
Autonomous Robots manuscript No.
(will be inserted by the editor)

Clustering Sensor Data for Autonomous Terrain
Identification using Time-Dependency

Philippe Giguere · Gregory Dudek

Received: date / Accepted: date

Abstract In this paper we are interested in autono-
mous vehicles that can automatically develop terrain

classifiers without human interaction or feedback. A key

issue is the clustering of time-series data collected by
the sensors of a ground-based vehicle moving over sev-

eral terrain surfaces (e.g. concrete or soil). In this con-

text, we present a novel off-line windowless clustering
algorithm that exploits time-dependency between sam-

ples. In terrain coverage, sets of sensory measurements

are returned that are spatially, and hence temporally,

correlated. Our algorithm works by finding a set of pa-
rameter values for a user-specified classifier that min-

imize a cost function. This cost function is related to

the change in classifier probability estimates over time.
The main advantage over other existing methods is its

ability to cluster data for fast-switching systems that

either have high process or observation noise, or com-
plex distributions that cannot be properly characterized

within the time interval that the system stays in a single

state. The algorithm was evaluated using three differ-

ent classifiers (linear separator, mixture of Gaussians
and k -Nearest Neighbor), over both synthetic data sets

and two different mobile robotic platforms, with suc-

cess. Comparisons are provided against a window-based
algorithm and against a hidden Markov model trained

with Expectation-Maximization, with positive results.

Keywords Terrain Identification · Unsupervised

Learning · Clustering · Mobile Robots · Legged
Robots · Machine Learning · Hidden Markov Model

P. Giguere · G. Dudek
E-mail: {philg,dudek}@cim.mcgill.ca
Centre for Intelligent Machines

McGill University

Montreal, Quebec, Canada H3A 2A7

1 Introduction

Identifying the local terrain properties has recently be-
come a problem of increasing interest and relevance

for unmanned ground vehicles. This has been proposed

with both non-contact sensors, as well as using tactile

feedback. Being able to identify terrain types is impor-
tant, its properties directly affecting the navigability,

odometry and localization performance of such vehi-

cles. As part of our research, we are interested in us-
ing simple sensors such as accelerometers and actuator

feedback information to help discover and identify ter-

rain type autonomously. Real terrains can vary widely
–contact forces vary also with locomotion strategies (or

gait, for a legged vehicle)– making the sensors response

difficult to model and predict analytically. Therefore,

this problem seems well suited to statistical data-driven
approaches.

We approach the problem using unsupervised learn-
ing (clustering) of samples which represent sequences

of consecutive measurement from the vehicle as it trav-

els, perhaps moving from one terrain type to another.

Since those signals are generated through a physical
system interacting with a continuous or piece-wise con-

tinuous terrain, time-dependency will be present be-

tween consecutive samples. The clustering algorithm we
are proposing explicitly exploits this time-dependency.

It is a single-stage batch method that finds the global

description of a cluster, contrary to moving time-window
methods that detects transition through a local descrip-

tion of the distributions estimated within this moving

window. The algorithm has been developed for noisy

systems (i.e., systems with overlapping clusters), as well
as for systems that change state frequently (e.g., a ve-

hicle traversing different terrain types in quick succes-

sion).

2

The paper is organized as follow. In Section 2, we

present an overview of related work on the subject,
pointing out some limitations with these methods. Our

algorithm is then described in Section 3, with theo-

retical justifications. In Section 4.1, Section 4.2 and
Section 4.3, we evaluate the performance of the algo-

rithm on synthetic data with a linear separator classi-

fier, a mixture of Gaussians classifier and a k -Nearest
Neighbor classifier, respectively. We compare our algo-

rithm against a window-based method in Section 4.4

and against a hidden Markov model trained with the

Expectation-Maximization algorithm in Section 4.5. We
then show in Section 5 how applying this method on

data collected using two different mobile robots enables

robust terrain discovery and identification. This is fol-
lowed by Section 6, where we further point at differ-

ences between this algorithm and others, and discuss

some issues encountered using our method.

2 Related Work

Other techniques have been developed to exploit time

dependencies for segmenting time-series or clustering

data points. An approximate probabilistic data seg-
mentation algorithm (Pawelzik et al. 1996) is proposed

on the assumption that the probability of having a

transition within a sub-sequence is negligible, given a
low switching rate between generating modes. Others

(Kohlmorgen et al. 2000) present a method that uses

mixture coefficients to analyze time-series generated by
drifting or switching dynamics. In a similar fashion to

the work we present here, these coefficients are found

by minimizing an objective function that includes a

squared difference between temporally adjacent mix-
ture coefficients. The main argument behind their choice

is that “solutions with a simple temporal structure are

more likely than those with frequent change”, an as-
sumption we also exploit. Another segmentation method

(Kohlmorgen & Lemm 2001) is presented for time se-

ries. It is based again on minimizing a cost function
that relates to the number of segments in the time se-

ries (hence minimizing the number of transitions), as

well as minimizing the representation error of the pro-

totype probability density function (pdf) of those seg-
ments. The distance metric used to compare pdf s is

based on a L2-Norm. Their simplified cost function has

been designed to be computed efficiently using dynamic
programming. These two techniques require some pa-

rameters to be chosen by the user, something we tried

to avoid in our technique.

An off-line and on-line algorithm to segment time-

series of sensor data (Lenser & Veloso 2003) can be

used to detect changes in lighting conditions for a mo-

bile robot. The algorithm works by splitting the data
into non-overlapping windows of fixed size, and then

populating a tree structure such that similar regions

are stored close to each other in the tree, forcing them
to have common ancestor nodes. The tree is built leaf

by leaf, resulting in an agglomerative hierarchical clus-

tering. If the number of clusters is known, information
in the tree structure can be used to group the data

together and form clusters. The distance metric used

to compare regions correspond to the absolute distance

needed to move points from one distribution to match
the other distributions. However, this technique is sen-

sitive to the presence of transitions in the data set, and

cannot be used for systems that change state frequently.

Several techniques have been developed for terrain

identification using a vehicle (Weiss et al. 2006; Weiss
et al. 2007; Brooks & Iagnemma 2005; Dupont et al.

2008; Sadhukan & Moore 2003). Features are extracted

from acceleration measurements (i.e., frequency spec-

trum of acceleration, multiple moments, threshold cross-
ings, etc) and supervised learning is used to train a clas-

sifier, such as a support vector machine (Weiss et al.

2006) or a probabilistic neural network (Dupont et al.
2008). In some other work (Lenser & Veloso 2004) a

non-parametric classifier for time-series is trained to

identify states of a legged robot interacting with its
environment. These techniques require part of the data

to be manually labelled, and thus cannot be employed

in the current context of unsupervised learning.

2.1 Limitations of Window-Based Clustering

Algorithms

As long as a system is switching infrequently between
states and the distributions are well separated, there

will be enough data points within a window of time to

properly describe these distributions. Algorithms such
as Lenser & Veloso (2003) or Kohlmorgen & Lemm

(2001) will be able to find a suitable pdf to describe

the distributions or to detect changes, and the cluster-

ing or segmentation will be successful.

As the system switches state more frequently how-

ever, the maximum allowable size for a window will be
reduced. This has to be done in order to keep the proba-

bility of having transitions present in a window reason-

ably low. The presence of a transition in a time-window

makes it confusing for these algorithms, since the win-
dow should be associated in theory with two clusters.

With this in mind, two particular cases become diffi-

cult:

3

– Complex distribution that cannot be characterized

within a small window size. In this case, there is
enough information within a time-window to clas-

sify samples, but if the distributions are unknown,

there is not enough information to decide whether
the samples belong to the same cluster.

– Noisy systems with closely-spaced distribution, re-

sulting in significant overlap. The difficulty in prop-
erly clustering data from two normally distributed

classes with means µa, µb, and identical standard

deviation σa = σb is related to the relative distance
|µa−µb|

σa

(Srebro et al. 2005).

3 Approach

The proposed clustering algorithm works as follow. Given

that we have:

– a data set X of T time-samples of feature vectors

xi, X = {x1,x2, ...,xT } generated by a Markovian
process with Nc states, with probability of exiting

any state less than 50 percent,

– representative sampled features xi ∈ X, implying
that locally, the distance between two samples is

related to the probability that they belong to the

same class,
– a classifier with parameters θ used to estimate the

probability p(ci|xt,θ) that sample xt belongs to class

ci ⊂ C, |C| = Nc,

– a classifier exploiting distance between data points
xi ∈ X to compute probability estimates,

– a set of parameters θ that is able to classify the data

set X reasonably well.

The algorithm searches for the parameters θ that

minimize a cost function:

arg min
θ

Nc
∑

i=1

∑T−1
t=1 (p(ci|xt+1,θ) − p(ci|xt,θ))2

var(p(ci|X,θ))2
(1)

In our context of terrain identification, X represents a

time-series of vehicle sensory information affected by
the terrain e.g., acceleration measurements.

Roughly speaking, the cost in Eq. 1 tries to strike

a balance between minimizing variations of classifier
posterior probabilities over time, while simultaneously

maintaining a wide distribution of posterior probabili-

ties (var(p(ci|X,θ))). This is normalized by the num-
ber of samples in each class (itself approximated as

var(p(ci|X,θ)), thus preventing the algorithm from clus-

tering all samples into a single class. A more thorough

derivation of this cost function is provided in Section
3.1.

An important feature of this algorithm is that it can

employ either parametric or non-parametric classifiers.

For example, if two classes can be modelled with nor-

mal distributions, a linear separator is sufficient. On
the other hand, a four-class problem requires a more

complex classifier, such as mixture of Gaussians. If the

shape of the distributions is unknown, k -Nearest Neigh-
bor can be used.

3.1 Derivation of the Cost Function using Fisher

Linear Discriminant

Let us assume that two classes, ca and cb, are normally

distributed with means µa and µb with identical vari-
ance σa = σb. In Linear Discriminant Analysis (LDA),

the data is projected on a vector ω that maximizes the

Fisher criterion J(ω):

J(ω) =
(µaω − µbω)2

σ2
aω + σ2

bω

(2)

with µaω, µbω, σaω, σbω being the means and variances

of the data after projection onto ω. Data labels are

required in order to compute Eq. 2. For an unlabeled
data set X containing two normally distributed classes

ca and cb, Eq. 2 can be approximated if the probabil-

ity that consecutive samples belong to the same class
is greater than 0.5. The within-class variance Cvar pro-

jected on ω is approximated by the average squared dif-

ference between consecutive time samples xt projected

on ω :

Cvar(ω,X) =
1

T − 1

T−1
∑

t=0

(ω · xt+1 − ω · xt)
2 (3)

Assuming equal prior probabilities, its expected value

is:

E{Cvar(ω,X)} = σ2
aω + σ2

bω + (µaω − µbω)2Ptrans (4)

The between-class variance Cdist can be estimated by

the variance of the projected data. Provided that classes
have equal prior probabilities,

E{Cdist(ω,X)} = E{var(ω · X)} =

(µaω − µbω)2

4
+

σ2
aω + σ2

bω

2
(5)

Dividing Eq. 5 by Eq. 4 and letting the probability of
a transition Ptrans → 0, we get:

E{
Cdist(ω,X)

Cvar(ω,X)
} →

1

2
+

(µaω − µbω)2

4(σ2
aω + σ2

bω)
(6)

Minimizing the inverse of Eq. 6 corresponds to finding

the Fisher criterion J(ω):

arg min
ω

Cvar(ω,X)

Cdist(ω,X)
= arg max

ω

Cdist(ω,X)

Cvar(ω,X)

≈ arg max
ω

J(ω) (7)

4

with

Cvar(ω,X)

Cdist(ω,X)
=

∑T−1
t=0 (ω · xt+1 − ω · xt)

2

var(ω · X)
(8)

The probability that sample xt belongs to class c,
for a linear separator classifier, can be expressed by a

sigmoid function:

p(c|xt) =
1

1 + e−md
(9)

where d = ω ·xt + b is the distance between xt and the

boundary decision, b a constant and m is a parameter
that determines the ”sharpness” of the sigmoid. Given a

sufficiently small m corresponding to significant overlap

of the clusters, most of the data will lie within the region

d ≪ 1
m

. Eq. 9 can then be approximated by:

p(c|xt) ≈ 0.5 +
d

m
(10)

and Eq. 8 approximated as:

Cvar(ω)

Cdist(ω)
≈

∑T−1
t=0 (p(c|xt+1,θ) − p(c|xt,θ))2

var(p(c|X,θ))
(11)

Where θ correspond to the linear separator parameters.

Eq. 11 is then normalized by p(ca|X,θ)p(cb|X,θ) to

reflect the probability of leaving a given state ca, cb ∈ c.
This normalizing factor can be approximated by:

var(p(c|X,θ)) (12)

and the final cost function is:

E(X,θ) =

∑T−1
t=0 (p(c|xt+1,θ) − p(c|xt,θ))2

var(p(c|X,θ))2
(13)

3.2 Optimization: Simulated Annealing

The landscape of the cost function being unknown, sim-
ulated annealing was used to find the classifier param-

eters θ that minimize E(X,θ) described in Eq. 13. Al-

though very slow, it is necessary due to the presence
of local minima. For classifiers with few (less than 20)

parameters, one parameter was randomly modified at

each step. For k -Nearest Neighbor classifiers, modifi-
cations were made to a small number of points and

a random number of their respective neighbors. This

strategy improved the speed of convergence. The cool-

ing schedule was manually tuned, with longer schedules
for more complex problems. Three random restart runs

were used, to avoid being trapped in a deep local min-

imum.

4 Testing the Algorithm on Synthetic Data Sets

The algorithm was first evaluated using three differ-

ent classifiers (linear separator, mixture of Gaussians,

and k -Nearest Neighbor) on synthetic data sets. This
was done to demonstrate the range of cases that can

be handled, as our real robot data sets cannot cover

some of those cases (e.g., complex-shaped distributions
in Section 4.3.5). These sets were generated by sampling

a distribution s times (our so-called segment length),

then switching to the next distribution and drawing
s samples again. This segment length determined the

amount of temporal coherence present in the data. This

process was repeated until a desired sequence length

was reached. Fig. 1(b) shows a sequence of 12 samples
drawn from two Gaussian distributions, with a segment

of length 3. For the test cases presented in this section,

the segment lengths were relatively short (between 3
and 5), to demonstrate how the algorithm is capable of

handling signals generated from a system that changes

state frequently. Results for these synthetic distribu-
tions are shown in the following subsections.

4.1 Linear Separator Classifier with Two Gaussian

Distributions

For linear separators, data was drawn from two closely-

spaced two-dimensional Gaussian distributions (shown

in Fig. 1(a)) with identical standard deviation σx{1,2} =

0.863, σy{1,2} = 1, and the distance between the means
was 1. This simulated cases where features are extremely

noisy. Without labels, the combination of the distri-

butions is radially symmetric (Fig. 1(b)). The optimal
Bayes classification rate for a single data point for these

distributions was 70.7 percent, an indication of the diffi-

culty of the problem. The linear separator was trained
using Eq. 1, with probabilities computed from Eq. 9.

A value of m = 3.0 was chosen, although empirically

results were similar for a wide range of m values. 100

time sequences of 102 samples were randomly gener-
ated. The average classification success rate was 68.5

percent, which is close to the Bayes classification rate.

Fig. 2 shows these results in more detail. Fig. 3 shows
an example of the classifier posterior probability over

time after cost minimization.

The performance of this classifier would improve if
we took into account the classification of the previous

sample. However the immediate goal here was to see

if the distributions found by the clustering algorithm

were close to the ground truth. Using the classification
success rate for a single sample was a simple metric

that enables us to quantify this closeness. The same

reasoning applies to the subsequent test cases.

5

(a) Individual distributions (b) Combined Distributions

Fig. 1 Contour plot 1(a) of the two normal distributions used in
testing the algorithm with a linear separator. Their combination
1(b) is resembles a single, radially-symmetric Gaussian distribu-

tion. A synthetic sequence of 12 data samples with segment length
of 3 is also shown in 1(b), with a line drawn between consecutive
samples.

a) Best Result (80.4%)

Feature 1

F
ea

tu
re

 2

b) Worst Result (51.0%)

Feature 1

F
ea

tu
re

 2

50 55 60 65 70 75 80 85
0

5

10

Success Rate (%)

c)

Fig. 2 Results of clustering method applied on a data set of 102
points, drawn from the two normal distributions shown in Fig. 1.
The best a) and worst b) result of clustering are shown. Symbols
indicate data ground truth. The thick line is the linear separator

found after training. c) shows the distribution of classification
success rate after clustering, over 100 trials. The standard devia-
tion for the distribution of the rates was 6.8 percent.

4.2 Mixture of Gaussians Classifier with Three

Gaussian Distributions

For a mixture of Gaussians classifiers, data was drawn
from three normal distributions in two dimensions (see

Fig. 4). These three distributions had covariance equal

to:

σ1 =

(

.5 0
0 1

)

, σ2 =

(

.8 .1

.1 .6

)

, σ3 =

(

.8 −.1
−.1 .6

)

The distribution centers were located at a distance of

0.95 from the (0, 0) location and at 0, 120 and 240 deg
angles. The classifier itself had 9 free parameters: 6 for

the two-dimensional Gaussian locations, and 3 for the

standard deviation (i.e., the Gaussians were radially-

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Time Sample

La
be

l/P
ro

ba
bi

lit
y

Fig. 3 Classifier posterior probability over time for the two
classes drawn from Gaussians distributions depicted in Fig. 1(a),

after optimization (dashed line). Ground truth is shown as solid
line. The segment length is 3. The first 50 samples are shown.

symmetric). The optimal Bayes classification rate for
these distributions is 74 percent. 100 time sequences of

207 samples with segment length of 3 were generated.

The average classification rate was 69.2 percent, with a
standard deviation of 9.3 percent.

(a) Individual distribu-
tions

(b) Combined Distribu-
tions

Fig. 4 Contour plot of the three normal distributions 4(a) and
their sum 4(b) used to test the algorithm with a mixture of Gaus-

sians classifier.

4.3 K -Nearest Neighbor Classifier with Uniform

Distributions

A k -Nearest Neighbor (Cover & Hart 1967) classifier

has the significant advantage of being able to repre-

sent complex distributions. A major drawback associ-
ated with this classifier in our case is the large number

of parameters (proportional to the number of points in

the data set) that needs to be trained. This results in
lengthy computation time in order to find the parame-

ters that minimizes the cost function. Five different test

cases (few data points, unequal number of samples per

class, significantly overlapping distributions, six-class
distributions and complex-shaped distributions) were

designed to test the performance of the algorithm us-

ing this classifier.

6

4.3.1 Few Data Points

For each test sequence, only 36 samples were drawn

from 3 square, non-overlapping uniform distributions,

with a segment length of 3. The classifier used k = 10
neighbors with a Gaussian kernel σ = 0.8. The mean

classification success rate over 100 trials was 93.7 per-

cent. Fig. 5 shows these results in more detail.

−1 0 1
−1

−0.5

0

0.5

1
a) Best Result (100.0%)

−1 0 1
−1

−0.5

0

0.5

1
b) Worst Result (50.0%)

50 60 70 80 90 100
0

20

40

Success Rate (%)

c)

Fig. 5 Results of clustering method applied on a data set of

36 points drawn from three equal distributions. The best a) and
worst b) results of clustering are shown, with distributions shown
as background grey boxes. Symbols indicate clustering label as-
signment. c) shows the histogram of success rates over 100 trials.
The standard deviation for the distribution of the rates was 6.1
percent.

4.3.2 Unequal Number of Samples per Class

Three uniform rectangular distributions of equal den-
sity, but different area were sampled with a segment

length is 3. In total, 84 samples were drawn from the

smallest, 168 from the medium and 252 from the largest
distribution. The classifier used k = 20 neighbors with a

Gaussian kernel σ = 0.8. The average classification suc-

cess rate over 80 trials was 87.8 percent. Fig. 6 shows
these results in more detail.

4.3.3 Overlapping Distributions

Two distributions with significant overlapping (40 per-

cent) were used to generate the data. The overlapping

regions were selected so non-overlapping regions within
a class would be of different sizes. The classifier used

k = 20 neighbors with a Gaussian kernel σ = 0.8.

57 test sequences of 504 points, with a segment length

of 3 were randomly generated. The average classifica-
tion success rate was 76.3 percent, not too far from the

Bayes classification rate of 80 percent. Detailed results

are shown in Fig. 7.

−1 0 1 2
−1

−0.5

0

0.5

1
a) Best Result (97.0%)

−1 0 1 2
−1

−0.5

0

0.5

1
b) Worst Result (41.1%)

40 50 60 70 80 90 100
0

20

40

Success Rate (%)

c)

Fig. 6 Results of clustering method applied on a data set of 504
points, drawn from three distributions of different sizes. The best
a) and worst b) results of clustering are shown, with distributions

shown as background grey boxes. Symbols indicate clustering la-
bel assignment. c) shows the histogram of success rates over 80
trials. The standard deviation for the distribution of the rates

was 11.6 percent.

0 2 4
−3

−2

−1

0

1

2
a) Best Result (83.3%)

0 2 4
−3

−2

−1

0

1

2
b) Worst Result (56.0%)

55 60 65 70 75 80 85
0

5

10

Success Rate (%)

c)

Fig. 7 Results of clustering method applied on a data set of 504

points, drawn from two overlapping uniform rectangular distri-
butions. The best a) and worst b) result of clustering are shown.
c) shows the distribution of success rate over 57 trials. The stan-

dard deviation for the distribution of the rates was 6.4 percent.
The extent of each class distribution is shown as grey boxes, and
the overlapping section is the darker grey box. Symbols indicate
clustering label assignment.

4.3.4 Six-Classes Distributions

Six square uniform distributions were used in these

tests. The classifier used k = 10 neighbors with a Gaus-

sian kernel σ = 0.8. 100 test sequences of 306 points,
with a segment length of 3 were randomly generated,

with detailed results shown in Fig. 8. The average clas-

sification rate was 90.0 percent.

7

−1 0 1 2
−1

−0.5

0

0.5

1
a) Best Result (94.8%)

−1 0 1 2
−1

−0.5

0

0.5

1
b) Worst Result (55.9%)

50 60 70 80 90 100
0

20

40

Success Rate (%)

c)

Fig. 8 Clustering results for a data set of 306 points drawn from
6 distributions of equal sizes, with segment length of 3. The best
a) and worst b) results are shown, with distributions shown as

background grey boxes. Symbols indicate clustering label assign-
ment. c) shows the histogram of success rates over 100 trials.
The standard deviation for the distribution of the rates was 5.7

percent.

4.3.5 Complex-Shaped Distributions

Complex-shaped distributions were simulated using two,

two-dimensional spirals. Data was generated according
to the following equations:

x1 = (φ+d⊥)∗cos(φ+φ0), x2 = (φ+d⊥)∗sin(φ+φ0)(14)

with φ = darc

√

rand{0..1} the arc distance from the

center, d⊥ = N(0, σSRnoise) a perpendicular, normally
distributed distance from the arc, and φ0 equal to 0

for the first distribution and π for the second. 5,000

data points were drawn for each trial, with segment
length of 5 using darc = 15 and σSRnoise = 0.9 for the

distributions. Fig. 9 shows time sequences of 10 and 50

samples from the test sequence used. One can see that
the shape of the distributions cannot be inferred from

short sequences, even when data labelling is provided.

The k -Nearest Neighbor classifier used k = 40 neigh-
bors, with a Gaussian kernel of σ = 0.4. Fig. 10 shows

classification success rate achieved for the 19 test cases

generated. Fig. 11 shows a successful and unsuccessful

case of clustering. If we exclude the 3 unsuccessful cases,
the average value of classification success was 92.6 per-

cent, with a standard deviation of 0.4 percent.

We considered the three unsuccessful cases as be-

ing outliers, corresponding to the simulated annealing

getting stuck in a local minimum. We reached this con-

clusion by noting that the presence of such cases was
highly dependent on the number or random restarts

used in the simulated annealing. With a single start,

the ratio of such outliers was close to 40 percent. This

ratio steeply decreased as we increased in the number

of restarts in the simulated annealing, something in-
dicative of simulated annealing being stuck in a local

minimum far from the global minimum.

−10 0 10
−20

0

20
a)

−10 0 10
−20

0

20
b)

−10 0 10
−20

0

20
c)

Fig. 9 Time sequence shown in feature space for a) ten sam-
ples and b) fifty samples drawn randomly from the distributions
described in Eq. 14 and shown in c), with segment length of 5

samples. The spirals are not visible in a) and barely discernible
in b).

60 70 80 90 100
0

5

10

15

Success Rate (%)

C
ou

nt

Fig. 10 Histogram showing the distribution of the 19 classifica-

tion success rates after clustering. The majority of results were
located around 92 percent, with three cases failing to completely
identify the underlying structure.

−10 0 10
−20

−10

0

10

20
a)

−10 0 10
−20

−10

0

10

20
b)

Fig. 11 Successful (92 percent) a) and unsuccessful b) clustering

for a two-class problem of 5,000 points generated according to Eq.
14. The segment length was 5.

4.4 Comparison with a Window-based Method

Performance of this algorithm was compared to a seg-

mentation algorithm employing a time-window (Lenser

8

& Veloso 2003). The latter algorithm was run until

only two clusters were left. The data used was gen-
erated from a simpler version of the two-spiral distri-

butions, with darc = 5 and σSRnoise = 0.9., with 250

samples per test case. A test case is shown in Fig. 12 a),
without temporal information for clarity. For long seg-

ment lengths (over 60 samples), success rates are similar

for both methods. As expected, Fig. 12 b) shows that
shorter segment lengths negatively affect the window-

based method, with larger windows being affected most.

This can be explained by the merger of the two clus-

ters through windows containing data from both distri-
butions. The number of such windows is greater for a

larger window size and a smaller segment length.

0 20 40 60 80
50

60

70

80

90

100

Segment Length (Samples)

A
ve

ra
ge

 C
lu

st
er

in
g

S
uc

ce
ss

 (
%

)

3

|Window| =5
|Window| =10
|Window| =20
Windowless−5 0 5

−5

0

5

Distributions

Feature 1

F
ea

tu
re

 2

Fig. 12 Average clustering success rate for the windowless al-

gorithm and a segmentation algorithm using a time-window, for
time-window sizes of 5, 10 and 15 samples. When transitions
are infrequent (corresponding to segment length over 60), success
rates are similar for both methods. For shorter segment lengths,

the window-based method fails to identify the two clusters and
instead simply merge them together.

4.5 Comparison with a hidden Markov model Trained
with Expectation-Maximization

The problem presented in this paper can also be treated
as hidden Markov model (HMM), where the emission

model represents the distributions found by the trained

classifier, and the transition matrix captures the time-
dependency between the samples. By employing the

Expectation-Maximization (Rabiner 1989) algorithm,

one can train a HMM on the data set (EM-HMM), and

the resulting distributions found represent the clusters.

We used an already existing MatlabTM implemen-

tation of the Expectation-Maximization algorithm for

a HMM done by Murphy 2005. The Gaussians models
in the classifier were radially-symmetric for both the

EM-HMM and the classifier trained with our clustering

algorithm. The test sequences were randomly generated

by sampling the distributions using the following sym-

metric transition matrix:








2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3









(15)

The average duration of stay in any class was 3.0 sam-

ples. Note that generating the test sequences this way
was different from the tests done in Section 4, where

we used instead a fixed segment length. Three random

restarts were used, both in the EM-HMM and in our
clustering method.

4.5.1 Comparison Using Previous Three Gaussians

Distribution

For these test cases, the distributions were identical to

the one used in Section 4.2. The size of the training
data set varied from 15 to 1200 samples, in order to bet-

ter understand the differences in performance between

EM-HMM and our clustering algorithm. The results are

shown in Fig. 13, averaged over 1400 trials for each
sample size. For substantially long test sequences (over

400 samples), the two methods perform similarly; how-

ever, for shorter test sequences our proposed algorithm
outperforms EM-HMM. The bulk of the difference is

a horizontal shift between the curves for sequences of

less than 300 samples: this indicates that our proposed
clustering method needs fewer samples to find solutions

closer to the true model.

The reduced need for training samples can be ex-
plained by the fact that the proposed clustering tech-

nique is biased toward finding solutions that preserve

time continuity. The EM-HMM method, being more

generic, is not strictly biased towards preserving this
time continuity. Nevertheless, it does eventually learn

this time continuity, at the expense of larger training

sets.

4.5.2 Comparison using Another 3 Gaussian

Distributions

It is possible to find simple test cases that are more dif-

ficult to solve using EM-HMM than using our method.

Fig. 14 presents such a case, made up of three normal
distributions. The two distributions on the left have

significant overlap, while the one on the right is more

isolated. Fig. 15 compares the results of the average

classification success rate between EM-HMM and our
clustering method as a function of the training set size.

For these distributions, our technique outperforms EM-

HMM significantly.

9

0 200 400 600 800 1000 1200
56

58

60

62

64

66

68

70

72

Number of Samples in Test Case

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
S

uc
ce

ss
 R

at
e

(%
)

Clustering
HMM

Fig. 13 Comparison of the average classification success rate
between a hidden Markov model trained via Expectation-
Maximization and our proposed method as a function of the
number of samples in the training set. Data was drawn from
the distributions shown in Fig. 4(a). Curves averaged over 1400
trials.

−3 −2 −1 0 1 2 3 4

−2

−1

0

1

2

Feature 1

F
ea

tu
re

 2

Fig. 14 Other set of distributions used to compare the perfor-
mance between HMM training using Expectation-Maximization
and the clustering algorithm. The black ellipses represent one

standard deviation for the normal distributions. The labelled
samples show data drawn randomly from these distributions.

Again, this difference can be explained by the fact
that EM-HMM is a more general method, and will not

prioritize solutions that minimize the number of tran-

sitions found. For this particular test case, EM-HMM

was more likely to maximize the likelihood of the emis-
sion model by grouping the left distributions together,

while splitting the right distribution in two.

It might be possible to adapt the EM-HMM method

to maximize the diagonal elements of the transition ma-
trix. This would in turn minimize the number of transi-

tions found in the training data set. This was, however,

beyond the scope of this work.

0 500 1000 1500 2000
65

70

75

80

Number of Samples in Test Case

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
S

uc
ce

ss
 R

at
e

(%
)

Clustering
HMM

Fig. 15 Comparison of the average classification success rate
between a hidden Markov model trained via Expectation-

Maximization and our proposed method as a function of the

number of samples in the training set. Data was drawn from the

distributions shown in Fig. 14. Curves averaged over 300 trials.

4.5.3 Comparison using Another 3 Gaussian
Distributions

The computing time required to solve these test cases
was comparable for both methods for long training se-

quences. EM-HMM had a significant advantage for short

training sets, although for these test cases the comput-

ing time for our method was still less than a minute.
Fig. 16 shows the ratio of computing time between our

method over EM-HMM.

0 1000 2000 3000 4000 5000
0

2

4

6

8

Test Sequence Length (samples)

C
om

pu
tin

g
T

im
e

R
at

io
t cl

us
te

rin
g/t H

M
M

Fig. 16 Computing time ratio between our clustering technique

and training a HMM using Expectation-Maximization. The ratio
stabilizes around 2 for long training sequences.

5 Testing Algorithm on Robot Sensor Data for

Autonomous Terrain Discovery

In this section, we describe the experimental assessment
of this approach for terrain discovery, using two differ-

ent types of robots. Section 5.1 describes experiments

with a hexapod robot over several indoor and outdoor

10

Fig. 17 The hexapod robot, shown equipped with semi-circle
legs for land locomotion. The vehicle moves forward by constantly
rotating legs in two groups of three, forming stable tripod con-

figurations.

surfaces, using internal sensors for data collection. Sec-

tion 5.2 describes experiments with a differential drive

robot over indoor surfaces, using an external tactile sen-
sor for data collection.

5.1 Hexapod Robot using Internal Sensors

The vehicle (Fig. 17) (Dudek et al. 2005) used in this

set of experiments was a hexapod robot specifically de-
signed for amphibious locomotion. It was previously

shown (Giguere et al. 2006) to be able to recognize

terrain types using supervised learning methods. The
robot was equipped with a 3-axis Inertial Measurement

Unit (3DM-GX1TM) from Microstrain. The sensors rel-

evant for terrain identification were: 3 accelerometers, 3

rate gyroscopes, 6 leg angle encoders and 6 motor cur-
rent estimators. Each sensor was sampled 23 times dur-

ing a complete leg rotation, thus forming a 23-dimen-

sional vector. Multiple vectors were concatenated to-
gether to improve detection, forming an even higher

dimensionality feature vector for each complete leg ro-

tation. Dimensionality was subsequently reduced by ap-
plying Principal Component Analysis (PCA). In the fol-

lowing experiments, only the two first main components

were used. Even though some information is discarded,

our previous results (Giguere et al. 2006) indicated that
this was sufficient to distinguish between small numbers

of terrains. If stronger discrimination is required, other

components can be added.
The collected data was restricted to level terrains,

with small turning maneuvers. Changes in terrain slopes

or complex robot maneuvers impact the dynamics of
the robot, and consequently affects how a particular ter-

rain is perceived by the sensors. Discarding data when

the robot performs a complicated maneuver or when

the slope of the terrain crosses a threshold was used
to mitigate this issue. Terrains were selected to offer a

variety of possible environments that might be encoun-

tered by an amphibious robot. They were also different

enough in terms of locomotion, that from a locomotion

point of view they are distinct groups, and thus form
classes on their own.

5.1.1 Overlapping Clusters with Noisy Data

The first data set was collected in an area covered with

grass, with a section that had been recently tilled. The

robot was manually driven in a straight line over the
grass, crossing eventually to the tilled section. The robot

was then turned around, and manually driven back to-

wards the grass. Eight transitions were collected in this

manner.
The problem was made more challenging by using

only the pitch angular velocity vector. Using more sen-

sor information would have reduced the noise, therefore
increasing the relative separation between the two clus-

ters. This was done to demonstrate the relative robust-

ness of our method to distributions overlap.
Two different types of classifier were used in the

clustering algorithm on the data set shown in Fig. 18.

The first one was a linear separator with a sigmoid using

m = 3.0. Classification success after clustering was 78.6
percent (see Figs. 19 and 21(a)). The second classifier

used for clustering was a k -Nearest Neighbor classifier

with k = 10 and σ = 1.0 for the kernel. As expected,
k -Nearest Neighbor had slightly inferior results, with a

classification success rate of 73.9 percent (see Figs. 20

and 21(b)). The larger number of parameters (454 com-
pared to 2 for the linear separator) makes this classifier

prone to over-fit the data, potentially explaining the dif-

ference in performance. Nevertheless, the difference in

performance between the two classifiers is small. These
results suggest that our approach is effective in sepa-

rating the data samples into terrain types, for normal

distributions with significant overlap.

5.1.2 Fast-Switching Semi-Synthetic Data

This data set was collected by driving the same hexapod
robot manually over five different terrains:

– ice-covered side walk,
– loosely packed snow,

– grass,

– tilled earth and
– linoleum.

A high-dimensionality feature vector for each complete

leg rotation was generated using 12 sensors (all 3 an-

gular velocities, all 3 accelerations and all 6 motor cur-

rents). As in the previous case, only the two first prin-
cipal components were used. Of all sensors, the motor

currents were the most informative. This data set is

shown in Fig. 22.

11

−4 −3 −2 −1 0 1 2 3

−2

−1

0

1

2

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Fig. 18 First two principal components of the data set obtained
from a robot walking alternatively on grass and tilled earth, with
a total of eight transitions. The two clusters are hard to separate
without labelling or timing information.

−4 −3 −2 −1 0 1 2 3

−2

−1

0

1

2

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Grass
Tilled Earth
Separator

Fig. 19 Sensor data set collected for a robot walking on grass

and tilled earth, with eight transitions present in the data. The
solid line represents the separator found on the unlabeled data
using the algorithm with a linear separator as classifier. Even
though the clusters have significant overlap, the algorithm still

managed to find a good solution. Notice how the separator is
nearly perpendicular to a line joining the distribution centers, an
indication that the solution is a close approximation to LDA on
the labelled data.

An important factor making this set difficult is that

two terrain types, ice and linoleum, are close to each

other in feature space. They are near the location {-0.6,

0.0} in Fig. 22, and can be seen distinctively with the la-
belled data set of Fig. 24. This closeness in feature space

probably arises from the fact that these two surfaces are

hard and uniformly flat, and therefore the robot will
have similar dynamics on them.

No transitions were present in the original data set,

so a randomly-generated state sequence (shown in Fig.

23) was used to simulate these transitions. The result-

−5 −4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Labelled Grass
Labelled Tilled Earth
Mislabelled

Fig. 20 Same data set as Fig. 19, clusterized with the algorithm
using a k -Nearest Neighbor classifier. The circled data points are

wrongly labelled. Most of them are located either at the boundary
between the two distributions, or deep inside the other distribu-
tion.

87.3 %

27.5 %

12.7 %

72.5 %

A
ct

ua
l

Cluster Found
C1 C2

Grass

Earth

(a) Linear Separator

72.9 %

25.4 %

27.1 %

74.6 %

A
ct

ua
l

Cluster Found
C1 C2

Grass

Earth

(b) k -Nearest Neighbor

Fig. 21 Confusion matrix for classification of two-terrain data
obtained after clustering using a) a linear separator and b) the
k -Nearest Neighbor.

ing average segment length was 6, with individual states
having average segment lengths between 3.5 and 9.8.

The data was also analyzed to minimize the impact of

sensor drifts between the data collection runs. These
would have resulted in increasing the distance between

the clusters, something that would artificially facilitate

the clustering task. Given the fact that our method

is robust to overlapping distributions, the biases intro-
duced by such drifts are significantly reduced.

A classifier with a mixture of five radially-symmetric

Gaussians was used in the clustering algorithm. Fig. 24
shows the labelling of the data set and Fig. 25 shows the

confusion matrix. Overall, 91 percent of the data was

grouped in the appropriate class. Even though some of
the distributions are elongated (for example linoleum),

the combination of symmetric Gaussians managed to

capture the clusters individually. Standard clustering

techniques struggled with these distributions, with av-
erage classification success rates of 68.2 and 63.0 per-

cent for mixture of Gaussians and K-means clustering,

respectively.

12

−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Fig. 22 First two principal components of the data set collect
by the amphibious robot over five environments. From visual in-
spection, only four clusters are discernible.

0 50 100 150 200
0

1

2

3

4

5

6

Sample

S
ta

te

Fig. 23 State (from 1 to 5) sequence used to generate the time
sequence of data in the clustering problem shown in Fig. 24. The
shortest segment length is 3, and the average segment length is

6.

5.2 Differential Drive Robot with an External Tactile
Sensor

For this set of experiments, we used an iCreateTMrobot
from iRobotTM. The robot moved using a differential

drive mechanism, and terrain identification was done

through a tactile sensor described in Giguere & Dudek
(2009). The tactile sensor was a metallic rod with an

accelerometer located at its tip. By moving forward,

the robot dragged the metallic rod on the surface. This
induced vibrations that were picked up by the single-

axis accelerometer, oriented to capture the vibration in

the sagittal plane. Fig. 26 shows this robot with the

sensor. The accelerometer signal was sampled using an
on-board sound card at a frequency of 4 kHz and res-

olution of 16 bits. Eight features were extracted from

non-overlapping windows of size W = 200 samples in
the sampled acceleration signals a(t). These features

were:

– mean,

– variance,

−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Decision Boundary

Linoleum
Snow
Ice
Earth
Grass
Misclass.

Fig. 24 Applying the clustering algorithm on a data set of five
environments, with a mixture of five Gaussians as a classifier. La-
bels shown are the ground truth. The samples surrounded with

a small square are wrongly labelled. The five cross-hairs are the
location of the Gaussians, the thick circles representing one stan-
dard deviation. The decision boundary is represented by the black
curved lines.

47

0

0

1

0

0

28

0

0

2

2

0

41

0

0

9

0

1

20

0

1

1

0

0

45

A
ct

ua
l

Cluster Found
C1 C2 C3 C4 C5

Ice

Grass

Snow

Lino

Earth

Fig. 25 Confusion matrix for the clustering shown in Fig. 24.

– skewness,

– kurtosis,
– fifth moment,

– number of times 20 uniformly separated thresholds

are crossed,
– sum of the variation over time:

W−1
∑

t=1

|a(t) − a(t + 1)|,

– sum of higher half of amplitude spectrum.

Some of these features are comparable to the ones used
by Weiss et al. (2006). PCA was applied onto the ex-

tracted features from the data set. Training and classi-

fication was done using the two first principal compo-
nents.

For each experimental run, the robot was manually

placed and oriented so that it encountered two different

13

Fig. 26 Picture of the iRobotTMiCreateTMequipped with a tac-
tile sensor on its left side. The thick black arrow at the top indi-
cates the direction of motion.

surfaces along a straight path. A training data set was

autonomously collected along this path at a constant
speed of 150 mm/s, for the predetermined durations

displayed in Table 1. A longer duration was used for

similar surfaces to facilitate the learning. A mixture
of two spherical Gaussians classifier was then trained

using the clustering algorithm presented in this paper.

Following the training phase, the robot executed a
180 deg turn and moved forward at the same constant

speed of 150 mm/s. The collected sensor information

was divided into small windows of size W = 200 and
classified in real time using the trained classifier. Clas-

sification results were averaged over 30 consecutive es-

timates. When a transition in surface classification was

detected, the robot stopped and turned around to move
back to the original surface. This unsupervised sequence

of operation was executed at each trial. An experiment

was considered successful when the robot drove up to
the surface transition and triggered within 2 seconds,

corresponding to a maximum distance of 30 cm from

the transition. Table 1 presents the results of these tests
for three different indoor surface transitions. The raised

floor tile surface was composed of standard 2x2 feet tiles

used commonly in data center and computer rooms.

The vast majority of failures were early false detec-

tion of transitions. These failures could be attributed

to a combination of factors.

– Non-representativeness of the collected training data.
The surfaces used were located in heavily travelled

area of a building, with significant local surface prop-

erty variations due to wear. These variations had a

larger impact due to the small size of the data sets
collected during the training phase.

– Lack of differences between surfaces. In two of these

experiments, we deliberately chose relatively simi-

Table 1 Experimental testing results of autonomous terrain
learning and identification with rod sensor, using a differential
drive robot. Note: success required many successive correct clas-

sification (see text).

Surface Type Training Success Failures Success
Combination Data Rate

Duration

Terazzo/ 40 s 10 10 50 %
Tiled Linoleum

Untiled Linoleum/ 30 s 15 5 75 %
Tiled Linoleum

Raised Floor 10 s 20 0 100 %
Tiles/ Carpet

−6 −4 −2 0 2 4 6

−2

0

2

4

6

8

10

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Fig. 27 An example of a training data set for the external con-
tact sensor, projected onto the first two principal components.
Data was autonomously collected over terazzo and linoleum sur-

faces, using the differential drive robot. Two eight-dimensional
spherical Gaussian classifier were trained using the clustering al-
gorithm. The location of the means are shown as cross-hairs, with

the circle representing one standard deviation. Data label shows
classification results, after training.

lar surfaces. In experiments done on outdoor sur-

faces using a manual data collection, outdoor sur-
faces were shown to be more robustly detected than

indoor surfaces.

– Small size of the training set. The relatively small
size of the training set made the trained classifier

over-fit, as well as making the PCA dimensionality

less representative.

– Large classification success rate that was required.
One has to bear in mind that a successful trial re-

quired a large number of correct classification in a

row.

14

0 100 200 300 400

0

0.5

1

Data Point Number

P
ro

ba
bi

lit
y

Terazzo Linoleum

Instantaneous Averaged

Fig. 28 Classifier probability over time (grey line) correspond-
ing to the data and classifier from Fig. 27. The vertical dashed

line near time t = 200 indicates the transition from terazzo to
linoleum surface. Spurious variations of the probability over time
was mitigated by averaging over 30 samples (shown as black line).

These spurious variations were responsible for triggering early de-
tection of transitions, resulting in test failures.

Most of these issues can be improved significantly by

increasing the size of the training set collected by the

robot during its training phase.

These factors offer an explanation as to why the
Terazzo/Tiled Linoleum test results were significantly

lower that the two others, standing at 50 percent : these

two surfaces were not distinct enough to ensure a high
success rate of the combined clustering and classifica-

tion of the data. It is important to bear in mind that

50 percent is still an acceptable result: a coin-toss clas-
sifier would for the most part always trigger before the

actual physical transition, producing an experimental

success rate near 0 percent.

6 Discussion

6.1 Comparing Cost Functions from Previous Works

In Kohlmorgen et al. (2000), the cost function to be

minimized is:

E(Θ) =

T
∑

t=1

(yt −

N
∑

s=1

ps,tfs(xt))
2

+C

T−1
∑

t=1

N
∑

s=1

(ps,t+1 − ps,t)
2 (16)

with fs(.) as a kernel estimator for data xt for state

s, ps,t as the mixing coefficient for state s at time t,

θ = ps,t : s = 1, ..., N ; t = 1, ..., T as the set of coeffi-

cients to be found, and C as a regularization constant.
In Kohlmorgen & Lemm (2001), the cost function is:

o(s) =

T
∑

t=W

d(ps(t)(x), pt(x)) + Cn(s) (17)

With d(., .) being a L2-Norm distance metric function,

s a state sequence, pt(x) the pdf estimate within the

window at time t, ps(t)(x) the prototype pdf for state

s(t), n(s) is the number of segments and C a regular-
ization constant.

Eq. 16 and Eq. 17 can be separated in two parts:

the first part minimizes representation errors, and the

second part minimizes changes over time. A regulariza-
tion constant C is needed to balance them, and select-

ing this constant is known to be a difficult problem. In

contrast, our cost function (Eq. 13) does not take into

account the classifier fit to the actual data X. Instead
we solely concentrate on the variation of the classifier

output over time, thus completely eliminating the need

for a regularization constant and associated stabilizer.
This is a significant advantage. The fact that the clas-

sifier fit is not taken into account by our algorithm can

be seen in the mixture of Gaussian result case shown in
Fig. 24: the location of the Gaussians and their width

(marked as circled red cross-hairs) do not match the

position of the data they represent. Only the decision

boundaries matter in our case. If the actual pdf s are re-
quired, a suiting representation can be fitted using the

probability estimates found.

6.2 Distances and Window Size for Complex

Distributions

Algorithms relying on distances between pdf s described
within small windows such as the one used by Kohlmor-

gen & Lemm (2001) succeed if the distance between a

sample and other members of its class is much smaller
than its distance to members of the other class. For

complex distributions such as the one used in the spi-

rals case, this is not the case: the average distance be-

tween intraclass points and interclass points is almost
identical: 13.4 vs 13.9. This can be seen in Fig. 29,

were the distribution of distances are almost overlap-

ping. Our algorithm with a k -Nearest Neighbor classi-
fier succeeds because it concentrates on nearby samples

collected over the whole duration, and these have the

largest difference between intraclass and interclass dis-
tances (distance less than 2 in Fig. 29).

Moreover, to avoid transitions in their time-windows,
these algorithms would have to limit their time-window

sizes. Bearing in mind that for the spirals data set in

Fig. 11 the segment length was 5, this would result in
window sizes of 2 to 3 samples. These distributions can-

not be approximated in a satisfactory manner with so

few points. From simple visual inspection one can see

that it requires, at a minimum, 10 to 20 points. An
advanced dimensionality reduction technique such as

Isomap (Tenenbaum et al. 2000) could be used to sim-

plify this type of distribution. If data points bridging

15

0 5 10 15 20 25 30 35
0

2

4

6

8
x 10

4

Distance

C
ou

nt

Intraclass
Interclass

Fig. 29 Distribution of distances between samples belonging to
the same class (intraclass) and samples belonging to different
classes (interclass), for the spirals data set used in Fig. 11. The
distributions almost completely overlap, except at shorter dis-

tances.

the gap between the spirals were present at regular in-

tervals however, Isomap would be of little help.

6.3 Simulated Annealing Computing Time

A major drawback of using simulated annealing is its

prohibitive computing time. For the mixture of Gaus-

sians test cases in Section 4.2 or the linear separator
in Section 4.1, the computing time to solve the prob-

lem was in the order of one minute on a 3.2 GHz Xeon

machine. For the 5,000 points spiral-shaped test cases
in Section 4.3.5, clustering with a k-Nearest Neighbor

classifier took more than ten hours. This increase stems

from the fact that the number of free parameters, pro-
portional to the number of samples for k-Nearest Neigh-

bor, is significantly larger. In recent unpublished work,

we developed a gradient-descent technique specifically

for clustering with our method using a k-Nearest Neigh-
bor classifier. Combined with code optimization, the

computing time for the test cases in Section 4.3.5 was

drastically reduced down to two minutes, a speed-up by
a factor of 300.

6.4 Use of Kernel Parameter σ in k-Nearest Neighbor

Gaussian kernels with parameter ranging between σ =
0.4 and σ = 0.8 were used when weighting the neighbors

for the k-Nearest Neighbor problems in Section 4.3. In

a way, they represent prior knowledge incorporated into
the clustering process. While these values were hand-

picked to match the scale of the features, their impact

was only significant if the density of data points was

low in comparison to the difficulty of the problem. We
have found that given a sufficiently dense distribution

of points, the need for a Gaussian kernel naturally goes

away. At high densities, the nearest neighbors’ distances

will be smaller than σ, and the kernel values will all

be ≈ 1. If no prior information is available to select a
proper value of σ, then more data points are needed

for the clustering algorithm to succeed. This is in line

with the concept that prior knowledge reduces the need
for data. Fortunately, collecting unlabeled data samples

is relatively inexpensive, when compared to collecting

labelled data samples.

6.5 Need to Know the Number of Classes

Currently, the algorithm requires the number of classes

to be known beforehand. This is a common issue across
a certain number of clustering technique (K-means or

Expectation-Maximization training of a hidden Markov

model, for example). Moreover, it raises the question of
what exactly constitutes a class. For example, should

all types of snow (hard-packed, fluffy, granulated) be

grouped together in the same class? In many cases, de-

termining the number of clusters in a data set is an
arbitrary choice made by the user.

Side-stepping the above question, and assuming that

there is indeed a number of classes present in a data set,
we can predict how the algorithm would respond to un-

derestimating or overestimating the number of clusters

in the data set. If the number of classes Nc used in Eq. 1
is less than the true number of classes, some clusters will

have to be grouped together. This in turns, reduces the

cost found by using Eq. 1; the cost associated to transi-

tions between samples belonging to the same cluster is
much less than between samples belonging to different

clusters. On the other hand, if the number of classes Nc

used in Eq. 1 is greater than the true number, a true
class will have to be split into two clusters. This in-

creases sharply the cost found using Eq. 1, since a large

number of artificial transitions will be introduced.
Based on this analysis, the algorithm can be ex-

tended in two ways to handle an unknown number of

classes: using an iterative method or using a recursive

method. The iterative method would solve the problem
Ncmax − 1 times, using an increasing number of classes

at each iteration: Nc = {2, ..., Ncmax}. The algorithm

would then find the number of classes for which the
cost function increases sharply. A significant drawback

is that the time-complexity of such algorithm would be

Ncmax times the base clustering algorithm.
The recursive method would work by recursively

splitting a parent cluster into two child clusters. Each

child cluster would be again split in two, and so-on. The

algorithm would start with all the data grouped into a
single root cluster. The stopping criterion for splitting

would be a sharp increase in the average cost per data

sample. The average time complexity would be smaller

16

than in the iterative case: log(Ncmax) times the base

clustering algorithm. On the other hand it would be
more fragile: the erroneous clustering of a parent clus-

ter would propagate to its children.

It might be possible to use other methods such as

Bayesian Information Criterion (BIC) or Minimum De-

scription Length (MDL). We did not, however, explore
these alternatives.

6.6 Use of Fixed Segment Length Vs. True

Hidden-Markov Model

In all experiments (except for the direct comparison be-

tween HMM and our method in Section 4.5), the state

of the system changed at fixed intervals (segment length
s). This was not exactly a true hidden Markov model,

where transitions are probabilistic. We employed this

fixed transition length so that all test cases would have
exactly the same temporal dependency. Thus, the im-

pact of the distributions themselves and their sampling

were the only changing factors between test cases.

We believe that the exact timing of the transition

has a limited impact on the actual cost computed by

Eq. 1. It is rather the number of transitions in the data
set that will affect this cost. If we assume that there is

an average cost associated for transition within classes

and between classes, that is:

(p(ci|xt+1,θ) − p(ci|xt,θ)) =

{

Eintra if xt,xt+1belong to same class

Einter otherwise
(18)

the expected value of the cost computed in Eq. 1 will

no longer depend on the timing of the transition, but

instead on the number of transitions Nt:

E

{

Nc
∑

i=1

∑T−1
t=1 (p(ci|xt+1,θ) − p(ci|xt,θ))2

var(p(ci|X,θ))2

}

=

Nc
∑

i=1

NtEinter + (Nc − Nt − 1)Eintra

var(p(ci|X,θ))2
(19)

We verified that for the 3 Gaussians cases shown in

section 4.2, the difference between using a true HMM

with an average stay of 3.0 and using a fixed segment

length of 3 was small. The average classification rate
for over 1000 randomly-generated test cases was 67.2

percent, comparable to the 69.2 percent success rate

found previously in Section 4.2.

6.7 Practical Applications

We believe this algorithm can be used in a number of

practical applications. In Giguere & Dudek (2009) we
demonstrated how this technique, coupled with a simple

tactile sensor, can be used by a cleaning robot to confine

its motion over a carpeted area. The same sensor and
technique could be used by an intelligent wheelchair,

enhancing the robustness and safety of navigation in

an urban environment.

We also looked at extending the application of our

cost function for cases where continuity should be pre-

served in more than one dimension, such as in image
segmentation. Testing in Giguere et al. (2009) showed

that by modifying Eq. 1 to take into account the dif-

ference in probability estimates between nearby image
regions, successful image segmentation can be accom-

plished. The extended technique was used on a stack of

images containing coral reef or sand, resulting in a vi-

sual classifier trained to distinguish between these two
surfaces.

Another possible application would be in unsuper-
vised feature ranking for system with time dependen-

cies. The probability estimates p(ci|xt,θ) in Eq. 1 would

be replaced instead by the output of a feature extrac-
tion function f(xt), and the function would then be

used to compute a score. Lower scoring features would

be ranked at the top.

7 Conclusion

In this paper we presented a new clustering method

for systems with time-continuity, based on minimizing

a cost function related to the probability estimates of
classifiers. Synthetic test cases were used to demon-

strate its capabilities over a range of distribution types.

This method was successfully employed on data col-

lected with a walking robot and a differential drive
robot, demonstrating the usefulness of this method for

a variety of robot and sensor types. Comparison tests

showed that the method outperforms a window-based
method clustering. It also showed small improvements

over a hidden Markov model trained using Expectation-

Maximization.

References

Brooks, Chris A., & Karl Iagnemma 2005. Vibration-
based terrain classication for planetary exploration

rovers. IEEE Transactions on Robotics, 21(6):1185–

1191.

17

Cover, T., & P. Hart 1967. Nearest neighbor pat-

tern classification. IEEE Transactions on Informa-
tion Theory, 13(1):21–27.

Dudek, Gregory, Michael Jenkin, Chris Prahacs, An-

drew Hogue, Junaed Sattar, Philippe Giguère, An-
drew German, Hui Liu, Shane Saunderson, Arlene

Ripsman, Saul Simhon, Luiz Abril Torres-Mendez,

Evangelos Milios, Pifu Zhang, & Ioannis Rekleitis
2005. A Visually Guided Swimming Robot. In Pro-

ceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, Edmonton, Al-

berta, Canada.
Dupont, Edmond M., Carl A. Moore, Jr. Emmanuel

G. Collins, & Eric Coyle 2008. Frequency response

method for terrain classification in autonomous
ground vehicles. Autonomous Robots, 24(4):337–347.

Giguere, Philippe, & Gregory Dudek 2009. Surface

Identification Using Simple Contact Dynamics for
Mobile Robots. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation,

Kobe, Japan.

Giguere, Philippe, Gregory Dudek, Christopher Pra-
hacs, Nicolas Plamondon, & Katrine Turgeon 2009.

Unsupervised Learning of Terrain Appearance for

Automated Coral Reef Exploration. In Cana-
dian Conference on Computer and Robot Vision,

Kelowna, British Columbia.

Giguere, Philippe, Gregory Dudek, Chris Prahacs, &
Shane Saunderson 2006. Environment Identification

for a Running Robot Using Inertial and Actuator

Cues. In Proceedings of Robotics: Science and Sys-

tems, Philadelphia, USA.
Kohlmorgen, Jens, & Steven Lemm 2001. An on-line

method for segmentation and identification of non-

stationary time series. In NNSP 2001: Neural Net-
works for Signal Processing XI, pages 113–122.

Kohlmorgen, Jens, Steven Lemm, & Gunnar Raetsch

2000. Analysis of nonstationary time series by mix-
tures of self-organizing predictors. In Proceedings of

IEEE Neural Networks for Signal Processing Work-

shop, pages 85–94.

Lenser, Scott, & Manuela Veloso 2003. Automatic de-
tection and response to environmental change. In

Proceedings of the 2003 IEEE International Confer-

ence on Robotics and Automation.
Lenser, Scott, & Manuela Veloso 2004. Classifica-

tion of robotic sensor streams using non-parametric

statistics. Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,

3:2719–2724.

Murphy, Kevin 2005. Hidden Markov Model (HMM)

Toolbox for Matlab. http://www.cs.ubc.ca/

~murphyk/Software/HMM/hmm.html.

Pawelzik, Klaus, Jens Kohlmorgen, & Klaus-Robert

Müller 1996. Annealed competition of experts for a
segmentation and classification of switching dynam-

ics. Neural Comput., 8(2):340–356.

Rabiner, L. R. 1989. A tutorial on hidden Markov mod-
els and selected applications in speech recognition. In

Institute of Electrical and Electronics Engineers, vol-

ume 77, pages 257–286.
Sadhukan, D., & C. Moore 2003. Online terrain esti-

mation using internal sensors. In Proceedings of the

Florida conference on recent advances in robotics.

Srebro, N., G. Shakhnarovich, & S. Roweis 2005. When
is Clustering Hard? In PASCAL Workshop on Statis-

tics and Optimization of Clustering.

Tenenbaum, J. B., V. de Silva, & J. C. Langford 2000.
A global geometric framework for nonlinear dimen-

sionality reduction. Science, 290(5500):2319–2323.

Weiss, Christian, N. Fechner, M Stark, & A Zell 2007.
Comparison of Different Approaches to Vibration-

based Terrain Classification. In Proceedings of the

3rd European Conference on Mobile Robots (ECMR

2007), pages 7–12.
Weiss, Christian, Holger Frohlich, & Andreas Zell 2006.

Vibration-based Terrain Classification Using Support

Vector Machines. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages

4429–4434.

