
Automating Node Pruning for LiDAR-based Topometric Maps in the context of
Teach-and-Repeat

David Landry, Philippe Giguère
Department of computer sciences and software engineering

Université Laval
Québec, Canada

Email: davidlandry93@gmail.com, philippe.giguere@ift.ulaval.ca

Abstract—Maps are a vital component in autonomous mobile
systems. However, they can be computationally expensive to
build, particularly in the case of globally-consistent ones.
To circumvent this issue, topometric approaches have been
proposed, especially in the context of the Teach-and-Repeat
paradigm. These topometric maps are graphs, where nodes are
local maps and edges are the known transform between these
nodes. When building these topometric maps, one important
question is how far apart should these local maps be collected
in the environment. On one hand, a densely sampled topometric
map will be more robust, but at the cost of an increased
database size. On the other hand, fewer local maps mean a
more efficient topometric map. Traditional approaches record
these local maps at a fixed, regular intervals. In this paper, we
propose an offline algorithm that automatically prunes nodes
in a way that offers some empirical guarantees on localization
errors. In particular, our approach is based on first collecting
a densely sampled topometric map, then finding a minimal
subset of nodes using a cost-based approach via Dijkstra’s
Algorithm. Offline experiments on three datasets confirmed
the ability of our approach to minimize the size of topometric
maps, and showed that the size of the map will vary given a
certain demanded localization error tolerance and environment
complexity.

I. INTRODUCTION AND PREVIOUS WORK

Teach-and-Repeat is a popular and efficient paradigm to
execute displacement tasks where it is possible to have an
operator show to a robot how to accomplish it beforehand.
This way, the perceptual capabilities of the mobile system
can be greatly lowered. The Teach-and-Repeat paradigm
does not rely on a particular sensing modality; indeed, it
has been implemented using stereo cameras [1] and LiDAR
sensors [2], and used in challenging situations such as
underground mines [3] or with a flying quadrotor [4].

At the heart of all Teach-and-Repeat approaches is the
concept of topometric maps. They combine locally metric
maps that are perceptually linked to the localisation sensing
capabilities (range and modality) within a more abstract
global, topological map (Kuipers et al. [5]). The Atlas
framework [6] was one of the first to demonstrate that
such an approach could answer the problem of large scale
mapping. They achieved this by combining smaller, locally
metric maps into a larger topological map that contained the

relative transforms between its local maps. This topometric
paradigm has also been employed for the problem of multi-
robot mapping and exploration of an unknown environment,
to alleviate the problem of place recognition and loop closure
by using the robot themselves as robust landmarks [7].
Loosely related to this concept of topometric map for 3D
sensors, Steder et al. [8] have proposed place recognition
from range images, a form of 21/2D local mapping, where
scans were taken at fixed intervals, as in most Teach-and-
Repeat implementations.

The idea of performing some kind of optimization within
the paradigm of Teach-and-Repeat is not new. For exam-
ple, [9] presents an approach (teach-optimize-repeat) that
tries to optimize the smoothness of the trajectory while
simultaneously minimizing its duration. Optimisation of the
speed schedule [10] or of the linear controller performing
the repeat phase [11] have also been explored. Contrary to
our approach, none of them try to minimize the number of
nodes within the topometric map.

The concept of selecting nodes in topometric maps is also
found in keyframe-based visual mapping techniques. As they
try to operate in real-time, the triggering of node creation
usually relies on simple heuristics. This kind of approach is
found for example in the well-know PTAM algorithm [12].
Another keyframe-based approach, RTAB-MAP [13], uses
an heuristic based on the difference in appearances: a new
node is added when the ratio of visual words detected
from the previous node falls below a threshold. No map
curating is performed afterwards. Node creation decisions
can also be found in some work related to place recognition.
In [14] for example, they perform topological mapping
using vision, with an Incremental Spectral Clustering. Their
goal is to find a cluster in visual appearance space that
would be representative of a region, with such a cluster
becoming a node in the map. They noted, unsurprisingly,
that their algorithm generated more nodes in narrow indoor
areas than in larger, open outdoor ones. In some sense, an
autonomous topometric mapping algorithm should behave
similarly, as localisation capability is somewhat related to
place recognition capabilities.

One of the questions that arise when implementing Teach-



and-Repeat algorithms is how sparsely should the nodes in
the topometric map be placed. A very frequent sampling,
with a large number of local maps to localize against
during the repeat run, will provide more robustness against
localisation failures. However this robustness comes at the
cost of a very large database (map) size, making it a storage
burden. Moreover, if place recognition is added later on,
it will make detecting loop closures more expensive by
increasing the search space, although this can be mitigated
by feature-words and inverted index approaches such as
FAB-MAP [15]. Anecdotal evidence shows that the density
of sampling of local maps should be intimately related to the
environment itself. For example, in [8], place recognition
recall rates are different for the two datasets they used
(Hanover vs. Freiburg.) For Freiburg dataset (a more open-
space), the distance corresponding to a recall of 50% is
around 25 m, while for the Hanover dataset it is at around
12 m.

Current Teach-and-Repeat approaches leave it to the
operator to decide the distance between the nodes in the
topometric map. For example, in [1], [2], the robot records
a new local map at regular intervals during the teach phase,
based on the robots odometry. This approach does not
take into account the possibly varying complexity of an
environment. Consequently, the operator has to be aware
of the underpinning localization technique in order to make
an educated guess for the sampling distance parameter, or
resort to trial-and-error.

Our proposed approach borrows some conceptual ele-
ments from Churchill et al. [16]. In their work, they augment
the traditional topometric maps used within the Teach-
and-Repeat paradigm with a spatial model of the localizer
performance. They aim at estimating how far away can the
robot deviate from the taught trajectory before the localizer
fails, thus finding what they call a localization envelop. In
our approach, we will employ the ability for a localizer to
perform within an error bound to determine which subset of
local maps is sufficient to perform localization on the taught
trajectory. This way, we can prune redundant nodes without
sacrificing too much of the localization robustness during
the repeat phase. More importantly, the operator now simply
has to provide an error tolerance on localization, instead of
choosing at what distance should the local maps be selected
in a particular environment. We believe it is a step forward
in having a more intuitive and natural way of parameterizing
the topometric mapping process.

II. PROBLEM DEFINITION

We have a topometric map that has been recorded during
a teach phase at fixed, small intervals, containing a set N =
{n1, n2, ..., nm} of m interconnected nodes. Each of these
nodes ni is a local map in the form of a 3D point cloud zi
that has been acquired at the origin of the local map by a
LiDAR. The geometric transformation (rotation, translation)

between the frame of reference of consecutive nodes ni and
ni+1 is i

i+1T, and is stored in the map as well, as the edges
between consecutive nodes.

Our goal is to find the smallest subset of nodes of N
such that we can still perform the repeat phase with some
high degree of confidence for a region Q. Q itself contains
the taught trajectory and a user-defined deviation around it.
This region is assumed to be traversable by the robot, and
is used to take into account the unavoidable motion errors.
In order to be able to perform the repeat, the robot must be
able to localize at any point of this region Q. In some sense,
Q is loosely related to the localization envelop of Churchill
et al. [16]. Our problem can be described more formally as
finding a subset S ⊆ N of nodes si such that ∃si ∈ S such
that we have LOCALISES(si, q), ∀q ∈ Q. We can think of
the LOCALISES function as an indication that it is possible
for a robot receiving the sensor reading zq during a repeat
phase to localize using a local map stored in S.

Several problems arise from this purely theoretical for-
mulation. First, the LOCALISES function is more or less
impossible to compute reliably in our case, we will ap-
proximate it by looking at the final error of a localization
algorithm, such as Iterative Closest Point (ICP.) Second,
testing this function for all possible q’s is not feasible.
Indeed, [16] performs a limited number of samples during
repeat phases, and uses these samples to update a Gaussian
Process to estimate the localization envelop. In our case, we
will further simplify the procedure by re-using scans taken
during the teaching phase as samples of q. This increases
the risk that Q is not properly sampled (as we do not go
technically off the taught path). However, it will allow our
approach to be able to perform pruning offline, without
the need for an online optimization phase. Finally, we will
assume that we always use the local map in the current
node for localization, and that node are selected in increasing
order (as is typically done in a Teach-and-Repeat scenario).

This pruning is a trade-off between robustness of local-
ization and storage requirements for the map. As we depart
further from a node ni, the likelihood for a localizer to
fail in its local map generally increases with the distance
from the origin of that map (where the pointcloud zi was
acquired.) By reducing the number of nodes, we therefore
increase the average distance between a sensor reading zt
and the origin of the currently active local map. On the other
hand, the pruning decreases the storage requirements for the
topometric map. As each node can contain a full 3D scan,
the memory savings can be substantial for LiDAR-based
methods. For example, we employed a Velodyne HDL-32E
LiDAR in our experiments, and each local map needed
approximately 1 MB of storage. Reducing the number of
nodes thus reduces the storing requirements of the map, as
well as speeding up the loading of these maps from disk.



III. OUR APPROACH
This section presents in greater details our approach.

In particular, we will first describe how we approximate
LOCALISES with ICP, and how we approximate the sam-
pling of the region Q. We then explain how the actual
pruning can be reframed as a shortest-path problem in a
graph, and solved efficiently with Dijkstra’s algorithm.

A. Simulating the LOCALISES function

In our implementation of Teach-and-Repeat, we use
the Iterative Closest Point (ICP) algorithm as our lo-
calizer. Therefore, it is only natural to approximate the
LOCALISES(nk, nl) function by the use of ICP itself. We
will declare that if ICP does not localize the node nl, using
nk as a local map within a certain positional error εpos
or angular error εangular, then LOCALISES fails. These ε
parameters are provided by the user. We argue that since
they are physical quantities (distances or angle), they provide
for an intuitive parameter to set. This definition of the
LOCALISES function will cause our algorithm to adapt
itself to the environment of the map. As ICP tends to fail
in complex and narrow areas or when the matched clouds
are rotated with respect to one another, this approach will
tend to detect such situations and keep the related nodes,
thus preserving the general robustness of the map.

In an ideal situation, one could perform this pruning
online and interactively, in a Teach-optimize-repeat manner.
For example, in [16] the localisation envelop is identified
through an active-sampling approach: the vehicle is pro-
gressively driven off the taught trajectory during repeat.
However, this kind of approach can be time consuming.
Therefore, it is highly desirable to be able to perform
node pruning offline. To achieve this, we will evaluate the
quality of a node nk in terms of ability to localize by
using the LiDAR scan zl stored as local maps subsequent
nodes nl (l > k). Note that all these nodes were acquired
during the teach phase, and are therefore part of the initial
map N . We evaluate this localisation ability by testing
LOCALISES(nk, nl), which tell us if node nk (with local
map zk) can be used as a reference point when we receive a
new LiDAR scan (simulated by zl) during the repeat phase.
In our context, it boils down to knowing if the ICP algorithm
is robust, given these inputs. Our core idea here is to affirm
that we can be confident in localizing if ICP can converge
reliably, despite errors in initial estimation of the transform
between the two input scans. We will thus approximate
LOCALISES by running the ICP algorithm on the given
point cloud pair (zk, zl), with a number of different initial
transformation disturbances E. If the ICP succeeds every
time (i.e. is within εpos and εangular), then we declare that
we are confident that the point cloud zk pair is good for
localizing near zl.

More formally, we derive LOCALISES(nk, nl) by execut-
ing the following steps. First we will sample the space Q by

using P disturbances transformation matrix Ep that induces
small spatial (∆x, ∆y) and angular (∆θ) displacements near
a fixed location. These disturbances are chosen so as to
be regularly-spaced on the surface of a 3D ellipsoid. A
2D simplification of this is illustrated in Fig. 1. For per-
formances reasons, we did not sample any point inside the
ellipsoid, as the ICP localization is generally more successful
with better initial estimates. The length of the semi-axes
of the ellipsoid is determined through three user-provided
parameters, x, y and θ, allowing the user to choose what
kind of disturbances he wants the map to be tolerant to. The
ellipsoid was parameterized as follows in our experiments:

∆x = x cosu sin v

∆y = y cosu cos b

∆θ = θ cos v (1)

for u ∈ [0, 2π), v ∈ [0, π]. In our implementation, this ellipse
was sampled for P = 25 different disturbances Ep per
execution of the LOCALISES function.

Figure 1: A simplified view of the LOCALISES predicate,
for the case where the angular disturbance is null. The blue
dots represent the P samples taken on the disturbances
ellipsoid, which are our sampling of space Q near node
nl. Note that in our approach, this ellipse is 3-dimensional,
the 3rd dimension being related to the angular disturbance.
Matrix Mp represents the transformation error after ICP.

Each of these P disturbances Ep will then be used to
create a test for the LOCALISES function. As we mentioned
earlier, we will use ICP, which we define as the following
function:

ICP(zx, zy,Tinit) (2)

where zx and zy are the input point clouds and Tinit is the
initial transformation guess between these two point clouds.
This function returns a transformation matrix that (if the ICP
succeeds) moves the frame of zx (sufficiently close) to the
frame of zy .

Now that we picked a sample in Q, we need a reference
to which we can compare the result of the disturbed ICP.
When testing for a pair of nodes nk and nl, we compute an
undisturbed location estimate, which is simply the relative
pose of node nl in the frame of reference of node nk:

k
lT = k

k+1T⊕
k+1
k+2T⊕ · · · ⊕

l−1
lT (3)



where ⊕ is the usual compounding operator [17].
We will collect the difference between the undisturbed

estimate k
lT and the result of the ICP with a disturbed initial

estimate Ep ⊕ k
lT for each Ep. The result is stored in the

form of a transformation matrix Mp:

Mp = ICP(zk, zl,Ep ⊕ k
lT)	 k

lT (4)

where 	 is the difference operation for transformations
(equivalent to composing the first transformation with the
inverse of the second), and zi is the local scan associated
with node ni. We extract the translation vector and rotation
matrix from every error matrix Mp.

Mp =

[
Rp tp
0t 1

]
. (5)

Then we compute the ICP errors for the P disturbed samples
in terms of translation (et) and rotation (er) errors:

et,p = ‖tp‖ (6)

er,p = arccos

(
trace(Rp)− 1

2

)
. (7)

For LOCALISES to be considered successful, these errors
for all the P disturbances must be smaller than the user-
provided thresholds εpos and εangle:

LOCALISES(nk, nl)⇔
(et,p < εpos ∧ er,p < εangle ∀p ∈ {1, 2, . . . , P}). (8)

For instance in Fig. 1 we consider that ICP (showed as
the red dotted line) is successful for sample p if ICP is able
to compensate a disturbed initial estimate (klT⊕Ep) so that
its final transformation is located in the greyed region within
εpos close from the undisturbed position k

lT. LOCALISES is
considered successful if all disturbances Ep are successfully
compensated by ICP.

B. Building and optimizing the localisability graph

The localisability graph is a graph where the nodes are
the same as our initial map N . The edges now represent
the result of the LOCALISES function between two local
maps: if LOCALISES(ni, nj) is successful, then an edge
between nodes ni and nj is added in the graph, with a fixed
cost of 1. We assume that there is an edge between every
pair of consecutive nodes, which translates to assuming
that the robot is able to localize in Q using the original,
unoptimized map. For performance reasons, we do not run
the LOCALISES function on a pair of nodes (ni, nk) if
LOCALISES failed for a pair i.e (ni, nj) such that j < k.
Here we simply assume that all nodes beyond nj will
fail for ni, as ICP tend to perform less and less well as
distance increases. Moreover, this will make our approach
conservative in terms of pruning, thus it is not detrimental
from a robustness point of view.

Once we have the localisability graph in hand, we need
to find the best subset S of nodes such that we can reliably
localise. To this effect, we use Dijkstra’s algorithm for
finding the shortest path in a graph, with the first node as a
starting point. By finding the path that has the fewest edges
(and consequently the fewest nodes) from the beginning
of the map to the end, we therefore find a subset of
minimum size such that we can still localize within this
map, according to our approximation of LOCALISES and
our sampling strategy. The nodes that are traversed by this
path are the nodes in our optimized map. The complexity
of Dijkstra is O(l logm) (where l is the number of edges in
the localisability graph) in this case. This path is orders of
magnitude easier to compute that the LOCALISES function
on the successive pairs of nodes, and thus is not a burden
on a computing time level. It also keeps us from having to
define a heuristic for the search.

Throughout this paper we assume that the robot will
always use a local map behind him to localize the current
reading during a repeat run. Consequently we only have
to compute LOCALISES(ni, nj) for j > i. Making sup-
plementary assumptions about the capabilities of the repeat
software could lead to a better optimization.

The source code of the optimization framework is avail-
able at http://bit.ly/1oKsSxd.

IV. EXPERIMENTS
A. Datasets collection

We collected three datasets using a Clearpath Husky A200
equipped with a Velodyne HDL-32e LiDAR sensor. The
LiDAR scans are used both as local maps in nodes, and
in computing the relative transforms i

jT between each node
via ICP during the teach passes. This approach is more
precise than relying on the odometry of the wheels in
places with uneven ground with poor traction, but might
cause some discontinuities in the robot trajectory. The first
dataset, terasse, is a short run on paving stones on Laval
University’s campus in a relatively open area. As it was
a busy summer day, passer-by that were curious about the
robot introduced dynamic outliers in the point clouds. The
forest dataset is a short run in some forested area on
campus, making the environment highly unstructured and
complex, as well as somewhat narrow due to the presence
of foliage along the walking path. Finally, the third dataset
hallway mapped an indoor hallway as the robot went in
a straight line. We recorded a higher density of nodes for
this dataset, to specifically verify that pruning of nodes will
be more aggressive with our algorithm than with the two
other testsets. The teach passes were executed using a home-
grown Teach-and-Repeat software.

We used libpointmatcher [18] as our ICP engine
throughout this work. The parameters given to the ICP
engine were the same as the ones we used in our Teach-
and-Repeat implementation, and contained (among other



n0 n1 n2 n3 n4 n5 n6 n7 n0 n1 n2 n3 n4 n5 n6 n7

Figure 2: The localisability graph, before and after running Dijkstra’s algorithm. Here, every node is from the unoptimized
Teach-and-Repeat map. An edge between two nodes indicates that the LOCALISES function succeeded from the first node
to the second. In this example, LOCALISES succeeded for the pair (n2, n5) but failed for (n1, n3). By running Dijkstra’s
algorithm on this graph (with every edge having a cost of 1), we can find the shortest path from the first node to the last.
Our optimized map will be comprised of the nodes used by this path, as shown on the right.

configurations) random subsamplings such that 15 % of the
points of the new scan and 25 % of the points of the local
map would be kept during ICP operations.

B. Results of the optimization

Table I presents the results of applying our algorithm to
the three previously described datasets. The parameters of
the optimization framework were x = 1.5 m, y = 0.75 m
and θ = 0.18 rad. The convergence threshold were εpos =
0.2 m and εangle = 0.09 rad. The length of the trajectories
were approximated with the sum of the distances between
successive nodes in the map.

The results are highly dependent on the geometry of the
environment; sharp turns in the robot trajectory are difficult
to optimize, as are complex and narrow environments. More-
over, we found that the parameters do not need to change a
lot from one environment to another, despite wild variations
in environment complexity and type (indoor vs. outdoor.)
This seems to indicate that the parameters are somewhat
independent of the environment, as we would hope. Figs. 3
and 4 show which nodes were kept during the automatic
pruning for the hallway and terrasse, respectively.
Fig. 5 shows the evolution of the average distance between
successive nodes, for each dataset.

C. Behaviour of convergence of ICP

Our algorithm relies heavily on the fact that we expect
ICP to fail when nodes are too far apart for localisation
purposes. To validate this concept empirically, we explored
the behaviour of the translation and rotation errors et and
er, after ICP adjustment, as nodes are further apart. To
do so, we used the local map of a fixed node ni, and
performed ICP on subsequent nodes, i.e. on pairs (ni, ni+1),
(ni, ni+2), . . . , (ni, ni+N ) where N is the total number of
nodes in the topometric map. To estimate the distribution
of these errors, these tests were repeated 50 times, as the
ICP engine performs random subsampling. The error was
computed the same way it was in Eq. (6) and Eq. (7), except
that the perturbation E was set to the identity matrix (no
perturbation). This validation was done on the terasse
dataset, with the results shown in Fig. 6. What can be
interpreted from these graphics is that ICP tended to have
a smooth and gentle degradation over shorter distances, but

Figure 3: The result of the optimization algorithm on the
hallway dataset. We notice that the optimization is highly
affected by the geometry of the environment. In this case, it
is possible to optimize away a large number of nodes towards
the middle of the map. The upper extremity requires more
nodes, due to the occlusions around open doors located in
that region.

displayed a phase transition by abruptly failing beyond a
certain distance. Having such a drastic increase in error (and
variance on this error) is highly desirable for our algorithm,
as it makes the selection of error threshold εpos and εangle
simpler and more robust.

D. Length of the semi-axes of the disturbance ellipse

Parameters x, y (translations) and θ (rotation) are the
lengths of the semi-axes of the disturbance ellipse and thus
determine how robust we want the map to be to those
errors. Indeed, the larger this ellipse, the more robust to



Dataset Trajectory Length N. of nodes N. of nodes (optimized) fraction kept
Units m - - (%)

hallway 6 117 53 45.3
terasse 64 304 211 69.4
forest 17 62 49 60.9

Table I: Result of the optimization on different datasets.

Figure 4: The result of the optimization algorithm on the
terasse data set. The jumps in the position of the robot
are due to the ICP odometry failing to find proper transfor-
mations between successive local maps.

Figure 5: Average distance between successive nodes in
each dataset. In every case, this distance between successive
nodes increased after optimisation, as expected.

Figure 6: Mean translation and rotation errors according to
the travelled distance. This data is from the terrasse
dataset. The slow growth in error we notice at first can be
attributed to the accumulated errors of the odometry when
recording the point clouds. The very large growth in variance
and error that happens afterwards can be attributed to the ICP
runs converging in local minima that are both numerous and
far from the true position.

disturbance the final map should be. This makes it less
probable to remove nodes, but yields map in which we
can still be confident that localisation can be achieved
reliably. We tested our algorithm for different values of these
parameters to estimate the sensitivity of our algorithm to
their values. As can be seen from Fig. 7, the algorithm is
more sensitive to angular tolerance that spatial ones. Second,
we can see that the spatial parameters x and y do not
have a significant impact on the result of the optimization,
which could indicate that the ease of localization is more
determined by the properties of the environment itself, as
we are hoping.



Figure 7: Percentage of nodes kept as a function of the size
of the disturbance ellipse used to sample Ep. Unexpectedly,
it becomes harder to prune a map as the demanded tolerance
to error grows (larger size of the disturbance ellipse). How-
ever, the lengths x and y of the semi-axes of the disturbance
ellipsoid for physical distance have little to no effect on the
end results, while the pruning is more sensitive to angular
displacements θ. Each dot represents an optimization run on
the terasse dataset where x = y, with θ specified in the
legend.

E. Effect of the εpos and εangle parameters

To better comprehend the effect of the environment on
the behaviour of optimization, we ran the optimization
framework on our three datasets with increasing values of
εpos. The results can be seen on Fig. 8. The optimization
runs were done with x = y = 1 m, θ = 0.17 rad and
εangle = 0.09 rad.

V. FUTURE WORK AND CONCLUSION

This paper introduced an offline algorithm that can auto-
matically reduce the number of nodes needed in a topometric
map for use in Teach-and-Repeat implementations. Our map
curating algorithm is based on computing the localisation
ability of candidate local maps, and using subsequent nodes
as test scans. The results of these computations are used
to prune nodes in the topometric map until it is as small
as possible so that we can execute a repeat run with a
demanded tolerance to error provided by the user. Impor-
tantly, the algorithm has a linear complexity with the size
of the map for reasonable environments, as it is based on
Dijkstra’s algorithm. Our approach was tested with success
on three datasets (two outdoors, one indoor) using 3D point
clouds from a LiDAR sensor, with ICP used for localisation.
Experiments confirmed that the algorithm is indeed able to
optimize topometric maps, and that the density of nodes

Figure 8: The effect of the parameter εpos in different
dataset. The results vary wildly from one environment to
the other, indicating once again that the aspect of the
environment is a very important factor when deciding how
frequently it should be sampled in a Teach-and-Repeat map.

depends on the type of environment and less on the spatial
tolerance parameters.

We believe that this work can be extended in differ-
ent ways. First, the current computing bottleneck is the
LOCALISES predicates, which requires the computation of
P ICP’s along the disturbance ellipse. However, as as each
of these P ICP’s can be run independently, we could thus
parallelise LOCALISES over many CPU cores or rely on
a ICP library leveraging GPUs. Another possibility would
be to reduce the number of calls to ICP, by using an active
learning approach based on Gaussian Processes [16], instead
of a regular sampling.

Finally, this work could also be improved by making sup-
plementary assumptions about the repeat implementation.
Throughout this paper, we assumed that the robot can only
use reference points that are behind itself during the repeat
run. By supposing that the robot can use local maps in both
directions, the maps could be optimized even further.

REFERENCES

[1] P. Furgale and T. D. Barfoot, “Visual teach and repeat
for long-range rover autonomy,” Journal of Field
Robotics, vol. 27, no. 5, pp. 534–560, 2010.

[2] C. Sprunk, G. D. Tipaldi, A. Cherubini, and W.
Burgard, “Lidar-based teach-and-repeat of mobile
robot trajectories,” in Intelligent Robots and Sys-
tems, IEEE/RSJ International Conference on, 2013,
pp. 3144–3149.



[3] J. Marshall, T. Barfoot, and J. Larsson, “Autonomous
underground tramming for center-articulated vehi-
cles,” Journal of Field Robotics, vol. 25, no. 6-7,
pp. 400–421, 2008.

[4] A. Pfrunder, A. P. Schoellig, and T. D. Barfoot, “A
proof-of-concept demonstration of visual teach and
repeat on a quadrocopter using an altitude sensor and
a monocular camera,” in Proc. of the Conference on
Computer and Robot Vision (CRV), 2014, pp. 238–
245.

[5] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon,
and F. Savelli, “Local metrical and global topological
maps in the hybrid spatial semantic hierarchy,” in
Robotics and Automation, IEEE International Con-
ference on, vol. 5, 2004, pp. 4845–4851.

[6] M. Bosse, P. Newman, J. Leonard, M. Soika, W.
Feiten, and S. Teller, “An atlas framework for scalable
mapping,” in Robotics and Automation, IEEE Inter-
national Conference on, 2003, pp. 1899–1906.

[7] A. Howard, G. Sukhatme, and M. Mataric, “Multi-
robot simultaneous localization and mapping using
manifold representations,” Proceedings of the IEEE,
vol. 94, no. 7, pp. 1360–1369, Jul. 2006.

[8] B. Steder, G. Grisetti, and W. Burgard, “Robust place
recognition for 3d range data based on point features,”
in Robotics and Automation, IEEE International Con-
ference on, 2010, pp. 1400–1405.

[9] M. Mazuran, C. Sprunk, W. Burgard, and G. Tipaldi,
“Lextor: Lexicographic teach optimize and repeat
based on user preferences,” in Robotics and Automa-
tion (ICRA), IEEE International Conference on, 2015,
pp. 2780–2786.

[10] C. J. Ostafew, A. P. Schoellig, T. D. Barfoot, and
J. Collier, “Speed daemon: Experience-based mobile
robot speed scheduling,” in Proc. of the Conference on
Computer and Robot Vision (CRV), 2014, pp. 56–62.

[11] C. J. Ostafew, J. Collier, A. P. Schoellig, and T. D.
Barfoot, “Learning-based nonlinear model predictive
control to improve vision-based mobile robot path
tracking,” Journal of Field Robotics, 2015, To appear.

[12] G. Klein and D. Murray, “Parallel tracking and
mapping for small ar workspaces,” in Mixed and

Augmented Reality (ISMAR), 6th IEEE and ACM
International Symposium on, 2007, pp. 225–234.

[13] M. Labbe and F. Michaud, “Online global loop
closure detection for large-scale multi-session graph-
based slam,” in Intelligent Robots and Systems,
IEEE/RSJ International Conference on, 2014,
pp. 2661–2666.

[14] C. Valgren and A. Lilienthal, “Incremental spectral
clustering and seasons: Appearance-based localiza-
tion in outdoor environments,” in Robotics and Au-
tomation, IEEE International Conference on, 2008,
pp. 1856–1861.

[15] M. Cummins and P. Newman, “Fab-map: probabilistic
localization and mapping in the space of appearance,”
The International Journal of Robotics Research, vol.
27, no. 6, pp. 647–665, 2008.

[16] W. Churchill, C. H. Tong, C. Gurau, I. Posner, and
P. Newman, “Know your limits: Embedding localiser
performance models in teach and repeat maps,” in
Robotics and Automation, IEEE International Con-
ference on, 2015, pp. 4238–4244.

[17] R. Smith, M. Self, and P. Cheeseman, “Autonomous
robot vehicles,” in, Springer-Verlag New York, 1990,
ch. Estimating Uncertain Spatial Relationships in
Robotics, pp. 167–193.

[18] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat,
“Comparing icp variants on real-world data sets,”
Autonomous Robots, vol. 34, no. 3, pp. 133–148,
2013.

[19] E. W. Dijkstra, “A note on two problems in connexion
with graphs,” Numer. Math., vol. 1, no. 1, pp. 269–
271, Dec. 1959.

[20] S. Simhon and G. Dudek, “A global topological map
formed by local metric maps,” in Intelligent Robots
and Systems, 1998. Proceedings., 1998 IEEE/RSJ
International Conference on, IEEE, vol. 3, 1998,
pp. 1708–1714.

[21] T. Daoust, F. Pomerleau, and G. Dudek, “Light at the
end of the tunnel: High-speed, lidar-based train lo-
calization in challenging underground environments,”
in Computer and Robot Vision (CRV), Canadian
Conference on, IEEE, 2016, forthcoming.


