image into objects

Sample a number of

grasping and pushing

actions for each object

Extract the features of

each sampled action



Extracting Features

(a) Grasp action (top view) (b) Push action (top view)

(c) Grasp action (side view) (d) Push action (side view)

(e) Grasp features (f) Push features

Figure 1: Examples of grasping and pushing actions in clut-

ters, and the corresponding contextual features

Grasping features of the 
pushed object’s neighbors!!

 Patch of the depth image 
in the pushing direction

+
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Action Evaluation
The clutter clearing task is formalized as a 
Markov Decision Process

State = 3D image of the scene

Action = Parameters of a grasp or a push

Reward = 1 for each successful grasp,!
                  0 for anything else.



Action Evaluation

Q̂⇡(s, a) =

Pt�1
i=0 K
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The value (expected sum of rewards) of an action a 
in a state s is predicted as

Similarity measure (Kernel) Data: state (image) and action at time i

Current state and action

Empirical 
value



Action Evaluation
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Features

Threshold

Grasping or Pushing



Exploration versus Exploitation

Predicted Value Novelty

Each action should be executed sufficiently many 
times until a certain confidence on its value is attained

In state st at time t, execute action a that maximizes:

Q̂⇡⇤(st, a) + ↵

s
2 ln t

Pt�1
i=0 K

�
(si, ai), (st, a)

� .

(for exploitation) (for exploration)
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Policy Iteration
Kernel density estimation for learning the transition function 
between the states contained in the training data sequence

The learned transition and reward functions are used for 
evaluating and improving policies.

Push Push PushGrasp Grasp

Sequence of Data

Grasp

Similar states!



Bandwidth Selection

Get an image of

the scene from

an RGB-D sensor

Segment the scene

image into objects

Sample a number of

grasping and pushing

actions for each object

Extract the features of

each sampled action

Predict the value of each

sampled action using the

values of the actions

executed in previous states

Execute the action

with the highest Upper

Confidence Bound (UCB),

and obtain a binary

reward based on the joint

angles of the fingers

Re-compute the value

of every previous

state (scene) based on

the value of the best

action in the next state

Re-evaluate the actions

sampled in every state

Tune the hyper-parameters

(kernel bandwidths)

by cross-validation

Policy Iteration

example 1 .

example 2 .
example 3 .example 4 .

example 4 .

example 5 .
test point .



Bandwidth Selection

example 5 .

example 2 .

example 3 .

example 4 .

example 4 .

example 1 .
test point . ✏

The kernel’s threshold (range) plays a major role in the 
proposed system. It indicates which data points are similar.



Bandwidth Selection

example 5 .

example 2 .

example 3 .

example 4 .

example 1 .
✏

The kernel’s threshold (range) plays a major role in the 
proposed system. It indicates which data points are similar.

example 4 .

test point .



Bandwidth Selection

BE(✏) =
1

t2 � t1
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⇣
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⌘2
.

Predicted value!
of current state

Predicted value!
of next state

immediate!
reward

The range is automatically tuned by selecting the threshold that 
minimizes the Bellman error in the training data,



Bandwidth Selection
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Bandwidth Selection

Push Push PushGrasp Grasp

t1 t2
testing data sequence

The range is automatically tuned by selecting the threshold that 
minimizes the Bellman error in the training data,
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Learning Curve: Reinforcement Learning V.S. Regression

A. Boularias et al. (2015) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)
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Reinforcement Learning with UCB
Value Regression with UCB
Maximum Average Reward per Step



Outline

1. Overview!

2. Optimal control!

3. Inverse optimal control!

4. Grasping !

5. Manipulation!

6. Navigation



Grounding Spatial Relations for Robot Navigation

Stay to the right of the car; screen the back of 
the building that is behind the car. 

A. Boularias et al. (2015) in IEEE International Conference on Robotics and Automation (ICRA)

J. Oh et al. (2015) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)



Grounding Spatial Relations for Robot Navigation

Stay to the right of the car; screen the back of 
the building that is behind the car. 

Which building? which car??

Grounding: map each noun in the command to an object in the world

?
? ?



Grounding Spatial Relations for Robot Navigation

Stay to the right of the car; screen the back of 
the building that is behind the car. 

Which building? which car??

Grounding: map each noun in the command to an object in the world

?
? ?

Spatial concepts (such as behind and near) are learned from examples

Bayesian probabilistic model for dealing with object recognition errors



Grounding Spatial Relations for Robot Navigation

Robot 

predicted 
traffic barrel 

path plan 

building 

traffic barrel 

building 

traffic barrel 
car 

Environment as perceived by the robot Planned path

Results: the robot navigated to the correct goal 88% of the time.



Merci !


