Robot Learning: Algorithms
and Applications

Abdeslam Boularias

Carnegie Mellon University NEEC

National Robotics Engineering Center

Outline

1. Overview

2. Optimal control

3. Inverse optimal control
4. Grasping

5. Manipulation

6. Navigation

Outline

Overview

Acting 1n unstructured environments

How can arobot learn
to perform complex
tasks from experience?

How can arobot learn
to perform complex
tasks from experience?

Machine

Robotics :
Learning

Artificial
Intelligence

Controlling a D ical System

Controlling a D ical System

e VB
. £ 5
Observation

Outline

2. Optimal control

Path planning: a simple sequential decision-making problem

Path planning: a simple sequential decision-making problem

States and Actions

Markov Decision Process (MDP)

Notations

« S: set of states (e.g. position and velocity of the robot)
« A: set of actions (e.g. force)

+ T- stochastic transition function

s a s =Priscii=slsi~6.0.=0)

‘ | |

next state current state current action

« R: reward (or cost) function, R(s,a) € R

Policies

A policy is a function T that maps each state to an action,

T:S — A

=

Value function

The value (or utility) of a policy m is the sum of
rewards that one expects to gain by following it.

H 5 :
s¢ | B¢, T(8¢))

t=0 - .

G

Yir) =

Goal: finding an optimal policy.

Partally Observable Markov Decision Process

+ Observations are partial and noisy.
* States cannot be precisely known.

+ Belief state: a probability distribution on states

z p| /
unobserved actual states e St)
y

| > 7/ at_ 1 P
Belief states s i > b
~ |)

Partally Observable Markov Decision Process

+ Observations are partial and noisy.
* States cannot be precisely known.

+ Belief state: a probability distribution on states

el S /\
% >

unobserved actual states : S¢ St—i—;
A) |

,/ Gt—1 a¢
Belief states G -)@— > @
~ |

Partally Observable Markov Decision Process

+ Observations are partial and noisy.
* States cannot be precisely known.

+ Belief state: a probability distribution on states

- - - -
,’ s\ﬂ /—\ ,; s\\
7
W Al

unobserved actual states : St St
N ,) q

oap n at Q41
Belief states G -)@ > @ 3‘
A S v

Parually Observable Markov Decision Process (POMDP)

Example: the robot can sense an obstacle only after bumping into it.

Belief state

Parually Observable Markov Decision Process (POMDP)

Example: the robot can sense an obstacle only after bumping into it.

Belief state

Parually Observable Markov Decision Process (POMDP)

Example: the robot can sense an obstacle only after bumping into it.

Belief state

The target of the ball should be predicted in advance

-
T
e E X" Jicting

Once the opponent strikes
the ball, it becomes too late
for the robot to start reacting.

Probabilistic graphical model of intention-driven dynamics

Intended

Target

Hidden variables

=g ? -

t- Ot+1
Positions of the ball, °

the racket and joints of /‘P_' , /'P\ 'i'\\
the opponent, tracked m m ' :
using a Kinect camera ! (1

Observations o; are generated according to a Gaussian Process.

Observations

From observations o , one can calculate a probability
distribution on the intended target.

e
approx. 320ms

ﬁ Bl backhand
I middle
" forehand

0.5

o
N

posterior
O
&0

o
\S)

o
—h

approx. 160ms approx. 80ms (before hit)

posterior
o

O

approx. 320ms
[]

=(pimal

" forehand

approx. 160ms approx. 80ms (before hit)

Stopping Problem

A Monte-Carlo planning algorithm

Sample current state and intention s; = [x;, target]

A Monte-Carlo planning algorithm

Sample current state and intention s; = [x;, target]

!

Sample subsequent state xi+1 ~ P(. | sy)

A Monte-Carlo planning algorithm

Sample current state and intention s; = [x;, target]

!

Sample subsequent state x¢+1 ~ P(I st)

Sample subsequent observatlon Ot1 ~ P(. | Xt+1) rii

A Monte-Carlo planning algorithm

Sample current state and intention s; = [x;, target]

!

Sample subsequent state x¢+1 ~ P(I st)

Sample subsequent observation o¢1 ~ P(.| X¢41) (11

|

Update belief b1 provided observation 0¢.1

A Monte-Carlo planning algorithm

Sample current state and intention s; = [x;, target]

!

Sample subsequent state x¢+1 ~ P(I st)

Sample subsequent observation o¢1 ~ P(.| X¢41) (11

|

‘Update belief bt.1 provided observation ot.1

|

Predict the expected performance V(b:+1)

A Monte-Carlo planning algorithm

—» Sample current state and intention s; = [x;, target]

!

Sample subsequent state x¢+1 ~ P(I st)

Sample subsequent observation o¢1 ~ P(.| X¢41) (11

|

Update belief b1 provided observation 0¢.1

|

Predict the expected performance V(b:+1)

'

~.enough samples?

No

A Monte-Carlo planning algorithm

—» Sample current state and intention s; = [x;, target]

!

Sample subsequent state x¢+1 ~ P(I st)

Sample subsequent observation o¢1 ~ P(.| X¢41) (11

|

Update belief b1 provided observation 0¢.1

|

Predict the expected performance V(b:+1)
! Nof

No Yes
\enough samples7 —_— V(bt)>V(bt+1) B

Wait and see

Yes|
strlke back'

Average number of successful returns

170

B LSP MCP

160 -

152.0£0.7
1502 £1.2
-

1474 +1.3 T 147. 3.0 =

150 - I
1442 4138 T 1455 + 1.

1
T
1 139.6 + 2.2

140 |-

131. 3.1

130

120 -

average number of successful returns

100
180 360 720 1440

number of training episodes

Z. Wang, A. Boularias et al. (2015) in Artificial Intelligence Journal.

Reward

Optimal Control

t

Transition Function (Dynamics)

Designing a useful reward function for
complex behaviors is a tedious task.

_——f

—ﬁ

Optimal Control

t

Reward Transition Function (Dynamics)

Inverse Optimal Control (—@

Designing a useful reward function for
complex behaviors is a tedious task.

Outline

3. Inverse optimal control

Inverse Optimal Control

Assumption: The reward is a linear function of state-action features

de f
& wT¢
reward features (e.g. velocity, energy,
unknown distance from goal, ..)

weights

Inverse Optimal Control

Assumption: The reward is a linear function of state-action features

R £ w?

H

Value of policy VA — Z L, [B85, m(5¢))]
IR

t=0

Inverse Optimal Control

Assumption: The reward is a linear function of state-action features

def T¢
H
Value of policy mt VA — Z s, [R8¢, m(8¢))]
t=0

t=0

i
=t

expected features under 1t
(e.q. expected energy, distance, etc.)

H
we Y Eq, [fr(se,a4)] =

Inverse Optimal Control: Problem Statement

Given an expert’s policy 1", find reward weights w such that:

wT¢(7T*) > max wT¢(7T)

T

Value of the expert’s policy Value of an arbitrary policy

In other terms, expert’s policy m* has the highest possible value.

Inverse problems are generally ill-posed

Given an expert’s policy %, find reward weights w such that:

wT¢(7T*) > max wT¢(7T)

T

Value of the expert’s policy Value of an arbitrary policy

Relative Entropy Inverse Optimal Control

Find P, a probability distribution on state-action trajectories 7

Expected features under P Expected features in the expert’s
demonstration

Relative Entropy Inverse Optimal Control

Find P, a probability distribution on state-action trajectories 7

Solve m];n Dk, (PHQ)

V™~ Reference distribution

Subject to: /P(T)d’/ | e P(T) > ()

IGE |Erp[d(r)] — d(n™)]| < e

Expected features under P Expected features in the expert’s
demonstration

Relative Entropy Inverse Optimal Control

Solution Reference distribution
' S

o

P(r|w) = Q(T) exp (\qub(T))

Expected return

Reward weights w are obtained by gradient descent
O ———e e ———

Robot Table Tennis: Learning to Imitate an Expert Player

Goal: Learn a reward function from demonstrations of a professional player

T
--: o 1-" ﬁ

= = 2

Trajectories of the
ball and the bodies
of the players were
captured using
infrared markers.

Robot Table Tennis: Learning to Imitate an Expert Player

State st : position of the ball + positions of the players at time t

-
A

l.earned reward function

Red indicates good location for bouncing the ball.

Robot Table Tennis: Learning to Imitate an Expert Player

K. Muelling, A. Boularias et al. (2014) in Biological Cybernetics 108(5): 603-619.

Average reward of each player is predicted from just the
way she/he plays (without looking at the scores)

horizon Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled

Average reward difference 1 1.30 0.04 12 0.91 0.74 0.30
with respect to the expert 2 1.20 0.07 2 0.87 = 53
3 1.16 0.07 1.24 0.86 0.71 0.33
Average reward differences 2 (o] G 0.92 0.57 0.38 —0.12
directly before terminal state 3 =12 0.04 723 0.89 0.76 0.24

The skilled player is the most similar to /
the expert in terms of predicted rewards

Example: Ball-in-a-Cup game (Kendama)

= 1 P e

>,

"

N o

FinalfPolicy 'z{ftée 100 Tirials
®» =1) /A

i

R B =

Example: Ball-in-a-Cup game (Kendama)
£ |

A human expert (Jens Kober) providing a demonstration

Example: Ball-in-a-Cup game (Kendama)

1 | . - -
o f Relative Entropy
©
B
0 0.5
> Maximum Margin Planning
I I
I I 1 1
0 . / : .
100 500 1000 2000
samples
RE IRL MMP

A. Boularias et al. (2011) in Artificial Intelligence and Statistics (AISTATS).

Outline

4. Grasping

Purposeful Grasping

Parameters of a grasping action (position and rotation of the hand) should

be chosen depending on the intended goal.
D ———

Example: Use the handle if you plan to pour water.

Purposeful Grasping

Barrett® hand
3D image of an unknown object

Purposeful Grasping

-
Barrett® hand

segmented object

Vision: Segment the object into parts

Purposeful Grasping
l

Barrett® hand

segmented object

Vision: Segment the object into parts

v

Planning: Simulate grasping actions for each part

Purposeful Grasping
l

Barrett® hand

segmented object

Vision: Segment the object into parts Planning-driven Vision:
+ Segment the object according

to the intended goal

Planning: Simulate grasping actions for each part

Purposeful Grasping

Barrett® hand
segmented object

Vision: Segment the object into parts Planning-driven Vision:
+ Segment the object according

to the intended goal

Planning: Simulate grasping actions for each part

Learning Grasping Points with Associative Markov Networks

An object is represented as a
k-nearest neighbor graph (V, £)

Each node in the graph can be labeled
as a success or failure withy; € {1, —1}

Learning Grasping Points with Associative Markov Networks

=27

,’' \';x?, (g ’t_;, et S SN
T ».;i,;;?' @‘5\,»/ ‘vz‘ 7o X S
A ’f &7 N L
o= \,ﬁ"‘/\ "4}‘“" '/ 4' \ p
RSN N NSO/, P 5

1S
/N ,@d
N AA\‘ S \LS z&w
L= 7
Z 7" N
7)
2%,
7
S

An object is represented as a
k-nearest neighbor graph (V, £)

Each node in the graph can be labeled
as a success or failure withy; € {1, —1}

Joint distribution of the labels of
allpoints ¥ — {y1.15, - Un}

P(Y) o exp (Z YiWnodeDi + Z dege¢ij>
1€V (2,75)€E
Yi=Y;,

Learning Grasping Points with Associative Markov Networks

An object is represented as a
k-nearest neighbor graph (V, £)

Each node in the graph can be labeled
as a success or failure withy; € {1, —1}

Joint distribution of the labels of
allpoints ¥ — {y1.15, - Un}

P(Y) o exp (Z YiWnodeDi + Z dege¢ij>
1€V (2,75)€E
Yi=Y;,

weight vectors

Learning Grasping Points with Associative Markov Networks

An object is represented as a
k-nearest neighbor graph (V, £)

Each node in the graph can be labeled

as a success or failure withy; € {1, —1}
e —eeeee———————

Success examples

Joint distribution of the labels of
allpoints ¥ — {y1.15, - Un}

P(Y) o exp (Z YiWnodeDi + Z dege¢ij>
1€V (2,75)€E
Yi=Y;,

Failure examples

weight vectors

Associative Markov Logistic Regression
Networks

A. Boularias ef al. (2011) in IEEE International Conference on Intelligent Robots and Systems (IROS)

Results

Percentage of successful grasps

100

Associative Markov Network
Logistic Regression T

watering can plastic basket woven basket

A. Boularias et al. (2011) in IEEE International Conference on Intelligent Robots and Systems (IROS)

An Autonomous Robot tor Rubble Removal

—

e o -——
. 2o > <
’

Source: Amedeo Troiani/Getty Images Europe

Rubble removal is a major
challenge in search-and-rescue

missions
——— —

Tele-operation is
tedious and requires a
- NN, T e human expert

glnoland é;skinsk : 7 =i SRS S ER e s S o :i'

An Autonomous Robot for Rubble Removal

Two Barrett® arms and hands with a Kinect® camera

An Autonomous Robot for Rubble Removal

Most autonomous
grasping techniques use
models of the objects

Objects found in rubble,
such as rocks, are

irregular and unknown
to the robot. Therefore, we

Two Barrett® arms and hands with a Kinect® camera

cannot rely on models!
L — —

Grasping Regular Objects: A Simple Heuristic

Take a 3D image
of the scene

Segment the 3D point
cloud into facets by
using the mean-shift
algorithm

Simulate grasping
=P actions for each facet by
checking for collisions

Grasping Regular Objects: A Simple Heuristic

v T

S

Calculate the angles
between the fingertips
of the robotic hand and
the extreme points of
the object

Execute the grasp that
has the maximum
contact angles

Grasping Regular Objects: A Simple Heuristic

jﬁ" i Calculate the angles

— | g “——: A between the fingertips
 . . *\ of the robotic hand and
| SN S the extreme points of

the object

Execute the grasp that
has the maximum
contact angles

A. Boularias et al. (2014) in Conference e Association for the Advancement of Artificial Intelligence (AAAI)

Grasping Irregular Objects

‘1 y : 1" 3V asp80a s
J] 5 3

The number of grasping actions that need to be simulated and

evaluated is very high (thousands) when the objects are irregular
_ e —————

Simulation is too slow (0.1 second per action) for real-time requirements
e ——— ——————————————

Grasping Irregular Objects

[dea: Learn to predict the outcome of the simulation

Predicted success probabilities
using k-Nearest Neighbors

Pile of rocks

Features of Grasping Actions

- Extract all the points in the 3D cloud |_
that may collide with the robot’s hand
(the blue strip in the figures) |

;

0024
-0.04

Feature matrix: elevations of the .06 ﬁﬁfﬁfﬁf@ﬁffﬁfﬁf________;___.____. :
0.08\
points of collision

O

Predicting Success Probabilities of Grasping Action

G0
B0
0
160
150

40

30

20

Learned probabilities,

obtained in 2 seconds
with k-NN

Predicting Success Probabilities of Grasping Action

TR
-L'_.-.-- r .
e
Learned probabilities, Ground truth, obtained in
obtained in 2 seconds 200 seconds from

with k-NN simulations

Predicting Success Probabilities of Grasping Action

140

160

150

140

e .'._.} "
sl

Learned probabilities, Ground truth, obtained in
obtained in 2 seconds 200 seconds from
with k-NN simulations

Predicting Success Probabilities of Grasping Action

Learned probabilities, Ground truth, obtained in
obtained in 2 seconds 200 seconds from
with k-NN simulations

Predicting Success Probabilities of Grasping Action

Learned probabilities, Ground truth, obtained in
obtained in 2 seconds 200 seconds from
with k-NN simulations

Predicting Success Probabilities of Grasping Action

Learned probabilities, Ground truth, obtained in
obtained in 2 seconds 200 seconds from
with k-NN simulations

Best grasping point Best grasping point
according to the learned — according to the
probabilities simulator

Best grasping point Best grasping point
according to the learned 3 according to the
probabilities simulator

Fine-tuning in Simulation

Goal: best
grasping point
in simulation

~ il
- ——

‘Search, in simulation, for the best action by starting from
the best action according to the learned probabilities

T

Fine-tuning in Simulation

Best grasping
point

according to
the simulator

\&\:‘
~

‘Simulation is computationally expensive, which
actions should be simulated to find the best one?

T

Fine-tuning in Simulation

Best grasping
point

according to
the simulator

e e Y

Simulation is computationally expensive, which
actions should be simulated to find the best one?

T

Fine-tuning in Simulation

Best grasping
point

according to
the simulator

Simulation is computationally expensive, which
actions should be simulated to find the best one?

T

Fine-tuning in Simulation

Best grasping

- point

| according to
s} the simulator

‘Simulation is computationally expensive, which
actions should be simulated to find the best one?

T

Black-box Optumization

Input: position and rotation of the robotic hand
e

Unknown function f

Output: stability of the simulated grasping action
—_ T —————

Bayesian Black-box Optmization

Gaussian Process t =2

N — objective fn (f(-))
observation (x)

V¥V acquisition max

— O O
\ / acquisition function (u(-))

courtesy of advancedoptimizationatharvard.wordpress.com

Compute a posterior probability distribution p on all
possible objective functions f, given all the grasping
actions that have been simulated and evaluated so far.

Bayesian Black-box Optmization

Gaussian Process t =3

= -
- - -
- e am W=

new observation (x,)

A4

o~ ___— . / |

courtesy of advancedoptimizationatharvard.wordpress.com

Compute a posterior probability distribution p on all
possible objective functions f, given all the grasping
actions that have been simulated and evaluated so far.

Bayesian Black-box Optmization

Gaussian Process t =4

/7 posterior mean (u(-))
posterior uncertainty
(n(-) £ () v

courtesy of advancedoptimizationatharvard.wordpress.com

Compute a posterior probability distribution p on all
possible objective functions f, given all the grasping
actions that have been simulated and evaluated so far.

Bayesian Black-box Optmization

Gaussian Process t =4

/ posterior mean (u(-))
posterior uncertainty
(n(-) £ () v

How should we choose the next point
to evaluate?

Greedy Entropy Search

Compute a distribution Py, on the optimal action x:

Paz(x) = P(az — arg max f(:%))

_ / (s cre () O (F(&) = £(&))df
f:R?* =R

Heaviside step function

Greedy Entropy Search

Compute a distribution Py, on the optimal action x:

A -
Pmaa; = P —
(r) = P(x = arg max f(Z))

— [f.Rn%Rp(f)HieRn{x}@(f(x) — f({p'))df

Heaviside step function

The next action x to evaluate is the one that contributes the most
to the entropy of Py, i.e. the one with that maximizes

—Priaz () log (Pmax (x))

Anytime Optimization

Error = (value of the actual best action) — (value of the best action found)

Grid Search
A Entropy Search
Greedy Entropy Search
0.8
g 0.6
)
0.4

0.2

5 10 15 20 25 30 35 40 45 50 55 60
time In seconds

Anytime Optimization

Error = (value of the actual best action) — (value of the best action found)

Grid Search
A Entropy Search
Greedy Entropy Search
0.8
g 0.6
)
0.4
0.2
0

time In seconds

Anytime Optmization

Error = (value of the actual best action) — (value of the best action found)

Grid Search
Entropy Search
Greedy Entropy Search

0.8

error

0.6

0.4

0.2

time In seconds

Anytime Optimization

Error = (value of the actual best action) — (value of the best action found)

Grid Search
A Entropy Search
Greedy Entropy Search
0.8
g 0.6
)
0.4
0.2
0

5 10 15
time In seconds

Anytime Optmization

Error = (value of the actual best action) — (value of the best action found)

Grid Search
A Entropy Search
Greedy Entropy Search
0.8
Ct) 0.6
)
0.4

0.2

5 10 15 20 25
time In seconds

Anytime Optmization

Error = (value of the actual best action) — (value of the best action found)

Grid Search
A Entropy Search
Greedy Entropy Search
0.8
g 0.6
)

0.4

0.2

5 10 15 20 25 30
time In seconds

Anytime Optimization

Error = (value of the actual best action) — (value of the best action found)

Grid Search
A Entropy Search
Greedy Entropy Search
0.8
g 0.6
)
0.4

0.2

5 10 15 20 25 30 35 40 45 50 55 60
time In seconds

Results of Experiments on Grasping Rocks

34% success rate without learning, using only the
“centers of the rocks, and without a time budget

A. Boularias et al. (2014) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)

Results of Experiments on Grasping Rocks

34% success rate without learning, using only the
centers of the rocks, and without a time budget

56% success rate with learning, Bayesian

optimization, and a time budget of 1 second
e

A. Boularias et al. (2014) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)

Results of Experiments on Grasping Rocks

34% success rate without learning, using only the
centers of the rocks, and without a time budget

56% success rate with learning, Bayesian

optimization, and a time budget of 1 second
—— -

74% success rate with learning, Bayesian
optimization, and a time budget of 5 seconds

A. Boularias et al. (2014) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)

Outline

5. Manipulation

Pushing objects

Pushing and moving objects is needed for

grasping objects in confined environments.
e ———

Overview of the integrated system

Overview of the integrated system

Get an image of
the scene from . . .
image into objects
an RGB-D sensor

Overview of the integrated system

s ! S

Get an image of v Sample a number of
Segment the scene

the scene from _ . . grasping and pushing
image into objects
an RGB-D sensor actions for each object

Get an image of Sample a number of
Segment the scene Extract the features of

the scene from . _ _ grasping and pushing :
image into objects . . each sampled action
an RGB-D sensor actions for each object

Get an image of
the scene from

an RGB-D sensor

Segment the scene

image into objects

Sample a number of

grasping and pushing

actions for each object

Extract the features of

each sampled action

Predict the value of each
sampled action using the
values of the actions

executed in previous states

Overview of the integrated system

5—‘7\»—"“—»—»—’ Wrw,—&?
*b—w—w«.&%_‘@}
Get an image of

Segment the scene
the scene from

an RGB-D sensor

image into objects

Sample a number of
grasping and pushing

actions for each object

Execute the action

with the highest Upper

Confidence Bound (UCB),

and obtain a binary

reward based on the joint

angles of the fingers

Extract the features of

each sampled action

Predict the value of each
sampled action using the
values of the actions

executed in previous states

Get an image of

the scene from

an RGB-D sensor

Segment the scene

image into objects

Re-compute the value
of every previous
state (scene) based on
the value of the best

action in the next state

Re-evaluate the actions

sampled in every state

Policy Iteration

Sample a number of

Extract the features of
grasping and pushing

each sampled action
actions for each object

Execute the action
with the highest Upper Predict the value of each
Confidence Bound (UCB), sampled action using the
and obtain a binary values of the actions
reward based on the joint executed in previous states

angles of the fingers

Get an image of

the scene from

an RGB-D sensor

Tune the hyper-parameters
(kernel bandwidths)

by cross-validation

*
examplel o o

test point B

example 5 o

example 2 o

example 4 o example 3 o

Segment the scene

image into objects

Re-compute the value
of every previous
state (scene) based on
the value of the best

action in the next state

Re-evaluate the actions

sampled in every state

Policy Iteration

Sample a number of
grasping and pushing

actions for each object

Execute the action
with the highest Upper
Confidence Bound (UCB),
and obtain a binary

reward based on the joint

angles of the fingers

Extract the features of

each sampled action

Predict the value of each
sampled action using the

values of the actions

executed in previous states

Get an image of
the scene from

an RGB-D sensor

Tune the hyper-parameters
(kernel bandwidths)

by cross-validation

*
examplel o o

test point B

example 5 o

example 2 o

example 4 o example 3 o

Segment the scene

image into objects

Re-compute the value
of every previous
state (scene) based on
the value of the best

action in the next state

Re-evaluate the actions

sampled in every state

Policy Iteration

Overview of the integrated system

Sample a number of
grasping and pushing

actions for each object

Execute the action
with the highest Upper
Confidence Bound (UCB),
and obtain a binary
reward based on the joint

angles of the fingers

Extract the features of

each sampled action

Predict the value of each
sampled action using the

values of the actions

executed in previous states

Segmentation

' i3
Get an image of
Segment the scene
the scene from) : :
image into objects
an RGB-D sensor

The objects are unknown. We make one assumption:
the shape of an object is overall convex.

For real-time segmentation, we use a cascade of
algorithms.

Segmentation

1. Detect and remove

{the support surface

by using the RANSAC

i algorithm (Fischler

i and Bolles 1981).
—

Segmentation

1. Detect and remove
the support surface
by using the RANSAC
algorithm (Fischler
and Bolles 1981).

2. Cluster the voxels
into supervoxels with
a fast, local, k-means
. based on depth and
color properties
(Papon et al. 2013).

_— ‘d

A
v

>

1\1 NAY
VTN KD
KD
XX

</
"\
N
Y
S0

Ml
4

Segmentation

| 1. Detect and remove

| the support surface

| by using the RANSAC

algorithm (Fischler

and Bolles 1981).
imm—

2. Cluster the voxels)
into supervoxels with
a fast, local, k-means
based on depth and

color properties
(Papon et al. 2013).

b——

3. Cluster the
isupervoxels nto
facets (flat
contiguous regions),
using the mean-shift

algorithm.
S —

Segmentation

4. Cluster the facets
into objects, using

by using the RANSAC
¢ algorithm (Fischler
” and Bolles 1981).

: the spectral
%‘ clustering algorithm.
J

2. Cluster the voxels 3. Cluster the

= into supervoxels with supervoxels into
a fast, local, k-means facets (flat

based on depth and contiguous regions),

color properties . .
(Pa Ofl etp al. 2013) using the mean-shift
P | | algorithm.

Segmentation

* The proposed approach works also with natural objects, such as rocks.

Pile of rocks Segmented image

Extracting Features

atg_wmw

Get an image of Sample a number of
Segment the scene Extract the features of

the scene from . _ _ grasping and pushing :
image into objects . . each sampled action
an RGB-D sensor actions for each object

Extracting Features

Grasping features of the

= pushed object’s neighbors
|
o ;\\ Patch of the depth image
(a) Grasp action (top view) (b) Push action (top view) in the pushing direction

(¢) Grasp action (side view)

(e) Grasp features (f) Push features

Action Evaluation

v

Get an image of Sample a number of
Segment the scene Extract the features of

the scene from . _ _ grasping and pushing :
image into objects . . each sampled action
an RGB-D sensor actions for each object

Predict the value of each
sampled action using the
values of the actions

executed in previous states

Action Evaluation

The clutter clearing task is formalized as a
Markov Decision Process

State = 3D image of the scene

Action = Parameters of a grasp or a push

Reward =1 for each successful grasp,

0 for anything else.

Action Evaluatuon

The value (expected sum of rewards) of an action a
in a state S is predicted as Enisitiodl
~value

o) = im0 K ((50,02). (5. @) Ve(s)
Q’Tl’(;) ;:t 1K((Si,@z‘)7(37a)) |

Current state and action /

Similarity measure (Kernel) Data: state (image) and action at time i

Action Evaluatuon

Grasping or Pushing

v
1 if (type(a) = type(a;))A

K ((si,ai), (s,a))= (l(sisai) — @(s,a)|l2 < €ype(a))
. 0 else .- - . A
Féatur.es -

Similarity measure (kernel) Threshold

Exploration versus Exploitation

Each action should be executed sufficiently many
times until a certain confidence on its value is attained

e ———

In state St at time £, execute action a that maximizes:
w_

(s 2Int
. f éK SZ,CLZ) (Staa)).
Predicted Value Nowvelty

(for exploitation) (for exploration)

Policy lteration

A ST
*"—W—Mugﬁ% _‘4_}
Sample a number of

Segment the scene . . Extract the features of
the scene from . _ _ grasping and pushing :
image into objects . . each sampled action
an RGB-D sensor actions for each object

Get an image of

Re-compute the value

of every previous

Execute the action
state (scene) based on

with the highest Upper Predict the value of each
the value of the best

. , Confidence Bound (UCB), sampled action using the
action in the next state
and obtain a binary values of the actions

Re-evaluate the actions reward based on the joint executed in previous states

sampled in every state angles of the fingers

Policy Iteration

Policy Iteration

Kernel density estimation for learning the transition function

between the states contained in the training data sequence
e ——

The learned transition and reward functions are used for

evaluating and improving policies.
N —— ————

Policy Iteration

Kernel density estimation for learning the transition function

between the states contained in the training data sequence
h

" The learned transition and reward functions are used for

evaluating and improving policies.

Sequence of Data

-~ -~
NLE A

Policy Iteration

Kernel density estimation for learning the transition function

between the states contained in the training data sequence
h

" The learned transition and reward functions are used for

evaluating and improving policies.

Sequence of Data

Similar states!

Policy Iteration

Kernel density estimation for learning the transition function

between the states contained in the training data sequence
h

The learned transition and reward functions are used for

evaluating and improving policies.
—-—-——— ———————————————

Sequence of Data

Similar state!

Policy Iteration

Kernel density estimation for learning the transition function

between the states contained in the training data sequence
h

The learned transition and reward functions are used for

evaluating and improving policies.
—-—-——— ———————————————

Sequence of Data

Similar state!

Get an image of

the scene from

an RGB-D sensor

Tune the hyper-parameters
(kernel bandwidths)

by cross-validation

*
examplel o o

test point B

example 5 o

example 2 o

example 4 o example 3 o

Segment the scene

image into objects

Re-compute the value
of every previous
state (scene) based on
the value of the best

action in the next state

Re-evaluate the actions

sampled in every state

Policy Iteration

Bandwidth Selection

Sample a number of
grasping and pushing

actions for each object

Execute the action
with the highest Upper
Confidence Bound (UCB),
and obtain a binary

reward based on the joint

angles of the fingers

Extract the features of

each sampled action

Predict the value of each
sampled action using the

values of the actions

executed in previous states

Bandwidth Selection

The kernel’s threshold (range) plays a major role in the
proposed system. It indicates which data points are similar.

example 4. [example5 .

test point ...,

‘mple 2%

example 3 .

example 1 .
example 4 .

Bandwidth Selection

The kernel’s threshold (range) plays a major role in the
proposed system. It indicates which data points are similar.

exampfle 4. example 5 .
fest point g G
example\l .
example 4 .
example 2 .

examplé

Bandwidth Selection

The range is automatically tuned by selecting the threshold that
minimizes the Bellman error in the training data,

to—1

1 . - 2

BE(E) — = E (7“/,; e ’)/V;(SZ_|_1) — Qﬁ(si, az)) :
1=11

N - B - =

immediate Predicted value Predicted value
reward of next state of current state

Bandwidth Selection

The range is automatically tuned by selecting the threshold that
minimizes the Bellman error in the training data,

to—1

1 : : .
€ €
BE(e) = > (ri+ AV (sin) - Q5 (si,a:))
=
Z:tl ' £ =
= L L
immediate Predicted value Predicted value
reward of next state of current state
tl t2

‘ testing data sequence ‘

- - -

Bandwidth Selection

The range is automatically tuned by selecting the threshold that
minimizes the Bellman error in the training data,

to—1

1 : : .
e 6 . a0l 6 . .
BE(e) = E (Ti e Qﬁ(szaaz)) :
o g :
1=—=11
=3 L J
immediate Predicted value Predicted value
reward of next state of current state

tl t2

* testing data sequence *

- -—-m- -

Learning Curve: Reinforcement Learning V.S. Regression

©c o 9
N oo ©

o
o))

Moving Average Reward per Step

o

Reinforcement Learning with UCB
Value Regression with UCB
Maximum Average Reward per Step

20

40

60
time—step

A. Boularias et al. (2015) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)

80

100

120

Outline

6. Navigation

Grounding Spatial Relations for Robot Navigation

- N
Stay to the right of the car; screen the back of

the building that 1s behind the car.

T T s T L o
il]ll

4 - .
4 -
» b
:
-—
L —
N ’
o wal A e
3 "~—’t"" f
- - - ol
aa? ot » .
[a5 * ‘-
b - AT p ’
i » W \ g . - . .
. -
i . -
» v - » . -
3 i ’
v » - e
. - S - s
- - . .)’ .l . et e
. »r > L o a ¢

| —

J. Oh et al. (2015) in Conference of the Association for the Advancement of Artificial Intelligence (AAAI)

A. Boularias et al. (2015) in IEEE International Conference on Robotics and Automation (ICRA)

Grounding Spatial Relations for Robot Navigation

Stay to the right of the car; screen the back of
the building that 1s behind the car.

- o P

RS T -
i 3 .- 1 -~
3 ,)
iciche — WA
* » -

v’ TSR S .- N e —————
— — 3 P

e

—
-

lGrounding: map each noun in the command to an object in the world '

Grounding Spatial Relations for Robot Navigation

Stay to the right of the car; screen the back of
the building that 1s behind the car.

-

.

— — A —'m
| 2 o 2o

) S A——
—

lGrounding: map each noun in the command to an object in the world l

Spatial concepts (such as behind and near) are learned from examples

h—

““

Bayesian probabilistic model for dealing with object recognition errors

_

“

Grounding Spatial Relations for Robot Navigation

predicted

- traffic barrel

o
S
S {

I I

CHEEE
~ ' building

i T?-‘-. - * = ‘ |I ' + +
B 7 ':.-. .1 .l i 1
L= L 1"" o

Environment as perceived by the robot Planned path

Results: the robot navigated to the correct goal 88% of the time.
ﬁ ﬁ

Merci !

