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Abstract

The ability to grasp ordinary and potentially never-seen
objects is an important task in both domestic and indus-
trial robotics. For a system to accomplish this, it must
autonomously identify grasping locations by using infor-
mation from various sensors, such as Microsoft Kinect 3D
camera. Despite numerous progress, significant work still
remains to be done for this task. To this effect, we propose
a dictionary learning and sparse representation (DLSR)
framework for representing RGBD images from 3D sensors
in the context of identifying grasping locations. In contrast
to previously proposed approaches that relied on sophisti-
cated regularization or very large datasets, our derived per-
ception system has a fast training phase and can work with
small datasets. It is also theoretically founded for dealing
with masked-out entries, which are common with 3D sen-
sors. We contribute by presenting a comparative study of
several DLSR approach combinations for recognizing and
detecting grasp candidates on the standard Cornell dataset.
Experimental results show a performance improvement of
1.69% in detection and 3.16% in recognition over current
state-of-the-art convolutional neural network (CNN). Even
though nowadays most popular vision-based approach is
CNN, this suggests that DLSR is also a viable alternative
with interesting advantages that CNN has not.

1. Introduction

In robotics, automating the grasping of ordinary objects
is an important open problem, for which the grasp local-
ization task in an essential element [10, 16, 19, 26, 27].
This task aims to determine the most convenient grasping
locations, and is usually viewed as a vision-based detection
problem [29]. One key principle of this detection is rely-
ing on a visual perception system that interprets light and
depth information, known as RGBD images, for performing
scene understanding. This involves elaborate visual tasks,
such as scene segmentation, object categorization and vi-
sual disambiguation. Due to the complexity of these tasks,

learning the proper feature representation of the surround-
ing environment from the RGBD images is essential. This is
an important problem because the performance of the grasp
localization system heavily depends on the quality of the
extracted features.

Extracting the most convenient features from RGBD im-
ages is a challenging problem because RGBD images are
complex in nature. One particular avenue that has been ex-
plored in previous works is employing Dictionary Learning
and Sparse Representations (DLSR) [3, 17, 33]. DLSR is a
representation learning framework that has received a lot of
attention from the vision, signal and image processing com-
munities in the last decade [37]. DLSR approaches aim at
learning sparse feature representations where observations
are expressed as sparse linear combinations of few atoms
from a dictionary. Sparsity-based models are biologically-
inspired and theoretically well-founded [31]. The assump-
tion that observations admit a sparse representation has been
verified in several previous vision-related works, such as
object recognition [1, 34], face recognition [35], scene anal-
ysis [18] and image restoration [9, 21].

The sparsity assumption also holds in the context of
RGBD images. For instance, [3] proposed a DLSR ap-
proach for RGBD object recognition, [17] performed 3D
scene labeling and [33] tackled the problem of 3D con-
tour detection. One key principle that has been observed
is that DLSR is well-suited to handle the Microsoft Kinect
depth information noise [36]. The mask noise model of
missing 3D data can be particularly cumbersome. Objects
with shiny surfaces often cause structured-light 3D cameras
to fail which results in absence of information. DLSR al-
lows decomposing the essential parts of the observation in
a sparse way, making the input noise representation dense
and easily modeled [1]. This makes DLSR well-adapted for
managing complex noisy depth information in Kinect.

To the best of our knowledge, applying the DLSR
paradigm for identifying grasping locations is currently
lacking in grasping literature. Our contributions with this
paper include the following:

e First, we propose a DLSR-based framework for learn-



ing and extracting useful information from RGBD im-
ages. We show that it has a fast training phase, can
work with a small dataset and is theoretically well-
founded for dealing with masked-out entries.

e Second, we demonstrate the applicability of our pro-
posed framework for identifying grasp locations on the
standard Cornell task [15], and compare it with other
approaches in the literature.

e Finally, we present an empirical evaluations of several
dictionary learning and feature coding approach com-
binations in order to understand the relationship be-
tween the two. We analyze which combinations are
best suited for the task at hand by comparing perfor-
mance, speed of training and the ability to be paral-
lelized (either on CPU or GPU).

The rest of this paper is divided as follows. We make an
overview of related works in section 2. We review DLSR
in section 3 and present our proposed DLSR framework in
section 4. We show our experiments in section 5 and discuss
our results in section 6. We finally conclude in section 7.

2. Related Work

Several previous approaches relied on 3D simulations
to learn good grasp locations [6, 12, 23, 25]. They are
powerful but necessitate building the 3D physical model of
each object in order to perform grasp localization. Requir-
ing a priori the physical characteristics of the objects re-
duces their applicability for general purpose robots. These
characteristics are rarely known in advance. With our ap-
proach, we seek to perform grasp localization without build-
ing complex physical models prior to the execution.

Recently, works in the field of Deep Learning have
also been proposed. For recognizing potential grasp re-
gions, [19] proposed a cascade of multi-layered percep-
trons, while [32] proposed a deep convolutional neural net-
work (CNN). One limitation of these approaches is that they
rely on hand-designed regularization terms. [19] defined a
mask-based term that reduces the network susceptibility to
masked-out entries, and [32] used a structured penalty term
to improve the multi-modal connections. With our proposed
DLSR method, we intend to create a theoretically founded
grasp localization model without resorting to a custom reg-
ularization. Other works also proposed using a CNN for
predicting candidate grasp locations [14, 27]. One inconve-
nient of CNN is that they require several days for learning
their millions of parameters. In an industrial context where
datasets are small and new objects are regularly added, a
fast and robust training phase is essential. Increasing the
dataset size by repetitively adding more images from differ-
ent viewpoints is an efficient strategy to make objects eas-
ier to grasp. This is only viable with a fast training phase,
which our proposed DLSR method offers.

Some efforts have been dedicated into building grasp lo-

calization system from a Big Data perspective [13, 16, 20].
These works make use of hundreds of thousands of obser-
vations to train their approaches. While these initiatives
are essential to reach the long-term goal of general pur-
pose robotics, industrial contexts are often constrained in
the amount of available data. A grasp localization approach
that is able to train with only a handful of observations can
be useful in early development stages. As we show in our
experiments, our proposed approach achieved state-of-the-
art performances by only training with the small Cornell
dataset.

3. Dictionary Learning and Sparse Represen-
tation Framework

A standard DLSR method is divided into a dictionary
learning phase, where a dictionary is trained to capture the
latent structure of the data, and a feature coding phase,
where the dictionary is used to transform raw observations
into features. In this section, we review the basics of Dic-
tionary Learning and Sparse Representation (DLSR) and in-
troduce our framework for grasp localization.

3.1. Dictionary Learning

Given a set of n-dimensional observations z(? € R",
our goal is to learn a dictionary D € R™*? of d atoms
(DU is the jth column) capturing the essential features of
the given observations. Dictionary learning aims to learn
D such that the sparsest linear combination w(?) of the dic-
tionary atoms faithfully approximate each observation z(*).
This problem can be formulated as follows:

D = arg mjnminz | D@D — 2|12 + ASp(@ ™) (1)
D w® =

subject to | DY ||y =1, V7§,

where Sp is a vector sparsity measure and ||.||3 is the
squared euclidean norm. The quantity || Dw® — 2|3 to
be minimized is called the residual, and is penalized by the
sparsity constraint ASp(w(?) ). Hyper-parameter A > 0 gov-
erns the sparseness of the weights and will be chosen by
cross-validation.

One of the key principle of dictionary learning is that
atoms D) are learned from the observations. Previously to
DLSR, the standard practice was to use analytically prede-
fined dictionaries such as Discrete Cosine Transform (DCT)
or Wavelet Transform (WT). These fixed dictionaries were
rarely flexible enough to well represent any data distribu-
tion, and only worked in specific scenarios [37]. Training a
dictionary by minimizing eq. (1) significantly improves the
sparsity of the weight vector solution w(?, as it is explicitly
asked to fit the input data.

Minimizing (1) for both the dictionary D and the weights
w® is however computationally expensive. This is due to



the interleaving dependency between D and all w(®), which
is shown in (1) by the nested minimization. More viable al-
ternatives rather employ an iterative-alternative scheme for
finding a suitable approximative solution. The technique
works as follows. First, initialize the dictionary D ran-
domly. Second, minimize (1) with respect to the weights
w(® considering D fixed. Third, minimize (1), this time
with respect to D considering the w® fixed. Finally, al-
ternate step 2 and 3 until convergence. This optimization
procedure has been widely used in previous works and has
shown promising results [1, 21].

Dictionary learning can thus be decomposed into two
part: 1. dictionary optimization with fixed weights, and 2.
weight optimization with a fixed dictionary. Different meth-
ods have been proposed in the last decade for performing
these two optimization problems. One of the most pop-
ular and generally adopted approach is Online Dictionary
Learning (ODL) [21]. ODL is a dictionary optimization ap-
proach that can solve (1) given an appropriate weight opti-
mization method. ODL can be used with either a Sp = £, or
a Sp = /5 sparsity measure. In the former case, the sparse-
ness of the solution is defined as the number of non-zero
entries, and in the later case, is defined as the sum of abso-
lute values. We refer to ODL with a ¢; sparsity measure as
ODL-0, and ODL with a ¢; sparsity measure as ODL-1.

Previous dictionary learning approaches required pro-
cessing the whole data matrix X (containing in its rows the
observations z(")) at each step of the training phase. This
limited the applicability of the approaches to small dataset
that could be fitted into memory. ODL rather learns the dic-
tionary D in an online fashion, making use of only a small
portion of the data at each step. It starts by drawing at ran-
dom a batch of observations z(¥), then applies the weight
optimization method to extract the weights w(?), and finally
updates the dictionary using block-coordinate gradient de-
scent. In addition to having several local convergence guar-
anties [21], this method significantly reduces the amount of
needed memory for processing the data.

Other alternatives exist to ODL. As part of our contribu-
tions with our paper, we also use other dictionary learning
approaches and compare them to ODL. One is Gain Shape
Vector Quantization (GSVQ) [11]. GSVQ as a similar for-
mulation to ODL-O0, but is different in the way it represents
the weight vector w(®). Tt explicitly separates its norm (the
gain) from its orientation (the shape), and split the weight
optimization into a gain and a shape optimization. This
parametrization has been shown to improve convergence in
some cases [11].

We also tried learning a dictionary D without specify-
ing a sparsity measures. One approach is to run a KMeans
clustering algorithm on whitened observations and use as
dictionary D the normalized centroids [5]. By combining
the powerful ZCA-whitening decorrelation technique with

KMeans ability to find relevant clusters in the data distri-
bution, we can learn representative centroids that capture
non-linear dependencies within the observations. We refer
to this method as Normalized KMeans (NKM).

Another one is to randomly sample d whitened ob-
servations and use their normalized version as dictionary.
This can be seen as a zero-cost effective approximation of
KMeans centroids. We refer to this approach as Random
Patches (RP). Finally, the last one is to sample d times the
uniform distribution U ([—1,1]™) and use the normalized
vectors as dictionary atoms. Random dictionaries has been
advertised in past works, but we show in our experiments
that they always give the worst performances [28]. We refer
to this method as Random (R).

3.2. Feature Coding

Executing any dictionary learning approaches presented
in the previous section gives a dictionary D representing
the latent structure of the data. The goal now is extract-
ing relevant features from the observations using dictionary
D. This step is called feature coding. One straightforward
choice of a feature coding method is performing weight op-
timization and use the weight solution as features. This was
the second part of dictionary learning as introduced in sec-
tion 3.1. The task can be formulated as follows:

w' = arg I{l(i%l D@ — 2|12 + ASp(@?), Vi. (2)

The sparsest weight solution w(?) that minimizes the resid-
ual || Dw® — (|3 is an accurate feature representation of
observation z(*). The weight values reflect the importance
of each atom D) in the linear combination. Large weight
magnitudes indicate the presence of certain characteristics
from which z(¥) is composed. Observations that share these
characteristics will have comparable weight vectors and
will be neighbors in the feature space. This allows us learn-
ing classifiers on top of these features that more easily cap-
ture the relations between the observations.

Different approaches exist for solving (2) based on the
sparsity measure Sp. In the case of a Sp = /¢ func-
tion, the standard method is Orthogonal Matching Pur-
suit (OMP) [24]. OMP is a greedy algorithm that iteratively
updates the weight solution w(*) one position at a time by
maximizing the correlation with the residual. It has the im-
portant property that once an atom has been given a weight
value, it can no longer be changed. This guaranties that
OMP will find a solution w* with the required number of
non-zero entries £o(w®) = 7 in exactly 7 steps.

In the case of a Sp = /¢; function, one of the standard
methods is Least-Angle Regression (LARS) [8]. LARS
works similarly to OMP as it updates the weight solution
w® in an iterative fashion. It however differs in its way
of updating the solution. Instead of computing the weight
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Figure 1. The grasp rectangle is a five-dimensional grasp repre-
sentation. The 2D rectangle is fully determined by its center coor-
dinates (z, y), width, height and its angle 6 from the x-axis. The
blue edges indicate the gripper plate location and the red edges
show the gripper opening, prior to grasping.

value one atom at a time, it rather performs a step along
a direction equiangular to each atom’s correlation with the
residual. LARS has the same computational complexity as
OMP and can deal with continuous sparsity measure.

Equation (2) can be extended to take into account a mask
vector m of masked-out entries in observation (). This re-
moves the participation of these entries and constrains the
residual to only those that are available. In that case, LARS
and OMP can be extended to process the mask m, and we
refer to these approaches as mLARS and mOMP. Previ-
ous work suggested that explicitly modeling the mask-noise
may improve the sparseness of the weight solution [21].
However, as we show in our experiments, we do not observe
any improvements over the standard ones. This supports the
previous observation that DLSR is already well-adapted to
deal with mask noise [3].

Other alternatives exist to LARS and OMP. As part of
our contributions, we also use other feature coding ap-
proaches. One is called Soft-Thresholding (ST) [7]. ST
gives as weight solution w(*) a vector containing correlation
magnitudes between observation z(Y) and each atom D).
It is formulated as follows:

w? = sign(D) - ) . max {o, D@ . 2] — T} 3)
where 7 is the shrinkage hyper-parameter that thresholds
insignificant correlations with low magnitudes. One advan-
tage of ST over LARS and OMP is that it is not an optimiza-
tion method. Its computational complexity is solely depen-
dent on the matrix-vector multiplication, as seen in (3). This
can be particularly advantageous when speed is important.

We also define Natural (N) feature coding approaches.
These are defined as follows. For ODL, we use as fea-
ture coding whichever approach was used for weight opti-
mization. For instance, the natural feature coding of ODL-
1 is LARS with the same sparsity parameter A that was
used during ODL-1. Similarly, the natural feature coding
of ODL-0 is OMP, this time with the same v used during
ODL-0. For GSVQ, we used OMP with a fixed v = 1. For
R and RP, we used ST with 7 = 0, which corresponds to a
random linear projection.

Finally, we chose as natural feature coding for NKM the
standard KMeans Triangular (KMT) [5]. KMT is a soft al-

—€ (D I

Figure 2. Left: a pair of scissors with a candidate grasp rectangle
image. Center-Left: image taken from the rectangle rotated to
match the global image orientation. Center-Right: rescaled image
with preserved aspect ratio. The black regions indicate masked-
out padding. Right: rescaled image without preserved aspect ratio.
Preserving aspect ratio reduces distortion.

ternative to the usual one-of-K encoding that associates each
observation to the closest centroid. It can be formulated as
follows:

w{? = max{0, (=) - 271, @)

where zj(-i) = [|#® — DWWl is the euclidean distance be-

tween observation () and centroid D), and p(2(?) is the
mean of the elements of z(*). This feature coding technique
gives sparse weight vector w(® and is not computationally
expensive.

After computing the weight solution w(?), we apply Po-
larity Splitting (PS) [4]. PS constructs a vector f(*) from
w(® by splitting the positive weights from the negative
ones. This can be formulated as follows:

f;l) = max{w](-l), 0} f;?d = max{—wy), 0}
This technique improves the representative ability of linear
classifiers as it forces them to model positive and negative
weights differently.

Starting from this point, we are now referencing to fea-
ture vector f(?) when talking about the output vector of any

feature coding approach.

4. DLSR-Based Grasp Localization

We have seen in previous section 3 how to learn a dictio-
nary D and extract features f(*) from a set of observations
z(®_ In this section, we elaborate on the approach that we
used to actually perform grasp localization.

4.1. Grasp Representation

A fundamental concept in grasping is the grasp represen-
tation. It has undergone significant evolution over the past
decades. The 5-dimensional grasp rectangle representation
is one of the most popular method for encapsulating the 7-
dimensional two-plates parallel gripper configuration [15].
The 2D oriented rectangle, shown in Fig. 1, indicates the
gripper’s location, orientation and physical limitations:

R={x,y,0,w,h}.

Using the grasp rectangle representation makes grasp recog-
nition analogous to object recognition, and grasp detection
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analogous to object detection. For grasp recognition, the
goal is to determine whether a grasp rectangle R is a good
or bad candidate. For grasp detection, the goal is to predict
the configuration of the best rectangle R*.

4.2. Feature Extraction Process

The grasp rectangle introduces another key notion that
our proposed approach relies one, which is the grasp rect-
angle image. As shown in Fig. 2, it is the underlying image
captured by the rectangle. Extracting relevant features from
the grasp rectangle image is essential for grasp localization.
We now elaborate on the feature extraction process that we
chose for this task. The overall process is shown in Fig. 3.

From the RGBD image, we compute the gray chan-
nel (K) and the depth normal coordinates N, N, and N..
Each image now contains eight channels. We rotate the
grasp rectangle image to match the global orientation and
rescale it to 24 x 24 x 8 with aspect-ratio preserved. As
shown in Fig. 2, preserving aspect ratio is important to avoid
distortion.

We then extract, in a convolutional way, all 6 X 6 x 8
sub-images from the grasp rectangle image. The vectorized
version of each sub-image is a 288-dimensional vector that
is used as observation z(*). We perform channel-wise stan-
dardization and ZCA whitening, then extract feature vectors
£ using a learned dictionary D and feature coding ap-
proach. After, we divide the image into four quadrants and
perform sum pooling over the feature vectors f(*) of each
quadrant respectively. The pooled feature vectors from all
quadrants are concatenated into a single vector that is used
as input to the classifier. This feature extraction pipeline
is known as spatial pyramid matching which has shown
promising results in past work [34].

4.3. Grasp Recognition and Detection

The feature vector obtained as output of the grasp rect-
angle image feature extraction process is then used a in-
put for performing grasp localization. In the case of grasp
recognition, we use as classification model a ¢5-linear SVM

is mapped to its feature representation f @ given a dictionary D and a feature coding method. Center-Right: a four quadrants
Right: all quadrant pooled weights are concatenated into a single vector. The final vector

P EYLEDNE
N\ &7’-&0"1\!&/0’

Figure 4. The Cornell Grasping Dataset contains 885 RGBD im-
ages of 240 distinct objects. Each image has labeled positive and
negative grasp rectangles. They are varied in term of shape and
positions, but do not capture exhaustively all graspable regions.

optimized with a standard L-BFGS solver from Schmidt’s
minFunc toolbox [30]. For grasp detection, we opted for
a standard sliding window search in grasp rectangle space
with a horizontal and vertical stride of 10 pixels. We varied
the size of the rectangle from 10 pixels to 90 pixels with
a stride of 10 pixels, and varied the orientation from O de-
gree to 180 degrees with a stride of 15 degrees. For each of
these grasp rectangle images, we performed feature extrac-
tion and inputed them to the SVM. The rectangle having the
highest score was chosen as the candidate grasp.

5. Experiments

In this section, we perform several experiments of our
proposed DLSR framework for grasp localization.

5.1. Cornell Dataset

The Cornell Grasping Dataset contains 885 RGBD im-
ages of 240 distinct objects [15]. Each image has multiple
positively- and negatively-labeled grasp rectangles, specifi-
cally selected for parallel plate grippers. As shown in Fig. 4,
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Figure 5. The effects of dictionary size on recognition accuracies. Increasing the dictionary size improves the results up to a limit (plateau)

where no more boost is possible.

Table 1. Cross-validation results of all combinations of dictionary
learning and feature coding, for Cornell dataset. Numbers are
grasp recognition accuracies in percent (%).

Dictionar Features
Y TARS mLARS OMP mOMP ST N

ODL-0 96.68 96.71 96.60 96.69 96.50 96.58

ODL-1 96.63 96.74 96.61 96.61 96.73 96.65
GSVQ 96.72 96.50 96.66 96.70 96.50 95.65
NKM 96.86 96.64 96.58 96.64 96.42 96.52

RP 96.43 96.51 9635 96.20 96.28 96.37
R 95.84 95.52 9534 95.15 95.78 95.90

the labeled rectangles are varied in terms of size, orientation
and position. This dataset is difficult because it is small and
some images have unlabeled graspable regions.

5.2. Grasp Recognition Experiments

Previous works on the Cornell dataset reported their re-
sults using 5-fold cross-validation [15, 19]. They optimized
for the hyper-parameters using a separate set of grasp ex-
amples (which we call the validation set). However, exactly
comparing our results to theirs is impossible because they
did not report which examples they selected for validation.
We instead performed 5-5 folds nested cross-validation.
This removes the need to specify the validation set, reduces
the bias induced by choosing which examples to put in it,
and makes our results still comparable to the previous ones.

The nested cross-validation accuracies (in %) for grasp
recognition using a dictionary of d = 300 atoms are re-
ported in Table 1. The best dictionary learning + feature
coding combination is NKM-LARS with an accuracy of
96.86%. The worst combination is R-mOMP with an ac-
curacy of 95.15%. As a comparison, previous approaches
achieved 89.6% with a hand-designed score function [15],
and 93.7% with a cascade of multi-layer perceptrons [19].
These recognition results suggest that DLSR is a viable ap-
proach for grasp recognition.

Interestingly, the accuracies vary by no more than 1%.
Although it always performed worst, DL method R has

competitive performances. Sparse dictionary learning and
random dictionaries appears to be compatible in a simi-
lar manner than neural networks and random weights [28].
This suggests that other characteristics should be taken into
consideration for deciding which combination is more de-
sirable. One is to select the approach with the least amount
of hyper-parameters. For dictionary learning, GSVQ, NKM
and RP could be considered before ODL-0 and ODL-1 be-
cause they are hyper-parameter free. Similarly for feature
coding, the natural features of NKM, GSVQ and RP may
be taken in consideration before the others because they are
also hyper-parameter free.

Another characteristic is computational complexity. For
instance, LARS and mLARS were the most time consum-
ing of all, due to the tedious optimization needed for weight
optimization. Even though the ¢; sparsity measure ap-
pears to extract the most robust features, these encoders
would be too cumbersome to use in real-time scenarios. On
the contrary, ST and the natural feature coding of NKM
and RP are fast and give good performances. They are
not optimization-based approaches and their computational
complexities only depend on straightforward matrix-vector
multiplications.

Explicitly modeling the mask noise in the observations
may not be as important as it seems. As we see in Ta-
ble 1, mLARS and mOMP are not significantly better al-
ternatives then their standard version LARS and OMP. For
instance, modeling the mask noise with LARS improved
the performance of ODL-0 from 96.68% to 96.71%, but
reduced the accuracy of GSVQ from 96.72% to 96.50%.
Similarly, modeling the mask noise for OMP did not change
the performance of ODL-1, as both alternatives got 96.61%.
These results support the previous observation that standard
feature coding approaches are already well-adapted to deal
with the mask noise [3].

Given these considerations, we selected fives combina-
tions and use them for the next experiments. We chose
NKM-N, RP-N, GSVQ-ST, NKM-LARS and ODL-0-N.
NKM-N and RP-N appear to be the most appealing com-
binations because they are both hyper-parameter free and
have fast feature coding and dictionary learning algorithms.
We also included GSVQ-ST, NKM-LARS and OMP-N



even though they need hyper-parameter tuning. NKM-
LARS was the top performer, and GSVQ-ST and OMP-N
have fast feature coding methods.

The number of atoms d has a direct influence on the
performance of the classifier. Small dictionaries are easy
to learn, but may not capture faithfully the latent structure
within the data. On the contrary, big dictionaries are more
flexible, but can have convergence problem due to dead
atoms [21]. To evaluate the effects of the dictionary size
on the recognition accuracy, we varied the number of atoms
d and looked at how performance changed. Figure 5 shows
that increasing d improves the results up to a limit where
no additional gain is possible. The plateau indicates that
dictionary learning is unable to learn new useful features.
This is the so-called dead atoms problem, where the learned
dictionary D contains atoms that are never activated. It has
reached a limit in its representative capability. Figure 5 sug-
gests that using d = 300 atoms is a good trade-off between
performance and computational complexity. We will there-
fore use d = 300 atoms in the following experiments.

5.3. Grasp Detection Experiments

We also evaluated the performance of the five selected
dictionary learning + features coding of section 5.2 on the
problem of grasp detection. We performed a standard 5
folds cross-validation using the same hyper-parameters as
in grasp recognition. To evaluate the quality of a grasp can-
didate, we used the rectangle metric [15]. Specifically, if
the rectangle metric of any of the ground truth rectangles
with the candidate is positive, the regression is a success. In
more detail, the metric is positive if: /) the candidate orien-
tation is within 30° of the ground truth rectangle, and 2) the
Jaccard index between the candidate and the ground truth
is greater than 25%, where the Jaccard index between two
rectangles R; and R is defined as:

area(Ry N Ry)

J (B, By) = area(Ry U Ry)

®)

For grasp detection, we have two learning scenarios. One
is image-wise splitting where we split the images randomly,
and the other is object-wise splitting where we split the ob-
jects randomly, gathering all the image of the object in the
same fold. Image-wise splitting studies the ability to gener-
alize to new positions and orientations of an object that has
already been seen. This scenario is representative of a typ-
ical industrial context, because the set of objects is known
beforehand. Object-wise splitting examine the capability to
generalize to novel, unseen objects. This scenario is more
realistic in the sense of general purpose robotics because
training on all possible objects is usually impossible. Using
both image-wise and object-wise splitting, we can more ac-
curately ascertain the performance of the tested approaches.

Table 2. Cross validation detection results for the Cornell dataset.
Numbers are grasp detection accuracies in percent (%).

Detection Accuracy (%)

Algorithm

Image-wise Object-wise
Jiang et al. [15] 60.50 58.30
Lenz et al. [19] 73.90 75.60
Redmon et al. [27] 88.00 87.10
NKM-LARS 88.67 88.07
GSVQ-ST 88.72 88.79
OMP-N 89.34 88.56
NKM-N 89.40 88.17
RP-N 87.70 86.61

The cross-validation accuracies (in %) for grasp detec-
tion of the five selected approaches using a dictionary of
d = 300 atoms are reported in Table 2. For image-
wise and object-wise split respectively, the best accura-
cies are obtained by NKM-N with 89.40% and GSVQ-
ST with 88.79%. As comparison, a cascade of multi-
layer perceptrons obtained 73.90% and 75.60% [19] while a
convolutional neural network (CNN) achieved 88.00% and
87.10% [27].

Even though CNN is a powerful approach and is cur-
rently state-of-the-art in several vision-related problems,
DLSR has one advantage over CNN. Due to the relative
small amount of data in Cornell dataset, Redmon et al. pre-
trained their CNN on ImageNet containing RGB images,
replaced the blue with the depth channel to make it com-
patible with RGBD images (giving RGD images), and per-
formed a final fine-tuning on Cornell images. Since blue
channel-related low level features are unlikely extracting
useful information from depth, such a pre-training approach
is clearly sub-optimal. Directly training the CNN on Cor-
nell dataset would require gathering a large quantity of ad-
ditional images, at a substantial cost. In contrast, DLSR
can be directly trained on Cornell RGBD images despite its
small size. In an industrial context where datasets are small
and new objects are regularly added, DLSR can be a viable
approach in the early development stage. This can be seen
as an advantage over CNN.

5.4. Dictionary Visualization

To provide an intuition on the representative ability of
DLSR, we trained a dictionary with NKM and visualized
the learned atoms. In Fig. 6, we show the dictionary trained
on the Cornell dataset by separating the modalities into four
parts: gray (K), color (RGB), depth (D) and depth normals
(NzNyN.). Each small square is a de-vectorized atom D)
of size 6 X 6 x M, when M is the number of modalities.
Most squares show localized and oriented Gabor-like filters,
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Figure 6. A dictionary D of 300 atoms (each square is an atom D)) learned using the Cornell dataset shown in four distinct parts: K
(gray), RGB, D (depth) and N, N, N (depth normals). Most atoms show localized and oriented Gabor-like filters.

which has been reported several decades ago as being the
building blocks of real world images [22]. The fact that
DLSR can learn Gabor-like filters is a strong indication that
it can extract proper features from the data.

6. Discussion

To obtain Table 2 high accuracy results in detection, we
had to pay a computational price. Even though feature cod-
ing approaches have reasonable low computational com-
plexity (LARS is O(d® + nd?), OMP is O(ynd) and ST is
O(nd)), the exhaustive grid search in grasp rectangle space
is computationally demanding. This translates into several
minutes to complete a detection which is higher than Red-
mon et al.’s CNN with 76 ms per image. However, since
we used a standard CPU and they used a high-end GPU,
a DLSR GPU implementation would make a fairer time
computation comparison. While implementing ST would
be simple, this is not straightforward for LARS and OMP
due to their recursive nature. A possible avenue for a useful
GPU implementation may be to parallelize grid search by
exploiting grasp rectangle candidate independence, i.e. by
extracting and scoring all candidates in parallel. However,
grid search in grasp rectangle space being more cumber-
some than spatial convolutions, the computational time of
such a parallelization would still be higher than CNN.

While DLSR is fairly slow during detection, the training
phase is significantly faster than CNN. Training a CNN take
several days with parallel high-end GPUs, and fine-tuning
on Cornell dataset takes several hours [27]. In comparison,
it took approximatively ten minutes to train our 300 atoms
dictionaries on a standard CPU. While fast training phase
is irrelevant in real-time test scenarios, it could be useful
to train a CNN directly on RGBD images. Pre-training on
ImageNet could be avoided by greedily stacking dictionar-
ies learned on RGBD images, as previously proposed with
auto-encoders in the context of RGB images [2]. Such a
DLSR and CNN combination would bring the best of both
approaches, in which DLSR would improve training while
CNN would provide fast detection. We intend to investigate
this avenue in future works.

Even though it achieved the lowest detection accuracies

D NzNyN-

(apart from random dictionaries), the RP-N combination is
appealing because training the dictionary is instantaneous,
feature coding requires only a matrix multiplication, and
there is no hyper-parameters. Due to its simplicity, inte-
grating the approach to a grasp localization system in its
early deployment phase is straightforward and can give a
good glimpse of the overall system performance in later de-
ployment phases. One interesting avenue for future work
is to understand the reason why input decorrelation allows
randomly sampled patches to make such good dictionaries.
For instance, is linear independence sufficient, or better dic-
tionaries could be recovered with non-linear independence?
These are several avenues worth investigating.

7. Conclusion

A perception system that determines good grasping posi-
tions from Microsoft Kinect RGBD images is a key element
toward automating the grasping of ordinary objects. Over
the past decades, Dictionary Learning and Sparse Repre-
sentation (DLSR) has attracted a lot of attention in the vi-
sion, signal and image processing communities, but has not
been evaluated on the problem of grasp localization. In this
paper, we proposed a DLSR framework for extracting rele-
vant features from RGBD images. We showed that it has a
fast training phase, do not require a lot of data, and is able
to process observations corrupted by a mask-based noise
without relying on sophisticated regularization terms. We
demonstrated its applicability for recognizing and detect-
ing grasp rectangles on the standard Cornell dataset. Our
results suggest that the proposed DLSR framework is suit-
able for grasp localization. We also performed a compar-
ative study of various dictionary learning and feature cod-
ing approach combinations. We analyzed the pros and cons
of each alternatives by comparing recognition accuracies,
computational complexity and the ability to be parallelized.
Our results have shown that most approaches obtained sim-
ilar recognition performances, but some are more appealing
due to their fast speed and ease of use. Future work com-
bining DLSR and deep learning (such as R-CNN) could be
an interesting avenue.
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