
Convolutional Residual Network for Grasp Localization

Ludovic Trottier, Philippe Giguère, Brahim Chaib-draa
Computer Science and Software Engineering

Québec, Canada
Laval University

ludovic.trottier.1@ulaval.ca
{philippe.giguere, brahim.chaib-draa}@ift.ulaval.ca

Abstract—Object grasping is an important ability for carry-
ing out complex manipulation tasks with autonomous robotic
systems. The grasp localization module plays an essential role
in the success of the grasp maneuver. Generally viewed as a
vision perception problem, its goal is determining regions of
high graspability by interpreting light and depth information.
Over the past few years, several works in Deep Learning (DL)
have shown the high potential of Convolutional Neural Net-
works (CNNs) for solving vision-related problems. Advances
in residual networks have further facilitated neural network
training by improving convergence time and generalization
performances with identity skip connections and residual
mappings. In this paper, we investigate the use of residual
networks for grasp localization. A standard residual CNN for
object recognition uses a global average pooling layer prior
to the fully-connected layers. Our experiments have shown
that this pooling layer removes the spatial correlation in the
back-propagated error signal, and this prevents the network
from correctly localizing good grasp regions. We propose an
architecture modification that removes this limitation. Our
experiments on the Cornell task have shown that our network
obtained state-of-the-art performances of 10.85% and 11.86%
rectangle metric error on image-wise and object-wise splits
respectively. We did not use pre-training but rather opted
for on-line data augmentation for managing overfitting. In
comparison to previous approach that employed off-line data
augmentation, our network used 15x fewer observations, which
significantly reduced training time.

Keywords-deep residual network; grasping; localization

I. INTRODUCTION

Grasping objects with a robotic arm is an essential ability
for performing complex manipulation tasks with robotic
systems [1]–[5]. General purpose robots need to physically
interact with the surrounding world in order to accomplish
their goals. Actions such as opening doors, moving objects
around or using tools, all require the fundamental skill of
grasping objects. Integrating the necessary knowledge for
succeeding at this task is one of the first steps towards the
long-term goal of deploying intelligent robotic agents.

The ease with which humans perform object grasping is
however not an accurate reflection of the true complexity of
the task. Humans see objects and can identify without much
difficulty the proper location where to put their hands for
picking them up. They can also estimate other properties of
the objects, such as the weight, by simply looking at them.

This is due to years of jointly training the visual and motor
cortices with sensory information from both the world and
the body during interactions with objects. Robotic grasping
still lags behind human grasping because replicating such
learning conditions is a challenging problem.

Since visual perception plays an important role in object
grasping [6], we focus in this paper on the perception system
for robotic grasping. Its goal is localizing graspable regions
by performing general scene understanding. The system
interprets light and depth information, known as RGBD
images, and outputs a list of candidate regions ordered
by graspability. This involves elaborate and complex visual
tasks, such as image segmentation, visual disambiguation
and object detection. Due to the complexity of these tasks,
learning an efficient perception system for extracting the
most relevant information from the surrounding environment
is essential. The performance of the overall grasping system
highly depends on the graspability of the predicted region.

Convolutional Neural Networks (CNNs) have become the
leading deep learning approach for visual recognition [7],
[8]. Inspired by the biological visual cortex, CNNs aim
at learning feature hierarchies from the data. High-level
features are composed of low-level features using multiple
layers of non-linear transformations [9]. Each layer in the
hierarchy constitutes an increase in the level of abstraction
from the layers below. This key principle allows CNNs to
represent complex raw observations, such as RGBD images,
into simple high-level concepts.

Originally proposed in the 80s, CNNs only became popu-
lar recently due to being difficult to train. Their hierarchical
structure makes them vulnerable to the vanishing gradient
problem. As the CNN gets deeper, the back-propagated error
signal from the higher levels to the lower levels vanishes
more easily. Learning representative features in the lowest
layers can be more difficult due to the weak error signal.
This may create a discrepancy between the learning speed
of the higher and lower layer parameters, which can impede
the network from obtaining high performances.

Recently, several advances in network regularization have
been proposed for reducing vanishing gradients. Residual
networks (ResNets) with identity shortcut connections are
among the most recent ones and are growing in popularity.

The central idea in ResNets is learning additive residual
functions instead of standard feed-forward functions as the
main building blocks of the network. This is accomplished
by connecting the output of low-level layers to the output
of high-level layers with an identity skip connection, then
by merging the outputs with an addition. Skip connections
create information propagation paths through the entire
network, which allows propagating signals directly from one
layer to the next. Due to the increased information flow in
both the forward and backward passes, deep residual net-
works are easier to train than their non-residual counterparts.

The objective of this paper is to make use of the recent
advances in network regularization for training a deep CNN
on the task of localizing good grasp regions. We contribute
in the following ways:

1) A standard ResNet for object recognition uses global
average pooling prior to the fully connected layers. We
have observed in our experiments that global average
pooling removes the spatial correlation of the error
signal, which makes learning the spatial locations of
the graspable regions impossible for the network. We
propose a modification of the ResNet architecture that
removes this limitation.

2) We show that we improve the state-of-the-art perfor-
mance of previous methods without pre-training and
with on-the-fly data augmentation. This results in the
removal of the tedious pre-training stage, and a 15x
reduction in training images for the fine-tuning stage.

The rest of this paper is divided as follows. We review the
related works in Section II and elaborate on the problem
description in Section III. We present the experiments in
Section IV and discuss the results in Section V. We conclude
our paper in Section VI.

II. RELATED WORK

Several previous approaches used 3D modeling for local-
izing regions of high graspability [10]–[12]. Although these
knowledge-based methods can perform well in controlled
situations, they rely on building complex and accurate 3D
representations. Requiring a priori the physical properties
reduces their applicability in general grasping scenarios. The
system rarely knows in advance the physical properties of
objects it has never seen. With our approach, we seek to
alleviate these limitations by performing grasp localization
solely from the light and depth information.

Recent works have proposed viewing grasp localization
as a vision detection problem. Approaches such as score
function [13], extreme learning machine [14] or sparse
dictionary learning [15] apply vision-related frameworks
for processing RGBD images. They however suffer from
a large computational burden due to incorporating an ex-
pensive sliding-window stage during their detection. With
our approach, we seek to perform grasp localization in a
single-shot manner. By only processing each image once,

our goal is to accelerate detection and obtain faster speed
performances at test time.

Other works in the field of neural networks and deep
learning have recently been proposed. For instance, Lenz
et al. [5] proposed a cascade of multi-layered perceptrons
for predicting the graspability of an image sub-region.
They however relied on different types of hand-designed
regularization terms for reducing the difficulties of training
their network. Other approaches such as two-stage closed-
loop [16] and pre-trained AlexNet [4] instead opted for the
more popular convolutional neural network model. They
however needed a lengthy pre-training for initializing the
weights. With our approach, we want to put aside hand-
designed regularization terms and avoid the tedious pre-
training stage. Our goal is to make use of the recent advances
in residual networks and train a deep neural network on the
small Cornell dataset achieving state-of-the-art performances
without pre-training nor custom regularization terms.

Recent efforts have been devoted to training grasp local-
ization system with a big data perspective [2], [17]. These
methods train scalable approaches by exploiting hundreds
of thousands of observations. While these initiatives are
fundamental for achieving the long-term goal of autonomous
robotic systems, large datasets are not common in con-
strained industrial contexts. They are usually too expensive
to create. A grasp localization approach that can be trained
on a small dataset will be more applicable in this case. As we
show in our experiments, our residual network obtains state-
of-the-art performances by only training on observations
from the small Cornell dataset.

III. PROBLEM DESCRIPTION

In this section, we elaborate on the problem of localizing
candidate grasp regions. We introduce the grasp rectangle
representation and describe the proposed residual CNN.

A. Grasp Localization

The goal of grasp localization is predicting a represen-
tation of the gripper configuration in a region of high
graspability. For a standard gripper with two parallel plate-
gripping fingers, a typical representation of the full 7-
dimensional configuration is a low-dimensional projection
of the gripper at the last stage of the grasp. Although sev-
eral previous works have proposed different representations,
such as a single 2D point [18] or a pair of points [19],
these representations did not faithfully encompass the full
dimensionality of the gripper. For instance, a single 2D point
does not include the gripper orientation, while a pair of
points does not include the height of the gripper’s plates.
Using incomplete representations leaves some aspects of
the configuration to be estimated separately, which adds
complexity and new sources of error.

The grasp rectangle is a faithful representation of the full
7-dimensional gripper configuration [13]. The 2D oriented

Figure 1. An example of a grasp rectangle R labeling a potential good
grasp. This five-dimensional grasp representation is used with two-plated
parallel grippers. The blue lines are the plates, the red lines show the gripper
opening, (x, y) are the center coordinates and θ is the orientation.

rectangle takes into account the gripper’s location, orien-
tation and physical constraints. As shown in Figure 1, the
rectangle specifies 5 parameters:

R = {x, y, w, h, θ} , (1)

where (x, y) corresponds to the center position of the
gripper, (w, h) the opening and length of the plates, and
θ the orientation with respect to the horizontal axis of the
usual left-handed Cartesian coordinate system.

Using the grasp rectangle representation makes grasp
localization similar to object detection in vision. The task
is formulated as a region-based regression problem, where
the goal is predicting a grasp rectangle and a confidence
score for each image sub-region [4]. The sub-region with
the highest confidence score is selected as the candidate
location and the associated rectangle as the candidate grasp
configuration.

In this paper, we use a 7 × 7 grid, which amounts to
predicting 49 grasp rectangles and 49 confidence scores
for each image [4]. For the grasp rectangles, we take into
account the rotational invariance of the gripper angle. Due
to the symmetry of the rectangle, grasping at θ or θ+ 180◦

results in the same gripper configuration. Managing this
invariance is done by predicting the sin and cos of twice
the angle [4]:

R′ = {x, y, w, h, sin(2θ), cos(2θ)} . (2)

As a result, the model’s required output dimensionality for
this regression problem is 7 · 7 · 6 = 294 for the grasp
rectangles and 7·7·1 = 49 for the confidence score. Figure 5
shows examples of such predictions.

B. Residual Network

The aim of residual networks is to address the degradation
problem, which is defined as the decrease in accuracy as
depth becomes greater than a certain threshold [20]. While
we may believe that the recorded performance reduction

Figure 2. An illustration of our residual network (left) and the residual
block (right) from which it is composed. A block has a residual mapping
fi and an identity skip connection. The output xi of block i is processed
twice by a series of batch normalization, ReLU and convolution layers,
then is added to xi. This gives the output xi+1, which in forwarded to the
next block. Our network does not use the standard global average pooling
for predicting the confidence map, only for the rectangle configurations.

was caused by overfitting, experiments show otherwise [21].
Given a shallow well-trained network achieving good per-
formance, it is always possible to artificially increase its
depth by stacking identity layers without affecting accuracy.
The existence of such solution indicates that a deep network
should never produce worse performance than its shallower
counterpart. However, learning identity layers with a fully-
connected / convolutional layer followed by a non-linear
activation function is a hard optimization task [21]. Even
though a deep network optimal solution exists by construc-
tion, obtaining it may not be possible because the model
cannot be adequately optimized.

Residual networks thus address the degradation problem
by facilitating the learning of identity mappings. It is a type
of architecture consisting of a stack of residual blocks. Each
block contains a residual mapping fi and a skip connection
bypassing fi. In this paper, we only consider identity skip
connections [22]. Denoting xi as the output of block i, a
residual network is recursively defined as:

xi+1 = fi(xi) + xi (3)

With this formulation, the network can easily learn an iden-
tity mapping between xi and xi+1 by pushing all parameters
of fi to zero.

Previous work has shown that the performance of the
network highly depends on the choice of the mappings
fi [22]. In this paper, we only consider full pre-activation

mappings, since they obtained the best performances in
previous work [22]. As shown in Figure 2, they are defined
as follows:

fi(xi) = Wi2 · σ(B(Wi1 · σ(B(xi)))) , (4)

where B corresponds to batch normalization [23], σ to the
ReLU non-linearity [24], Wi1 and Wi2 to the weights. For
CNNs, we replace the matrix multiplication · by a discrete
2D convolution ∗.

A standard residual CNN for classifying objects in RGB
images uses a global average pooling layer at the end of
the convolutional stage, i.e. prior to the fully-connected
layers. For a convolutional stage that outputs a (nf , nh, nw)-
dimensional tensor, the global average pooling layer com-
putes the average over dimensions nh and nw. This results in
an nf -dimensional vector that is fed to the subsequent fully-
connected layers. A traditional CNN would instead flatten
the (nf , nh, nw)-dimensional tensor into a (nf · nh · nw)-
dimensional vector. Global average pooling helps to create
correspondence between the feature maps and the object
categories, which can improve classification performances.

We have observed in preliminary experiments that a
residual CNN with global average pooling cannot solve the
grasp localization regression problem of Section III-A. The
network never converges to a suitable solution because it is
unable to assign high confidence score to sub-regions of high
graspability. In fact, it assigns the same confidence score
to every sub-region which shows that it does not learn to
localize grasp rectangles. This is due to the averaging nature
of the pooling layer that causes spatial information loss in
the error signal. The network is unable to spatially correlate
its mistakes on the confidence scores with the gradient of
the loss function because the spatial information is squashed
by the average.

To solve this problem, we propose keeping the global
average pooling only for predicting the grasp rectangles, and
propose using a standard flattening layer for the confidence
scores. While the global average pooling will not interfere
with the spatial information of the confidence scores, it will
create correspondence between the feature maps and the
rectangle categories as it does for object categories in object
recognition. Moreover, we also add a fifth residual stage to
the standard four stages of a residual CNN. A residual stage
is a series of residual blocks with either the same number
of features or the same spatial dimensions. The purpose of
this fifth residual stage is reducing the output dimensionality
of the convolutional stage from (1024, 7, 7) to (2048, 4, 4).
This reduces by approximately 850k the number of weights
of the fully-connected layer for the confidence scores, which
helps to manage overfitting. An illustration of our residual
network is shown in Figure 2.

C. Managing Overfitting

Despite the recent advances in network regularization and
architectures improving the ease with which CNNs learn,
training a deep network remains a challenge. The biggest
difficulty comes from learning feature representations gen-
eralizing to the complete data distribution. Representing
complex observation is particularly difficult, especially when
the amount of data is small. The network can easily overfit
on the training dataset if no proper care is taken while
training. Avoiding overfitting then becomes a central concern
in this case.

One standard approach for preventing the network from
overfitting is artificially increasing the amount of training
data. The central concept in data augmentation is generating
additional images from the existing one while keeping
their class-specific characteristics. Each image is repetitively
preprocessed by a series of class-preserving random trans-
formations, each time generating a new image that resembles
the original one. This preprocessing can be done either off-
line or on-line. In the former case, the training set containing
both the original images and the newly generated ones is
fixed and used in a standard way for training the network.
In the latter case, the images are generated on-the-fly during
training, and the network sees new images every iteration.
We opted for the on-line approach because we did not need
to save images on disk.

The quality of the generated images highly depends on
the choice of preprocessing. Using proper transformations
can make a substantial difference to the performance of the
network. We now elaborate on the ones that we used in our
experiments. The transformations are presented according to
their order in the preprocessing:

1) Standardization: From the original RGBD image, we
estimate the depth normal Nx, Ny, Nz . We then sub-
tract the mean and divide by the standard deviation
(computed from the training set) of each 7 channels.

2) Rotation: The image is rotated by a random angle
uniformly sampled from the range [−15◦, 15◦].

3) Random center crop: A 320× 320 crop is taken from
the center of the original 640× 480 image, translated
by up to 50 pixels in both the horizontal and vertical
directions.

4) Square scale: The 320× 320 crop is resized to 224×
224 using standard bilinear interpolation.

5) Color jitter: We randomly change the brightness, con-
trast and saturation with a blend uniformly sampled
from [0.6, 1.4].

6) Lighting: We perform Krizhevsky’s Fancy PCA color
augmentation on all RGB-D-NxNyNz channels [24].

Note that since the grasp rectangles are spatially localized
within the images, we have to perform the same preprocess-
ing on them for preserving the proper grasp region labels.

Another approach for preventing overfitting that is grow-

ing in popularity is pre-training on a large dataset. Instead
of randomly initializing the weights by sampling them from
a given distribution [25], the network initializes its weights
by training on a large external dataset. This can be seen
as a kind of expert-driven weight initialization, which can
provide a better starting point for optimization than random
weights.

Although pre-training can improve performance, it adds
other constraints. A large external dataset with observations
sharing the same input modalities and similar characteristics
must be available for pre-training to take place. This is
not always the case, especially in our context with RGBD
images. Observations must be diversified enough so that the
network can learn general features usable for the original
task. A large number of observations does not guaranty
diversity per se. Pre-training on a large external dataset also
substantially increases the training time, which would best
be avoided by directly training on the original task. For
these reasons, we do not use pre-training in this paper and
rather use random initialization [25]. We leave pre-training
for future work.

D. Training Details

Training our residual network for solving the detection
problem of Section III-A requires special considerations [4].
For each image, we select uniformly up to five ground
truth rectangles in five different sub-regions. We construct a
target confidence map that has confidence scores of 1 at the
selected sub-regions and confidence scores of 0 at the other
sub-regions. We then back-propagate the Euclidean distance
loss function through the entire confidence map, but only
through the selected grasp rectangles.

We trained our residual network with the following hyper-
parameters. We used a batch size of 64, a weight decay of
0.0005, momentum of 0.9 and Nesterov accelerated updates.
We train for 200 epochs at a starting learning rate of 0.1,
which is divided by 5 at epoch 60, 120 and 160. All training
is performed on a single NVIDIA K80 GPU.

IV. EXPERIMENTS

In this section, we elaborate on our experiments and
present our results on the Cornell dataset.

A. Dataset

The Cornell grasping dataset contains 885 Kinect RGBD
images of 240 distinct everyday objects [13]. Each image is
labeled with positive and negative grasp rectangles labeling
both regions of good and bad graspability. Note that we
only use the positive rectangles for training the network.
As shown in Figure 3, the dataset contains a wide range of
objects, each with rectangles of various dimensions, orienta-
tions and positions. The Cornell task is difficult because not
all regions with high graspability are labeled, and the dataset
has a small number of relatively complex input observations.

Figure 3. Cornell dataset example images. The dataset contains a good
variety of everyday objects, where each object is labeled with grasp
rectangles identifying regions of high graspability. The Cornell task is
difficult because not all good grasp regions are correctly labeled.

B. Grasp Detection

The quality of the predicted grasp rectangle is computed
using the rectangle metric [13]. Let R̄ be the predicted
rectangle and {R∗1, . . . , R∗K} the set of positive rectangles
(ground truth). The localization is considered a success if the
metric is positive for any ground truth rectangles R∗k and a
failure if it is zero for all of them. The metric computes two
quantities:

1) Absolute angle difference: |R(θ)−R∗k(θ)|
2) Jaccard index: area(R ∩R∗k)

area(R ∪R∗k)
The metric is positive if both the absolute angle difference
is lower than 30◦ and the Jaccard index is greater than 25%.

We performed our experiments using 5-fold cross-
validation. For further reducing variance, we report the
best overall score achievable over five cross-validation tries,
along with the median. We have two learning scenarios in
our experiments, where each reflects a way of making the
folds during cross-validation. In the first one, we split the
observations according to the images (as in standard cross-
validation). We refer to this experiment as image-wise split-
ting. In the second one, we split the observations according
to the objects, gathering all images of each object in the same
fold. We refer to this experiment as object-wise splitting.
The first scenario examines the generalization performance
for predicting new rectangle positions, orientations and sizes
on already-seen objects. This is representative of a typical
industrial context where the set of test objects is known
beforehand. The second scenario studies the generalization
performance for predicting rectangles on novel, unseen
objects. This is representative of a typical everyday context
for general purpose robots. Using both scenarios will give a

Table I
CROSS-VALIDATION DETECTION RESULTS ON THE CORNELL DATASET.

THE VALUES REPRESENT THE AVERAGE RECTANGLE METRIC ERROR (IN
%) OVER FIVE FOLDS.

Approaches Image-Wise Split Object-Wise Split

Jiang et al. [13] 39.5 41.7
HOG + ELM Kernel [14] 35.2 -
SAE, struct. reg. two-stage [5] 26.1 24.4
Two-stage closed-loop [16] 14.7 -
Pre-trained AlexNet [4] 12.0 12.9
NKM-N [15] 10.60 11.83
AlexNet (ours) 18.30 (19.21) 18.68 (19.53)
ResNet (ours) 10.85 (12.20) 11.86 (12.26)

Table II
SPEED COMPARISON AT TEST TIME ON THE CORNELL DATASET IMAGES.

Method Speed (fps)

Jiang et al. [13] -
NKM-N [15] < 0.01
SAE, struct. reg. two-stage [5] 0.07
HOG + ELM Kernel [14] 0.09
Two-stage closed-loop [16] 7.11
Pre-trained AlexNet [4] 13.15
AlexNet (ours) 13.72
ResNet (ours) 11.5

more in-depth evaluation of the model.

C. Results

The detection performances on the Cornell dataset of
our residual network, along with other state-of-the-art ap-
proaches, are presented in Table I. We report both the
best score and the median obtained over five repeated five-
fold cross-validation experiments (the median is the value
inside the parenthesis in Table I). We also report the speed
performance at test time for each approach in Table II.
The performance test includes both the pre-processing step
(starting when the image is loaded from disk) and the
network prediction time (up until the rectangle metric is
computed).

Our residual network obtained 10.85% and 11.86% rect-
angle metric errors for the image-wise and object-wise splits
respectively, with a speed at test time of 11.5 frames per sec-
ond (FPS). As comparison, Redmon et al. [4] who fine-tuned
an Imagenet pre-trained AlexNet, obtained 12% and 12.9%
rectangle metric error respectively, at a speed of 13.15 FPS.
An important difference between Redmon et al.’s approach
and ours is the number of training images. We trained our
residual network with on-line data augmentation while Red-
mon et al. used off-line data augmentation. They generated
3000 images per training observations, which resulted in a
training fold containing 2,124,000 unique images. They then
fine-tuned their network for 25 epochs, which amounted
to processing 53.1 M images. In our case, we trained for
200 epochs on the original fold size of 708 images, but
generated new observations at each epoch. Our network only

0 50 100 150 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

M
SE

Fold 1

Train Loss
Test Loss

0 50 100 150 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

M
SE

Fold 2

Train Loss
Test Loss

0 50 100 150 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

M
SE

Fold 3

Train Loss
Test Loss

0 50 100 150 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

M
SE

Fold 4

Train Loss
Test Loss

0 50 100 150 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30

M
SE

Fold 5

Train Loss
Test Loss

0 50 100 150 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

Fold 1

Rectangle Metric Error

0 50 100 150 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

Fold 2

Rectangle Metric Error

0 50 100 150 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

Fold 3

Rectangle Metric Error

0 50 100 150 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

Fold 4

Rectangle Metric Error

0 50 100 150 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

Fold 5

Rectangle Metric Error

Figure 4. Learning behavior of our residual network during cross-
validation training. The left column shows both the train and test loss
convergence for each fold, while the right column shows the rectangle
metric error convergence. The small difference between the train and test
loss indicates no overfitting.

sees a total of 141,600 images, which corresponds to 15x
fewer observations. Using a single NVIDIA K80 GPU, it
only took around 6 hours to train our network on one fold.
Our framework is more difficult, but also more convenient
because it is less computationally demanding.

To understand the difference between our training frame-
work with on-line data augmentation and Redmon et al.’s
training framework with off-line data augmentation, we
fined-tuned an ImageNet pre-trained AlexNet on the Cornell
dataset. Note that we used the same hyper-parameters and
the same input modalities (RGD) as reported in [4] to train
the network. We obtained 18.30% and 18.68% rectangle
metric errors for the image-wise and object-wise splits,
which represents absolute performance reductions of 6.30%
and 5.78% respectively. Although our residual network per-
formances are relatively similar to Redmon et al.’s AlexNet

performances, they are more different when compared to
AlexNet performances on our training framework.

Another approach worth mentioning is NKM-N, which
has the best performances in both the image-wise and object-
wise splits. This approach is however not usable for real-time
processing because of its speed performance at test time.
As presented in Table II, NKM-N takes more than a minute
to process an image while our approach processes around
11.5 images per second. This is due to the tedious sliding-
windows technique used by the authors for detection, which
is more computationally demanding than the optimized 2D
convolutions in CNNs.

V. DISCUSSION

One important aspect to consider when training CNNs is
overfitting. Since deep neural networks usually have millions
of parameters, they can easily overfit to the training data,
especially when the number of observations is small. A
straightforward test to perform for monitoring overfitting
is looking at the distance between the train and test loss.
Figure 4 presents the learning behavior of our residual
network for each cross-validation fold. As shown in the left
column, the train and test losses have a steady and similar
decrease. Even though we do not use Dropout [26] to further
regularize our network, these results show that the network
is not in an overfitting regime.

Due to miss-labeling in the dataset, the rectangle metric
performance can occasionally vary from one epoch to an-
other. As shown in the right column of Figure 4, the score
sometimes significantly changes even though the train loss
varies slowly. To understand why this is the case, we show
in Figure 5 an example of predicted grasp rectangles from
our residual network. According to the rectangle metric,
the top example is considered a success, while the middle
and bottom ones are considered failures. It is however
conceivable that grasping the scissors using the candidate
grasp rectangle would be a success even though the rectangle
metric labels the detection as a failure. The predicted grasp
rectangles are indeed too wide to give a good Jaccard
index, but a gripper with two parallel plate-gripping fingers
would have succeeded by pinching the object. Although the
rectangle metric is convenient due to its resemblance to
bounding box in vision, it can add non-existing physical
constraints that negatively bias the reported performances.

As we previously mentioned in Section III-C, we did
not use pre-training in our residual network experiments.
We instead randomly initialized the weights following He
et al.’s initialization approach [25]. This leaves open the
possibility of pre-training our network on a large external
RGBD dataset prior to training it on the Cornell task. For
instance, the recently published grasping dataset containing
around 650,000 grasp attempts would be a candidate of
choice [17]. The authors gathered Kinect RGBD images
of grasp attempts from various camera placements and

Network Prediction Ground Truth

Figure 5. Examples of detection success (top example) and failures
(middle and bottom). The left column shows the candidate rectangles
predicted by our network, while the right column shows the ground truth. A
rectangle with a large width indicates that the network is confident about its
prediction. Although the middle example is considered a failure according
to the rectangle metric, the grasping system would still have been able to
grasp the scissors using the predicted rectangle.

hardware platforms using up to 14 robotic manipulators.
Although the dataset is large by nowadays standards (around
886 GB) and training would require several GPUs, features
learned on these highly diverse observations would be gen-
eral and usable in several grasping contexts.

VI. CONCLUSION

The grasp localization module is an essential element
for automating the grasping of ordinary, everyday objects.
Generally viewed as a vision detection problem, its goal
is localizing regions of high graspability by interpreting
light and depth information. Recent developments in deep
learning have made deep convolutional neural networks the
model of choice for solving vision-related problems. In
this paper, we investigated the use of residual networks
for grasp localization. Our preliminary experiments have
shown that the global average pooling layer at the end of the

convolutional stage in a standard residual network removes
the spatial correlation of the back-propagated error signal.
The network cannot spatially correlate its mistakes on the
confidence map and learn to localize good grasp regions. We
proposed applying the global average pooling layer only on
the grasp rectangle predictions and use a flattening layer
for the confidence scores. For reducing overfitting due to
flattening high order tensors, we also proposed reducing the
spatial size of the feature maps prior to flattening by in-
creasing the number of residual stages. Our residual network
obtained state-of-the-art performances on the Cornell dataset
without pre-training and with on-line data augmentation. Our
network obtained better performances with faster training
time, convergence rate and a high prediction speed. Pre-
training our residual network on a large RGBD dataset then
fine-tuning it on the Cornell dataset would be an interesting
avenue for future work.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Cor-
poration for providing the Tesla K80 GPUs for our experi-
ments.

REFERENCES

[1] C. Eppner, S. Höfer, R. Jonschkowski, R. Martın-Martın,
A. Sieverling, V. Wall, and O. Brock, “Lessons from the
amazon picking challenge: Four aspects of building robotic
systems,” in RSS, 2016.

[2] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for
grasp planning,” in ICRA. IEEE, 2015, pp. 4304–4311.

[3] L. Pinto and A. Gupta, “Supersizing self-supervision: Learn-
ing to grasp from 50k tries and 700 robot hours,” in ICRA,
2016.

[4] J. Redmon and A. Angelova, “Real-time grasp detection using
convolutional neural networks,” in ICRA, 2015, pp. 1316–
1322.

[5] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting
robotic grasps,” IJRR, vol. 34, no. 4-5, pp. 705–724, 2015.

[6] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of
novel objects using vision,” IJRR, vol. 27, no. 2, pp. 157–173,
2008.

[7] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-
resolution using deep convolutional networks,” PAMI, vol. 38,
no. 2, pp. 295–307, 2016.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in
NIPS, 2015, pp. 91–99.

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, “Backpropagation
applied to handwritten zip code recognition,” Neural compu-
tation, vol. 1, no. 4, pp. 541–551, 1989.

[10] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski,
A. Morales, T. Asfour, S. Moisio, J. Bohg, J. Kuffner et al.,
“Opengrasp: a toolkit for robot grasping simulation,” in
SIMPAR. Springer, 2010, pp. 109–120.

[11] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for
robotic grasping,” IEEE Robotics & Automation Magazine,
vol. 11, no. 4, pp. 110–122, 2004.

[12] R. Detry, C. H. Ek, M. Madry, and D. Kragic, “Learning a
dictionary of prototypical grasp-predicting parts from grasp-
ing experience,” in ICRA, 2013, pp. 601–608.

[13] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from
RGBD images: Learning using a new rectangle representa-
tion,” in ICRA, 2011, pp. 3304–3311.

[14] C. Sun, Y. Yu, H. Liu, and J. Gu, “Robotic grasp detection
using extreme learning machine,” in ROBIO. IEEE, 2015,
pp. 1115–1120.

[15] L. Trottier, P. Giguère, and B. Chaib-draa, “Sparse dictionary
learning for identifying grasp locations,” in WACV, 2017.

[16] Z. Wang, Z. Li, B. Wang, and H. Liu, “Robot grasp detec-
tion using multimodal deep convolutional neural networks,”
Advances in Mechanical Engineering, vol. 8, no. 9, p.
1687814016668077, 2016.

[17] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with largescale
data collection,” in International Symposium on Experimental
Robotics, 2016.

[18] A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng, “Robotic
grasping of novel objects,” in NIPS. MIT Press, 2006, pp.
1209–1216.

[19] Q. V. Le, D. Kamm, A. F. Kara, and A. Y. Ng, “Learning to
grasp objects with multiple contact points,” in ICRA. IEEE,
2010, pp. 5062–5069.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016, pp. 770–778.

[21] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway
networks,” arXiv preprint arXiv:1505.00387, 2015.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings
in deep residual networks,” arXiv preprint arXiv:1603.05027,
2016.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
arXiv preprint arXiv:1502.03167, 2015.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
NIPS, 2012, pp. 1097–1105.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification,” in ICCV, 2015, pp. 1026–1034.

[26] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting.” JMLR, vol. 15, no. 1, pp. 1929–
1958, 2014.

