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Abstract

We describe a navigation and coverage system based on
unsupervised learning driven by visual input. Our objective
is to allow a robot to remain continuously moving above
a terrain of interest using visual feedback to avoid leaving
this region. As a particular application domain, we are in-
terested in doing this in open water, but the approach makes
few domain-specific assumptions. Specifically, our system
employed an unsupervised learning technique to train a k-
Nearest Neighbor classifier to distinguish between images
of different terrain types through image segmentation. A
simple random exploration strategy was used with this clas-
sifier to allow the robot to collect data while remaining con-
fined above a coral reef, without the need to maintain pose
estimates. We tested the technique in simulation, and a live
deployment was conducted in open water. During the lat-
ter, the robot successfully navigated autonomously above a
coral reef during a 20 minutes period.

1. Introduction

Underwater marine environments provides for challeng-
ing problems relevant to the robotics community. A sig-
nificant constraint from these environment is the electrical
conductivity of salt water, preventing the propagation of ra-
dio waves. This limits the bandwidth and range available
for communication with untethered vehicles. Furthermore,
GPS signals can not be used for localization. Given these
constraints, the level of autonomy required to accomplish

certain tasks such as surveying or mapping is significantly
increased, compared to land vehicles.

Our paper addresses the automated collection of visual
survey data based upon visual input. This process in ac-
complished in three steps: in the first step, a training set of
unlabeled images is collected. In the second step, a novel
clustering algorithm is employed to train a classifier to rec-
ognize the different terrain types. Finally, a simple explo-
ration strategy employing this trained classifier is used to
modify the direction of the robot.

Our experiments dealt with the specific case of visually
mapping a small coral head using unsupervised learning of
the appearance of the coral compared to its surroundings.
We used reefs for our experiments since we work with bi-
ologists who have a particular interest in such domains, and
who can provide us with accurate ground truth data for test-
ing purposes.

In this paper we will discuss the algorithmic approach
we used. We then consider its behavior using manually col-
lected data and a motion simulator. We do this since during
open water experiments, ground truth measurements are no-
toriously unreliable. In order to keep the visual observations
coherent in open water, we employed a controller to main-
tain a fixed depth as the robot navigated above the reef. Fi-
nally, we present the results from the full system in open
water experiments conducted over a reef using a robot we
have previously developed.
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2. Previous Work

2.1. Autonomous Underwater Surveying

A number of teams have worked towards automating
the process of underwater surveys. A key component of
those systems is the use of a pose estimator. For example,
in Eustice et al. [1], an efficient SLAM technique com-
bined SIFT-based visual landmark and inertial information
in a Extended Information Filter (EIF) to map the wreck of
the Titanic. In Dunbabin et al. [2], ego-motion was esti-
mated using 3D image registration and weak inertial cues.
In Corke et al. [3], two methods of underwater localiza-
tion systems were compared: one relied on acoustic sig-
nals from known underwater nodes, and the other on the
integration of scaled optical flow. A large scale (48 km2)
sonar survey was accomplished in Grasmueck et al. [4],
using a combination of inertial and acoustic localization.
These techniques offer precise localization over a reef, an
essential component of mapping task. On the other hand, a
known path covering the area to be explored must be pre-
programmed into the system by a human operator.

2.2. Image-Segmentation

Image segmentation is a process by which a digital im-
age is segmented into different regions, based on a set fea-
tures. Clustering methods such as K-means have been em-
ployed for this purpose in Chen et al. [5]. Region grow-
ing methods such as Zhu et al. [6] have been employed as
well. The closest technique to what we are presenting here
is called the Normalized-cut or N-cut segmentation algo-
rithm, introduced by Shi et al. [7].

3. Unsupervised Learning of Terrain Appear-
ance through Image Segmentation

3.1. Extension of a Previous Clustering Al-
gorithm for Image Segmentation

A key result in this paper is the extension of a previous
clustering algorithm described in Giguere et al.[8]. This
algorithm performs clustering of time-series by exploiting
continuity in the temporal dimension. It uses a classifier
to compute probability estimates. Clustering is achieved
by training this classifier to minimize an objective func-
tion. The continuity in the temporal dimension is preserved
by penalizing rapid variations of probability estimates over
time. A normalizing term is also used to avoid solutions
that are not discriminative, such as solutions where all the

samples are grouped in the same class. The training rule is:

arg min
~θ

|C|∑
c=1

∑T−1
t=1 (p(oc|~xt+1, ~θ)− p(oc|~xt, ~θ))2

var(p(oc| ~X, ~θ))2
(1)

where ~θ are the classifier parameter values, and p(oc|~x, ~θ)
is the posterior probability of samples x ∈ X being class
ci ∈ C given the classifier parameters ~θ. x is assumed to be
a set of representative features.

In image segmentation, continuity is preserved between
adjacent pixels or regions of an image. The same condition
can be incorporated in Eq. 1. If the original image is subdi-
vided into n {I1, ..., In} non-overlapping sub-images, and
we assume a four neighbor connectivity in the image, the
numerator of Eq. 1 becomes:

∆p(c) =
n−1∑
i=1

{wx(i)(p(oc|f(Isd(i)), ~θ)− p(oc|f(Ii), ~θ))2 +

wy(i)(p(oc|f(Isr(i)), ~θ)− p(oc|f(Ii), ~θ))2} (2)

where sr(i) is the index of the sub-image to the immediate
right of i, sd(i) is the index of the sub-image below i, and
f(Ii) is a feature-extraction function computed over the im-
age Ii. The differences are weighted by wx(i) and wy(i),
where:

wx(i) =
{

0 if sub-image i is on the right edge
1 otherwise

and

wy(i) =
{

0 if sub-image i is at the bottom edge
1 otherwise

This effectively removes the continuity preservation at the
image boundary. The training rule becomes:

arg min
~θ

|C|∑
c=1

∆p(c)

var(p(oc| ~X, ~θ))2
(3)

Eq. 2 demonstrates that the two dimensional problem
can be solved as the summation of two, one-dimensional
problems. The first one dimensional problem is repre-
sented by a sequence of probability estimates taken from
sub-images in left-to-right, top-to-bottom order. The sec-
ond sequence is created by taking the probability estimates
in top-to-bottom, left-to-right order. Fig. 1 shows this or-
dering for an image divided in 9 sub-images.

This is in contrast with a Markov random field (MRF),
where the 2D problem cannot be transformed into a 1D
problem. Recalling that for a MRF, the probability esti-
mates for a given location depend on the estimates of a set of
neighboring locations. In our case, this dependency is taken
care by the process of the cost minimization; the probabil-
ity estimates themselves are independent of the neighboring
location’s estimates.



Figure 1. a) An image is divided into 3x3 sub-
images. Each square represents a probabil-
ity estimate computed from a classifier, using
extracted features. Arrows indicate neigh-
boring differences used in the objective func-
tion to preserve image continuity. b) The
problem can be re-framed into a 1-D continu-
ity preservation, as shown in b).

3.2. k-Nearest Neighbor Classifier

A k-Nearest Neighbor classifier is an instance-based
classifier used in pattern recognition. A sample x is clas-
sified by comparing it to its k-nearest neighbor in a labelled
set ~X . The distance metric used in feature space is gen-
erally the Euclidean distance, although others can be used.
One advantage of using such classifier is that there is no
assumptions made about the shape of the distributions, con-
trary to other approaches such as mixture of Gaussians clas-
sifier where the distributions are assumed to be normal.

The probability that a given sample x belongs to class c
is computed as:

p(c|x, ~θ) =
1
k

k∑
i=1

hck (4)

where {hc1, ..., hck} ∈ ~θ are the k-closest samples in fea-
ture space to x, and 0 ≤ hck ≤ 1 is the probability that
sample k belongs to class c.

It has been shown that this classification method has at
most twice the Bayes probability of error [9] using k = 1
neighbor, and that the probability of error asymptotically
approaches the Bayes error [10], as k and the number of
samples in the training set goes to infinity.

3.3. Using the k-Nearest Neighbor Classifier

As mentioned in Section 3.1, our clustering algorithm
works by finding the classifier parameter values by mini-
mizing a specific cost function. In this paper, we employed
a k-nearest neighbor classifier. A significant conceptual
difference exists between the normal use of the k-nearest
neighbor classifier and our use. Normally, the set X is la-
belled and the classifier is strictly concerned about labelling
sample q outside of X . In our case, the set X is unlabeled,
and the probabilities are computed for x ∈ X using the
same set X .

3.4. Image Segmentation on Coral Reef Pic-
ture

Given images containing a set of terrains which are visu-
ally different, it is possible to learn their individual appear-
ance by performing image segmentation [11]. This image
should contain a limited set of terrains, and they must be
different in appearance as well. Images of coral reefs gener-
ally shows these properties, their surrounding environment
being covered with sand. Therefore, image segmentation
technique should perform well for this type of environment.

We tested the image segmentation algorithm on a pre-
existing 6,500 by 6,500 pixels image of a coral reef, shown
in Fig. 2 a). This image was the results of mosaicking pic-
tures taken manually with an underwater camera by a team
of biologists (K. Turgeon, unpublished data). The pictured
reef had a sufficiently large band of sand surrounding it to
isolate it from other reefs. The sand-covered area was man-
ually expanded by copy-paste, since it was incomplete in the
original image. We used the following four features in the
image segmentation and classification processes: hue, satu-
ration and value from the HSV representation of the image,
and the output of a band-pass filter having lower and up-
per cutoff frequencies of 3 and 20 cycles per sub-window,
respectively.

Training a classifier this way is a key component of the
exploration strategy described in Section 4. This train-
ing algorithm provided the robot with the capability to au-
tonomously identify the surface type below.

4. Autonomous Reef Exploration Strategy

We developed an exploration strategy for an underwater
robot to confine its motion above a coral reef. This strategy
was adapted from earlier work on surface texture following
for a blind differential-drive robot in Giguere et al. [12].
It was assumed that a robot using this strategy was capable
of executing two simple locomotion commands in a stable
plane: forward motion, and yawing at a rate of θ̇.



Figure 2. 6,500 x 6,500 pixels image of a
coral reef in a). Probability estimates for
100x100 pixels sub-images computed with the
k-Nearest Neighbor classifier trained using
Eq. 3 in b). Darker regions are associated
with the presence of coral.

The primary goal of this strategy was not to provide good
coverage of the reef, but rather to demonstrate the practical-
ity of our unsupervised learning algorithm in the context of
autonomous robotics. This strategy can be loosely defined
as being a form of visual servoing, since it relied primarily
on vision to control the position of the robot.

4.1. Phase 1: Collecting the Training Data
Set

A single large image of the coral reef and its environ-
ment is generally not available before a trial to perform im-

age segmentation. Instead, the segmentation process had to
be done over a collection of partial images of the reef and
its surrounding environment. These images were collected
by an operator or the robot, and were not labeled. Some
care had to taken to ensure that both environment (sand and
coral in our case) were represented in comparable amount
in this training set. If not, the over-representation of one ter-
rain might force the training algorithm to include part of it
into the other terrains. This in turn will result in decreased
classification performances.

4.2. Phase 2: Training the Visual Classifier

The segmentation described in Section 3.4 was per-
formed over a meta-image. It was built by concatenating
the images of the training set. The weight vectors wx(i)
and wy(i) of Eq. 2 associated with the boundaries between
the images were set to zero, thus removing the continuity
preservation for those locations. The result of the segmen-
tation was a trained classifier that was used to identify the
terrain.

4.3. Phase 3: Exploring the Reef

At each iteration, the downward looking camera took
snapshots of the surface below. A state machine controlled
the motion of the robot, and transitions between states were
triggered by changes in the image classification. The state
machine had three states:

• GoStraight

• SeekCoral

• CounterTurn

The GoStraight state sent a constant forward velocity
command to the robot. The state machine transitioned from
GoStraight to SeekCoral when the classification of the
camera image went from coral to sand.

The SeekCoral state sent a yawing command to the
robot. The yawing rate command decreased over time, gen-
erating a spiral-shaped trajectory. Once an image of the
downward looking camera was classified as coral, the state
machine transitioned from SeekCoral to CounterTurn.

During the CounterTurn state, a yawing command in
the opposite direction was sent to the robot. This command
lasted for a random duration, emulating a random-walk type
strategy of exploration. The state went back toGoStraight
once this yawing command was completed. Fig. 3 presents
these steps for a complete cycle of the state machine.

The yawing directions of the SeekCoral state was re-
versed for every ten cycles of the state machine. This was
done to avoid tangling a fiber optic tether, if attached to the
robot. It also provided better coverage of the reef.



Figure 3. Strategy used to confine the robot
above a coral reef. a) The robot, while in
GoStraight state, classified the image of the
downward looking camera as sand. b) The
robot transitioned to the SeekCoral state, and
turns (yaws) in the right-hand direction, seek-
ing coral. c) The coral reef is detected. d)
The robot changed state to CounterTurn, and
turns (yaws) in the opposite direction for a
small random duration, heading towards a
different region of the reef.

5. Simulation

5.1. Description

We used a simulation to assess the viability of the strat-
egy. The simulation computed the motion of the robot and
generated an appropriate image for the camera. The sim-
ulated robot dynamics were simplified by considering it
massless. The robot and accepted two motion commands:
forward motion and yawing rotation command θ̇. The sim-
ulation restricted the motion in a 2D plane, corresponding
to a fixed depth above a submerged coral reef. It did not
take into account hydrodynamic forces or water currents,
both of which require computing-intensive fluid dynamics
simulation.

The image scale was set to 40 pixels/m. The simulated
camera image was generated by selecting the area of the
complete coral reef image corresponding to the simulated x
and y locations of the robot, and rotated to match the robot
orientation θ.

5.2. Results

A k-Nearest Neighbor classifier was trained using the
technique described in Section 3.4 with 40 unlabeled sub-
images selected from the original image shown in Fig. 2
a). About 40 percent of the images contained either sand
or coral, and 20 percent contained a mixture of both. This
emulated phase one in Section 4. The exploration strategy
was then run for a number of iterations. The whole process
was repeated ten times, with success. Fig. 4 shows one par-
ticular run of the simulation, with 4000 iterations. As can
be seen from the figure, the robot successfully covered most
of the reef, and managed to return to the reef every time.

6. Coral Reef Field Trials

6.1. Description of the Robot

The vehicle used in the experiments, Ramius, (seen in
Fig. 5) is a hexapod robot specifically designed for am-
phibious locomotion. It is the direct descendant of an ear-
lier prototype called Aqua [13], itself adapted from the
successful RHex platform [14]. The six motors are fitted
with flippers, providing thrust underwater in five degrees
of freedom. Two PC/104 single-board computers, one a
300 MHz Pentium-equivalent running QNX and the other
a 1400 MHz Pentium-M running GNU/Linux, are used for
on-board computation. Communication to a remote opera-
tor laptop is done over Firewire transmitted via a fiber op-
tic tether. This family of robots has been used extensively
in field trials, notably in visual-servoing tasks described in
Sattar et al. [15],[16].

Figure 5. Picture of the swimming robot
Ramius while being deployed in Barbados.

A proportional-derivative linear controller [17] in the
Stability Augmentation System (SAS) maintained the pitch



Figure 4. Path of the robot taken during one simulation run of 4000 iterations, overlaid over the coral
reef image used to generate the simulated camera frames.

and roll angles of the robot. The SAS modified the swim-
ming pattern of the flippers to generate proper pitch or roll
correcting moments. The yaw angle was left uncontrolled,
so the coral reef exploration strategy presented in Section 4
could modify the heading of the vehicle. A simple autopi-
lot maintained the depth of the robot at a constant value of
4± 0.2 m, using small pitching corrections executed by the
SAS.

6.2. Experimental Setup

We evaluated the performance of this algorithm and ap-
proach over a coral reef in Barbados. The experiment in-
volved deploying the robot using a team comprising an
operator, divers underwater to assess the vehicle’s perfor-
mance, and support staff. The selected coral reef had a
rough circular shape, with a diameter of approximately 5 m.
A laptop on the surface, connected via a fiber optic tether,
provided the user interface to the robot and allowed its be-
havior to be monitored and adjusted. While the robot’s on-
board systems controlled many aspects of the robot’s be-
havior, the particular algorithm described in this paper in
Section 4 (including the image processing) was executed
off-board on the laptop. Vehicle control commands were

then returned via the fibre-optic link.
Training data for the controller was collected by having

a scuba diver manually move the robot in the region of in-
terest. This region contained both sand and coral. During
this training interval, the downward looking camera on the
robot captured a training sequence of 10 images, at a rate
of one image every 5 seconds. Note that the diver was not
aware when images were being taken, so that it could not
influence their choice. The training algorithm described in
Section 3.4 used this unlabeled sequence of images from the
different regions and generated a trained k-Nearest Neigh-
bor classifier.

Fig. 7 shows one such training image sequence and
the classification results. Following the training, the diver
placed the robot above the coral reef, and the exploration
algorithm in Section 4 was enabled by a human operator at
the surface.

6.3. Trial Results

Several failed attempts were executed before the system
was finally able to perform as intended. First, the initial
turning radius had to be increased to alleviate the impact of
sideslip, a lateral sliding motion, during turning maneuvers.



Without the increase, the robot motion during rotation was
such that it would rotate around an axis close to the center of
the downward-looking camera field of view. This resulted
in capturing the same but rotated image, and the robot had
difficulties finding the coral reef again. Another issue had
to do with the captured training sequence, which often did
not contain enough images from a particular surface, or con-
tained part of the diver. This confused the training algorithm
in Section 3.4, resulting in poor classification of images and
poor performance of the exploration strategy.

In the single successful trial, the robot managed to swim
autonomously above the coral reef for a period of 20 min-
utes. A video sequence of the experiment was recorded,
and a still frame is shown in Fig. 6. A sequence of states
recorded during the trial is shown in Fig. 8 a), along with
the sent yaw command in Fig. 8 b).

Figure 6. Still frame extracted from video
taken during the experiment. Coral reef is
the the darker area at the bottom. Significant
presence of silt in the water diffused the light,
blurring images during the experiment.

7. Conclusion and Future Work

In this paper, we presented an novel extension to a clus-
tering algorithm allowing image segmentation. We success-
fully applied this technique to images of coral reefs and
sand, obtaining classifiers that segmented the image along
terrain types. We devised a simple random exploration strat-
egy that employed this classifier. This enabled autonomous
coral reef exploration requiring minimal human interven-
tion. Simulation results confirmed the viability of the strat-
egy, and field trials over a live coral reef in open waters
yielded one successful autonomous run lasting over 20 min-
utes. We feel confident that more successful trials will be
achieved in the next round of experiments. This stems from

Figure 7. Meta-image built from the training
data set used during the successful trial in
Barbados in a). Classifier probability esti-
mates (shown as grey-scale) after training,
for corresponding sub-images in b).

Figure 8. State sequence in a) during part of
the successful trial. Yaw commands sent to
the robot, in b). A full 100 percent command
translates into a yawing rate of approximately
30 O/sec.

the exceptionally good behavior of the system during the
successful trial.

The experience gained in the field trials pointed to cer-
tain deficiencies. In particular, we plan to increase the ro-
bustness of the detection by employing better visual fea-
tures. We are also looking at reducing the time needed for
the robot to find coral, by including weak inertial cues to
add about-turns behaviors in the system.



During the trials, the robot was connected to an external
laptop via a fiber optic tether. While this was not generally
necessary to operate the vehicle, it allowed us to make fi-
nal adjustments to the exploration strategy. In view of these
successful results, we are planning to fully embed all as-
pects of the control software in the on-board systems. This
will make running these experiments much easier, and pro-
vide in the future for an intelligent autonomous platform
ready to be deployed.

Finally, by also capturing stereo images and inertial in-
formation during the exploration, we are interested in aug-
menting our representation with a full 3-D model (com-
puted off-line).
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