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Abstract

Pick-and-place is an important task in robotic manipu-
lation. In industry, template-matching approaches are often
used to provide the level of precision required to locate an
object to be picked. However, if a robotic workstation is
to handle numerous objects, brute-force template-matching
becomes expensive, and is subject to notoriously hard-to-
tune thresholds. In this paper, we explore the use of Deep
Learning methods to speed up traditional methods such as
template matching. In particular, we employed a Single
Shot Detection (SSD) and a Residual Network (ResNet) for
object detection and classification. Classification scores al-
lows the re-ranking of objects so that template matching is
performed in order of likelihood. Tests on a dataset con-
taining 10 industrial objects demonstrated the validity of
our approach, by getting an average ranking of 1.37 for the
object of interest. Moreover, we tested our approach on the
standard Pose dataset which contains 15 objects and got an
average ranking of 1.99. Because SSD and ResNet oper-
ates essentially in constant time in a Graphics Processor
Unit, our approach is able to reach near-constant time ex-
ecution. We also compared the F1 scores of LINE-2D, a
state-of-the-art template matching method, using different
strategies (including our own) and the results show that our
method is competitive to a brute-force template matching
approach. Coupled with near-constant time execution, it
therefore opens up the possibility for performing template
matching for databases containing hundreds of objects.

1. Introduction
The automation of simple industrial operations, particu-

larly for the small scale, fast turnaround robotics equipment,
is seen as a key concept of the fourth industrial revolution
(often dubbed Industry 4.0). A desirable characteristic for
its acceptance would be the ability for a non-technical per-
son to program advanced robotic equipment, such as robotic
arms. The Baxter robot, from Rethink Robotics, exemplifies
this concept, by being able to perform pick-and-place oper-

ations using intuitive programming methods. In this sys-
tem, training by examples replaces the traditional and more
tedious computer programming by experts.

In this paper, we explore the idea of improving both
the robustness and speed of a key and traditional com-
ponent used in pick-and-place solutions, namely template
matching. We aim at exploiting recent developments in
Deep Learning on object detection and classification to first
detect, then sort, putative objects before performing tem-
plate matching. These networks are trained by employing
databases of images collected in a simple manner. This way,
we stay within the philosophy of training by example. As
our approach is fairly conservative (the final object localiza-
tion is still performed via template matching), we believe
that it might speed up the acceptance of Deep Learning ap-
proaches in the industry.

Deep neural networks, particularly the convolutional net-
works, have established themselves as clear winners in
many classification tasks. Moreover, with the use of GPU
(Graphics Processor Units), they have shown to perform
classification over a thousand object categories in real-time.
This speed is possible because a) GPUs provide massive
parallel computing capabilities, up to several thousands of
cores and b) the features are extracted only once by the neu-
ral network, and are available to all object classifiers, since
the object classification is performed in the fully-connected
layers at the top of the network architecture. By contrast,
parallelizing template matching libraries is tedious, as it re-
quires significant hand-crafting and tuning. Moreover, cur-
rent template-matching approaches do not share the feature
extraction pipeline across templates, making them inher-
ently less efficient at exploiting the massive parallelism of
GPUs.

Template matching [8] has been used for a long time in
machine vision, and now has been widely accepted in in-
dustry. It has proven to perform well in retrieving the pose
of an already-identified object. However, it comes with a
number of known flaws. For instance, the matching speed is
dependent on the number of templates the method is trying
to match. Furthermore, the final decision about whether an



object has been well detected/located is based on a thresh-
old on the matching score. Thresholds are notoriously dif-
ficult to select properly, as there is an intrinsic compromise
to be made between a low threshold (which results in many
false detections) and a high threshold (which has less false
detections but will also reject good detections).

We propose a generic template matching pre-processing
step that takes advantage of the success and properties of
Deep Learning for object detection and recognition. A di-
agram of our approach is shown in Fig. 1. It consists in
detecting, classifying and ranking the seen objects before
using template matching. As such, our approach is com-
pletely agnostic to the subsequent step. This cascading phi-
losophy is not novel; In fact, it is a common approach in
vision-related tasks, in order to accelerate processing. For
instance, the Viola-Jones real-time detection technique [31]
uses a number of progressively more discriminative (and
expensive) classifiers. Neural networks have also been em-
ployed in cascade for object understanding, notably a two-
staged approach for grasp location detection in range im-
ages [18]. Deep Learning approaches might be used for ini-
tializing model-matching, such as with the tracking of body
parts, as they are more robust due to their larger basin of at-
traction [7]. In some sense, our approach uses the same phi-
losophy, where the coarse part (object detection and classifi-
cation) is performed with a Convolutional Neural Network,
while the fine-tuning of object pose estimation is completed
via template matching.

A significant advantage of our proposed approach is that
detection and classification modules, which are often ex-
pensive, are essentially executed in constant time. Indeed,
one forward-pass of a typical deep neural network can rec-
ognize amongst a thousand objects in less than 80 ms [17].
On the other hand, if object recognition is to be done by
template matching, one needs to run it until a sufficiently-
high scoring template has been found. In this case, the aver-
age number of templates that will be tried by this template
matching method should be, on average, around half of the
total number of templates. As we will demonstrate, by pre-
ranking templates by confidence of our object classifier be-
fore matching begins, this number tends to be significantly
less. It can thus allow for fast matching, even if there is a
large number of templates, as long as classification preci-
sion is sufficiently high.

Another positive effect of our approach is an increase
in robustness for object classification. In some template-
matching approaches, any score higher than the user-
selected threshold results in a positive match and the ter-
mination of the algorithm. By using a low threshold on
template matching scores (higher recall), it results in a high
number of bad detections (lower precision), as the first tem-
plate tried will return a positive match. In another kind
of approach, every template is processed, and the template

which scored the best is selected. By pre-ranking templates
in a first step, our method improves the performance of the
“first-match” approach, and get similar results to the “best-
match” approach, while having to process significantly less
templates.

Figure 1: Block diagram of our proposed method. Object
detection and classification are performed by Deep Neural
Networks, providing robustness and speed. Objects in the
database are sorted by their classification scores before be-
ing passed to the template matching module. Objects are
processed one after the other until a template results in a
score higher than a user-defined threshold, upon which the
algorithm terminates.

2. Related Work
Some approaches have been used to reduce the compu-

tational load of template matching methods, which can be
heavy, especially for those that searches for the complete set
of possible transformations [16, 22, 28]. In [23], they used a
convolutional neural network to predict the “matchability”
of templates across different transformation of the input im-
age. They then select regions around local maximums from
the computed matchability maps as templates for any se-
lected template matching method. In [2], they employed a
Support Vector Regression to find a function which is used
to generate template candidates at runtime, but strictly ap-
plied to visual tracking.

Object detection methods based on keypoint descriptors
work well on textured objects [3, 21]. However, by look-
ing at specific visual patterns on surfaces, they do not per-
form well on untextured objects by nature, and they tend to
require heavy calculations [1]. On the opposite, template
matching methods work well on objects with little visual
texture [12, 24, 15], provided that they are located on a
distinctive background. Since a significant number of ob-
jects in an industrial context are devoid of textures (such as
metallic parts that are freshly machined), template matching
tends to be more appropriate for those environments.
LINEMOD [12] is among the state-of-the-art methods for

template matching on textureless objects. It uses quantized
color gradients for the 2D version (LINE-2D) along with
surface normals for the 3D version. They use some opti-



mizations, such as a look-up table for the color gradients
and linearization of gradient response maps, to increase the
speed of their method. To detect objects under varying
poses, it requires a training phase in which a significantly
large collection of templates needs to be acquired from dif-
ferent viewpoints. In practice, full 3D models are needed to
generate these viewpoints. DTT-3D [24] improved the per-
formance and speed of LINEMOD. In their approach, they
train a SVM with positive and negative examples to learn
the discriminative regions of templates, and use only them
in the matching process. They also divide the templates of
each objects into different clusters using their own similar-
ity measure and the clustering method of [13], which repre-
sents a group of similar templates with what they refer as a
“cluster template”. On the other hand, Hashmod [15] uses a
hash function on concatenated LINEMOD descriptors (color
gradient and surface normals) to match templates. Follow-
ing a sliding window approach, they compute hashed de-
scriptor at each image locations and if the descriptor is close
enough to a descriptor in the hash table (which contains the
hashed descriptors for each object under a certain pose), it
is considered a match. [32] followed a similar approach,
but instead of using a hash function, they trained a CNN
to learn descriptors for varying poses of multiple objects.
Matching was performed with a Nearest Neighbor search.
As opposed to the previously mentioned methods, [5] used
only monocular grayscale images to retrieve the 3D pose of
known objects (they still had a 3D model of the object), as
methods based on depth sensors tend to fail for metallic ob-
jects due to their specular surfaces. They based their pose
estimation method on the 2D reprojection of control points
located on the different and manually labeled parts of the
3D models. From the 3D-2D correspondences of all control
points of the different parts, they solve the PnP problem to
estimate the 3D pose, which results in a method more robust
to occlusions.

3. Overview of the proposed method
Fig. 1 shows a workflow of template matching including

our proposed pre-processing steps, which detect and rank
objects before further processing. As it can be observed,
our method is highly modular. As such, it allows a drop-
in replacement of any module (e.g. template matcher) if
any better method becomes available. In the rest of this
Section, we describe the implementation details of each of
the modules.

3.1. Object Detection

The first step in our method is to perform object hypothe-
ses detection. We have used the state-of-the-art Single Shot
Multi Box Detector (SSD) [20] trained on the Microsoft
COCO dataset [19], which contains more than 2 million in-
stances of the 80 object categories. SSD is a convolutional

neural network framework that can take as input images re-
sized to 300 × 300 (SSD300) or 500 × 500 (SSD500) pix-
els, and outputs bounding boxes and classification scores
of every class. On proper hardware (GPU), it can run in
real-time (58 FPS for SSD300) or close to real time (23
FPS for SSD500). Objects are considered as detected when
the score of a bounding box is higher than a user-specified
threshold τSSD. In our experiments, we used the SSD500
version with a low threshold τSSD = (0.08). We preferred
SSD500 over SSD300 as it outputs more bounding boxes,
while still being sufficiently fast. An example of object de-
tection on our object database with SSD is shown in Fig. 2.
We can see in Fig. 2a that some objects are undetected. It
sometimes happens that an object will be considered as part
of the background in the presence of some clutter, i.e. when
multiple objects are near each other. This effect tend to de-
crease when near objects are removed, as shown in Fig. 2b
and Fig. 2c, where we can see that both the green and the
gold were finally detected, once there was fewer objects
around them. In a robotics grasping application where the
goal is to empty a work cell from all objects, this is usually
not a significant issue. Indeed, objects around the unde-
tected one would eventually all be grasped. Once the unde-
tected objects are the only objects remaining, the detection
threshold can be decreased to get more object hypotheses.

3.2. Object Classification

To classify objects, we used a Residual Network
(ResNet) [9, 11]. It has been recently demonstrated as a
top contender for ImageNet object classification. For in-
stance, [9] won the ILSVRC 2015 classification task. The
key idea of ResNet is that residual mappings are easier to
optimize than absolute ones. To take advantage of this fact,
ResNet adds skip connections that bypass several convolu-
tional layers using identity mappings to form shortcuts in
the network, called residual blocks. With a combination of
Batch Normalization (BN) [14] and MSR initialization [10],
stacking residual blocks significantly improves the training
efficiency by reducing the vanishing gradient degradation.
This allows learning very deep networks far more easier
than it is without residual connections.

3.2.1 Model Description

The ResNet architecture and the residual blocks are shown
in Fig. 3, where we can formulate each residual block as
follows:

xl+1 = xl + F(xl,Wl) , (1)

where xl and xl+1 are the input and output of the l-th
residual block and F is the residual mapping. As seen in
Fig. 3a, we opted for a Conv-PELU-Conv-BN residual map-
ping, where PELU stands for Parametric Exponential Lin-
ear Unit, an adaptive activation function that showed high
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Figure 2: Image sequence showing object hypotheses retrieved from our object detection module. One can notice that as the
clutter in the workspace diminishes, objects previously undetected by SSD can now be detected.

performance on several image classification task over other
alternatives [29, 25].

The overall 18-layers network, which has about 11.7 M
parameters to be learned, is shown in Fig. 3b. It takes as
input a 224 × 224 color image, and using a series of vari-
ous transformations, outputs a c-dimensional vector of class
conditional probabilities. The first convolutional layer con-
tains 64 7×7 filters, which are convolved with a 2×2 stride
and 3× 3 zero-padding. We will denote such convolutional
layer as Conv(64, 7×7, 2×2, 3×3). PELU is then applied
on the resulting feature maps of the first layer, followed by a
max pooling layer MaxPool(3× 3, 2× 2, 1× 1). The input
then passes through four twice-replicated residual blocks,
containing respectively 64, 128, 256 and 512 filters in each
of their convolutional layers. The network performs a fi-
nal PELU activation, followed by a global average pooling
AvgPool(7 × 7, 1 × 1) and linear layer 512 → c, where c
represents the number of classes. When the network dou-
bles the residual block number of filters, the input spatial
dimensionality is reduced by half. This particularity allows
the network to gradually pool spatial information into its
feature maps and extract higher-level information. For in-
stance, between ResBlock 64 and ResBlock 128, the input
spatial dimensionality is reduced from 56 × 56 to 28 × 28
pixels. However, this poses a problem for the first ResBlock
128, as we cannot apply an identity skip connection because
the input and output spatial dimensionality are different. In
this case, we use as skip connection a convolutional layer
with 1× 1 filters with a stride of 2× 2, currently known as
a type B connection [11].

3.2.2 Training Details

In spite of the recent experiments showing that fine-tuning
an ImageNet [6] pre-trained network gives good results
[26], we instead opted to trained our network from scratch.
We relied heavily on data augmentation techniques for im-
proving generalization performances. This powerful tech-

nique allows generating new images from existing datasets
to artificially grow their sizes, and thus help the network
converge at a better local optimum. During training, prior
to inputting the image to the network, we applied the five
following random transformation: color jittering (contrast,
lighting and saturation are changed by a small amount),
lighting Noise (a PCA-based noise in RGB space from
[17]), color standardization (we subtracted the mean and
divided by the standard deviation of each RGB channel to
get a mean of 0 and unit-variance), horizontal flip (images
are randomly flipped horizontally), rotation (images are ran-
domly rotated from 0 to 360 degrees). At test time, we
simply did color standardization. All transformations were
performed on the fly during training, and due to the ran-
domness of the process, the network had effectively seen a
new image at each iteration, even though our dataset only
contained 50 images per object (see section 4.1 for more in-
formation about the dataset). For training the network, we
used the hyper-parameters and the Torch implementation of
[29]. Note that this number of images is much less than in
the standard ImageNet database, which has between 700-
1300 images per class [6].

3.3. Object Ranking

This simple step takes the confidence scores returned by
the classification step as input, creating a list ordered by
their classification scores. The most likely objects to ap-
pear in the image, according to our classifier, are therefore
placed at the beginning of the list. The whole algorithm is
summarized in Algorithm 1.

3.4. Template Matching

To match object templates, we employed the LINE-2D
[12] algorithm, which uses the orientation of gradients to
perform matching. LINE-2D is considered as one of the
state-of-the-art template matching method on monocular
color images. We used its default implementation in the
OpenCV library [4], with 2 pyramid levels and 63 features.



(a) Residual block (b) Residual network

Figure 3: Residual block and network used in this paper

Algorithm 1 Object Ranking

1: procedure RANKHYPOTHESES
2: ClassScores[1..class] = [0, 0 .. 0]
3: BoundingBoxes← SSD(inputImage)
4: CroppedImages← crop(BoundingBoxes)
5: For i in CroppedImages :
6: scores[1..class]← ResNet(i)
7: For j in 1..class :
8: if scores[j] > ClassScores[j] :
9: ClassScores[j]← scores[j]

10: ClassRanking ← sort(ClassScores)

In an offline phase, we acquired, with a fixed camera, multi-
ple templates per object under varying poses instead of gen-
erating them from CAD models. We also did perform some
data augmentation to increase the number of templates per
object. In our case, we limited ourselves to scaling. For
each template in our training dataset, we added a smaller
(90%) and a bigger (110%) version. This was deemed suf-
ficient, as our experimental setup mimicked a robotic work
cell, where objects are assumed to be placed on a flat sur-
face at a fixed, known distance from the camera.

At runtime, objects are matched starting with the better
ranked objects coming from our pre-processing. If no tem-
plate from an object has a higher score than a given thresh-
old, the next object on the list is tried. This process is re-
peated until the matching score of a template is higher than
the threshold τscore. In this case, this template is then con-
sidered as matched and the template matching algorithm is
stopped. It is important to note that we used less templates
(few dozens to few hundreds) than the original implemen-
tation of [12] (few thousands). Also, we used larger image
resolutions (980x720 instead of 640x480 pixels).

4. Experiments
In this Section, we describe the experiments we per-

formed to test our method. In particular, we detail the train-
ing and testing datasets used, motivating our choice of ac-
quiring our own datasets. We then present results, in the
form of speed up (ranking of objects) and F1-score classifi-
cation results.

4.1. Datasets

4.1.1 In-house dataset

In order to validate our approach, we acquired our own
training and test datasets, much in the same way that an
operator would provide training examples during the con-
figuration procedure of a robotic work cell. This stays in
line with the concept that non-experts should be able to
program such systems in an intuitive manner. Moreover,
it complies with the situation where there are no a priori
knowledge about objects, such as 3D models. Another rea-
son for gathering our own datasets is that the majority of
image datasets available in computer vision contest repre-
sents natural objects with significant intra-class variation,
shown over complex background. These are not represen-
tative of the low intra-class variation typical of industrial
objects, which are also generally placed on surfaces with
uniform backgrounds. For our image datasets creation, we
selected 10 objects that could be present in typical indus-
trial robotic grasping applications. Care was taken to select
them so that the majority had low-texture and/or are made
of polished metal. The latter tend to have widely-varying
appearance from viewpoints, due to specular reflections.

For the acquisition of the first dataset Dgreen (used for
training purposes), our setup consisted in a fixed camera
placed over a table, on which lied a green-colored card-
board. The cardboard allowed to easily segment objects
from the background. For each object, a total of 50 im-
ages were captured, while being manually placed in random
poses (translation and in-plane rotations). The goal was to
try to capture the impact of the lighting on the appearance of
the object. For instance in Fig. 4, one can see that the metal-
lic part has one side slightly darker in appearance than the
other (image with the green background on the left), while
its surface has a more similar appearance in a different ori-
entation (right image with the fake-wood background). For
each image, ground truth images were created by our object
segmentation method, which extracted image regions lying
inside of the automatically generated bounding boxes. Af-
ter this, a manual verification was done on all ground truth
images to remove those for which the automatic segmen-
tation failed. Specific training procedures were taken for
LINE-2D and our ResNet, which are detailed in Sections
3.4 and 3.2.2, respectively.

The Dother dataset, used mainly for testing purposes,



Figure 4: Different backgrounds used for our experiments:
Dgreen (left) and test Dother (right) datasets

consisted of 20 images per object, for a total of 200 im-
ages. Like for the Dgreen dataset, objects were manually
placed in random poses. The main difference is that ob-
jects were placed on a different background, seen in Fig. 4,
namely glossy fake wood. It provided for extra challenge,
as it is a different background thanDgreen, with texture and
reflection of the wood. We have decided to use a different
background for this other dataset for a simple reason: we
wanted to estimate the impact of the change of background
on the results. If we take a real scenario of an industrial
user wanting to use many robotic grasping stations for mul-
tiple objects, it would be ideal for them to have a training
station where they acquire the necessary information and
then share this knowledge with every other grasping station.
For small industrial robots, it is very likely that each grasp-
ing station will have different backgrounds. Therefore, this
dataset will allow us to partially evaluate the performance
of our approach for such cases.

4.1.2 Pose Dataset

We have also tested our method on the Pose dataset from
[30]. It consists of 15 objects, for which half the images
are objects that are rendered on a black background, and
the other half on a cluttered background. There are around
700 images for both backgrounds, to offer a visual sam-
pling of each object at regular angle intervals. We used the
black background images along as our training dataset, as it
bears similarities with our Dgreen datasets (uniform back-
grounds). Additionally, we have randomly selected around
a hundred images from the images with a cluttered back-
ground to the training set of our ResNet to avoid overfitting.
We have also randomly selected another hundred images
from the remaining images with a cluttered background as
our test dataset. Fig. 5 shows an overview of the objects
in the dataset and an example of an object rendered on a
cluttered background.

4.2. Results

In here, we evaluated what we consider two advantages
of our approach. First, we wanted to establish the quality of
object template matching re-ranking, which directly trans-

Figure 5: Objects from the pose dataset [30]. The image on
the left shows a number of its objects, rendered on a uniform
background. On the right, an example of an object rendered
on a cluttered background.

late into a speed up of matches. This is done in Section 4.2.1
by measuring the average rank of the ground truth object in
the sorted output of our ResNet classifier. In Section 4.2.2,
we evaluate the increase in matching reliability that the re-
ranking inherently brings, as better matches are performed
on average first.

4.2.1 Average Ranking

We evaluated the ranking performance of our approach on
the 2 datasets described in sections 4.1, namely our own
acquired dataset D1 and the pose dataset D2.

We evaluated on our own dataset D1 for two scenar-
ios, which only differed slightly by the training dataset
Dtrain. For the first experiment, the training dataset con-
tained strictly images from the uniform green background,
i.e. Dtrain = Dgreen. This was done in order to con-
firm the risk of overfitting with ResNet, if proper care is not
taken when building training datasets. In the second experi-
ment, a single image Ij per object is randomly pick from the
Dother dataset containing the wood background, and added
to our training dataset , i.e. Dtrain = Dgreen + Ij , with
Ij ∈ Dother. For the first case, experiments reported an av-
erage rank of 4.05 over 10 objects on the testing dataset
Dother, which is barely above randomness (the average
rank would be 5 for an approach that uses a random order).
This simply demonstrated, unsurprisingly, the overfitting of
our ResNet, which has learned objects only when they were
on a colored and textureless background. It then cannot gen-
eralize to objects shown on the textured background. More
surprising was the fact that adding a single image from
Dother was sufficient to nearly completely overcome this
overfitting issue. Indeed, the average rank for this newly
trained network was 1.37 over Dtest = {Dother \ Ij},
very close to the results obtained directly on the training
set (1.13). It therefore implies that for a real life scenario,
full training for new background is not probably necessary,
as only a few new images suffice to generalize the learning.

On the pose dataset D2, we did not compute the average



ranking on its training dataset consisting of the images with
a black backgroundDtrain = Dblack, since we already con-
firmed the risk of overfitting with dataset D1. For the exper-
iment on this dataset, we randomly picked 100 images {Ij}
of the cluttered background Dother, which is a pretty con-
servative number considering our results with dataset D1,
and added them to our training set,Dtrain = Dblack+{Ij},
with {Ij} ∈ Dother. The results for the average rank of the
different scenarios are recapitulated in Table 1.

Training Set Avg. Rank (D1) Avg. Rank (D2)
(over 10 objects) (over 15 objects)

Dtrain 4.05 -
Dtrain + {Ij}, with {Ij} ∈ Dother 1.37 1.99

Table 1: Average ranking of objects

4.2.2 F1 Score

In this section, we present the results of evaluating the per-
formance of LINE-2D template matching, with and with-
out our pre-processing approach. We used the multi-class
F1 score defined in [27] to do the evaluation. The score can
be calculated as follows:

F1scoreµ =
2× Precisionµ × Recallµ

Precisionµ + Recallµ
(2)

Precisionµ =

∑x
i=1 tpi∑x

i=1 tpi + fpi
(3)

Recallµ =

∑x
i=1 tpi∑x

i=1 tpi + fni
(4)

These last equations are valid to measure classification
performance for classes Ci. The variables tpi, fpi, tni and
fni are respectively for true positives, false positives, true
negatives and false negatives, all for class Ci.

Scores are shown in Fig. 6 on our dataset D1 and in Fig. 7
for the pose dataset D2. These graphs show the performance
of LINE-2D for 3 different methods: our pre-processing
method, the best score and random order. For a descrip-
tion of our method, see section 3. For the best score ap-
proach, all templates are processed and the template with
the highest score is considered a match. For the random or-
der approach, a random order of objects is generated and all
the templates of that particular object are processed. It is
repeated until a template of the object gets a score higher
than the selected threshold. In these graphs, we can see that
our method clearly outperforms randomness. The effect of
using our ResNet for classification is shown for low thresh-
olds, where the score represents the classification perfor-
mance of our ResNet. We therefore show that our method

greatly mitigates the negative impact brought on by elect-
ing a bad threshold τscore. Compared to the best score ap-
proach, we can see that our method performs slightly worse
for lower thresholds, but gets slightly better performances
as the threshold is increased. The big difference between
these 2 methods is that our method performs the matching
for only a few objects while the best score approach needs
to process all of them.

5. Conclusion
In this paper, we proposed a generic and modular tem-

plate matching pre-processing method which ranks objects
by using Deep Learning for object detection and recogni-
tion. We have shown that our pre-ranking can speed up
the matching of templates while increasing its reliability (in
case of first-match search). More precisely, our method was
able to reduce the number of objects that needed to be pro-
cessed by template matching from an average of 5 objects
down to 1.37 for our own dataset and from an average of 7.5
to 1.99 for the Pose dataset. This indicates that we would
get near constant-time computation, for small to moder-
ately sized databases of objects (up to 1,000). Moreover,
F1 scores indicate that we are competitive with a brute-
force template matching approach, while being significantly
faster.

With this project, we also hope to ease the transition of
Deep Learning into industries by pre-processing a popular
method instead of proposing a black box method, which is
hard to debug when it fails. In order to do so, further testing
in real environments and with larger object sets are needed.
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Figure 6: Different performance indicators with respect to template matching thresholds on our own acquired dataset D1
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Figure 7: Different performance indicators with respect to template matching thresholds on the pose dataset D2

In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[7] D. Fox. Deep learning for tracking and intuitive physics. In
Robotics: Science and Systems Workshop, Are the Sceptics
Right? Limits and Potentials of Deep Learning in Robotics,
2016.

[8] K. Fu. Sequential methods in pattern recognition and ma-
chine learning, volume 52. Academic press, 1968.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1026–1034, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. arXiv preprint arXiv:1603.05027,
2016.

[12] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab,
P. Fua, and V. Lepetit. Gradient response maps for real-
time detection of textureless objects. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(5):876–888,
2012.

[13] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab.
Dominant orientation templates for real-time detection of

texture-less objects. In CVPR, volume 10, pages 2257–2264,
2010.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[15] W. Kehl, F. Tombari, N. Navab, S. Ilic, and V. Lepetit. Hash-
mod: A hashing method for scalable 3d object detection.
CoRR, abs/1607.06062, 2016.

[16] S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-
match: Fast affine template matching. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2331–2338, 2013.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[18] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting
robotic grasps. I. J. Robotics Res., 34(4-5):705–724, 2015.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European Conference on Com-
puter Vision, pages 740–755. Springer, 2014.

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed.
Ssd: Single shot multibox detector. arXiv preprint
arXiv:1512.02325, 2015.



[21] D. G. Lowe. Object recognition from local scale-invariant
features. In Computer vision, 1999. The proceedings of the
seventh IEEE international conference on, volume 2, pages
1150–1157. Ieee, 1999.

[22] S. Mattoccia, F. Tombari, and L. Di Stefano. Fast full-search
equivalent template matching by enhanced bounded corre-
lation. IEEE transactions on image processing, 17(4):528–
538, 2008.

[23] A. Penate-Sanchez, L. Porzi, and F. Moreno-Noguer. Match-
ability prediction for full-search template matching algo-
rithms. In 3D Vision (3DV), 2015 International Conference
on, pages 353–361. IEEE, 2015.

[24] R. Rios-Cabrera and T. Tuytelaars. Discriminatively trained
templates for 3d object detection: A real time scalable ap-
proach. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2048–2055, 2013.

[25] A. Shah, E. Kadam, H. Shah, and S. Shinde. Deep resid-
ual networks with exponential linear unit. arXiv preprint
arXiv:1604.04112, 2016.

[26] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[27] M. Sokolova and G. Lapalme. A systematic analysis of per-
formance measures for classification tasks. Information Pro-
cessing & Management, 45(4):427–437, 2009.

[28] F. Tombari, S. Mattoccia, and L. Di Stefano. Full-search-
equivalent pattern matching with incremental dissimilarity
approximations. IEEE transactions on pattern analysis and
machine intelligence, 31(1):129–141, 2009.

[29] L. Trottier, P. Giguère, and B. Chaib-draa. Parametric ex-
ponential linear unit for deep convolutional neural networks.
arXiv preprint arXiv:1605.09332, 2016.

[30] F. Viksten, P.-E. Forssén, B. Johansson, and A. Moe. Com-
parison of local image descriptors for full 6 degree-of-
freedom pose estimation. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 2779–
2786. IEEE, 2009.

[31] P. Viola and M. J. Jones. Robust real-time face detection. Int.
J. Comput. Vision, 57(2):137–154, may 2004.

[32] P. Wohlhart and V. Lepetit. Learning descriptors for object
recognition and 3d pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3109–3118, 2015.


