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Abstract—1In recent years, autonomous robots have been
increasingly deployed in unknown environments. In order to
cope with the unknown, the capability to train autonomously
the perception model of an environment is highly desirable.
By developing proper sensing technology, this task can be
significantly facilitated. In this paper, we explore the problem of
artificial tactile perception, aimed at surface identification. To
this end, we introduce a simple tactile probe based upon triple
axis accelerometers. This tactile probe was tested on a large
collection (28) of flat surfaces, using a controlled test bed. In
a first set of experiments, we demonstrated the discrimination
capabilities of the probe, by achieving a surface recognition
rate of 96.7% with 1 second of data, using a Support Vector
Machine classifier. We also demonstrate that similar results can
be achieved without the need for ground truth or the actual
number of surfaces using Dirichlet process mixture models,
a Bayesian nonparametric approach. These two experiments
indicate that tactile sensing is, thus, a potentially viable solution
for autonomous surface identification.

I. INTRODUCTION

Tactile sensing is a fundamental mechanism which al-
lows animals to interact with their environment, perform
object identification and enables them to better understand
their surroundings. In order to replicate a tactile sensing
mechanism on a robot, several obstacles must be overcome.
In a sense, this explains the slow development of tactile
sensing technology when compared to the vision sensing
technology [1]. Nonetheless, over the years, many types of
tactile probes were developed to mimic the sense of touch,
either for texture recognition or form perception.

In this paper, we present an improved tactile probe that
employs an accelerometer as a transducer. Tactile probes
have the capacity to gather information related to the me-
chanical properties of surfaces. These could be the elasticity,
the hardness, or simply the fine surface texture often present
on many different objects. As this information is not available
to vision system, tactile-based systems might offer a more
robust way to object identification, since they often differ
widely in material composition.

Although shape estimation is an important part of tactile
perception, we focus strictly on surface recognition in this
paper. Surface recognition performed through the use of a
contact sensor has a tremendous potential. Indeed, tactile
sensing is, by its very nature, immune to numerous prob-
lems that plague vision-based sensing, such as illumination
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changes, occlusion, or the high-dimensionality output (mil-
lions of pixels) of cameras. Consequently, tactile perception
could be used in challenging environments, where vision
systems are difficult to operate. In outdoor settings for
example, large and varying illumination changes are present,
complicating the use of vision.

The information captured by a tactile probe can be used
to train an artificial perception system. If the data labels
are known, supervised learning techniques can be used. If
the labels are unknown, one can employ an unsupervised
learning method to perform the same task.

The rest of this work is organized as follows. Section II
discusses other designs of surface sensing mechanisms. Sec-
tion III describes our tactile probe and the data gathering
process. Section IV describes the supervised classification
method employed to qualify the performance of the tactile
probe. Section V presents an unsupervised learning method
used to learn autonomously to differentiate different surfaces,
without the need to specify the number of classes. Finally,
section VI concludes this paper and presents future works.

II. PREVIOUS WORK

Numerous tactile sensing technologies have been proposed
throughout the years. They are in the likes of artificial
whisker [2][3][4][5], array of whiskers [6][7], or artificial
antennas [8]. These devices can generate surface profile,
perform rudimentary object recognition or provide distance
estimation. Even finger-like devices [9] were developed for
the purpose of enabling manipulators with slip conditions
detection, as well as providing some form of texture sensing.

Schultz et al. [10] explored the use of power spectral
analysis on strain gauges signals from friction-induced vi-
brations picked up by whiskers, in order to differentiate
between smooth and rough textures. Still, no formal clas-
sification results were produced. Hipp er al. [11] presented
more extensive results regarding texture classification with
actuated whiskers. The classification, using multidimensional
Gaussian density estimators, achieved a success rate of 39%
for eight different grades of sand paper. Fend et al. [12],
using a microphone to record the vibrations induced in gen-
uine rat whiskers, conducted experiments over 11 surfaces.
The power spectra of individual sweeps were smoothed and
combined together to generate an average power spectrum.
By comparing the Euclidean distances between these power
curves, Fend and his colleagues concluded that texture iden-
tification could be improved by using all whiskers at the
same time and by increasing the number of sweeps.



For their part, Roy er al. [13] presented a tactile probe,
which tapped against a surface instead of rubbing it. The
classification was achieved by comparing windowed power
spectra of the sound generated by the impact. The classifi-
cation success rate, over 6 surfaces, was 95%. However, it
is unclear whether this approach can detect small asperities,
an important cue in texture identification.

Recently, de Boissieu er al. [14] produced a finger-like
device sensitive to friction forces. The classification experi-
ments were performed on 10 types of paper with a success
rate around 70%. This is an impressive result considering the
small differences in textures. Even so, the significant wear to
the rubber tip formed during the experiments indicates a lack
of physical robustness, significantly reducing its applicability
to industrial applications.

III. TACTILE SENSOR AND ACQUISITION SYSTEM

A. Tactile Sensor Design

Our tactile probe goes beyond simply capturing surface
textures, as was done previously [10][11][12]. Instead, the
weight and inertia of the probe’s stylus acts as a probing
mechanism. The dynamic behavior of the probe will depend
highly on the viscoelastic properties of the surface, as
well as its texture. For example, surfaces such as rubber
or textile cannot induce high-frequency components in the
accelerations, in contrast with hard surfaces like steel.

The tactile sensor we present in this paper is an improved
version of an earlier prototype [15]. The newer version
consists in a 2.38 mm diameter standard steel stylus attached
on a triple axis digital MEMS accelerometer (ADXL345
from Analog Devices). Both are attached on a mounting
bracket, which has a 45 degree angle relative to the surface
to be probed, as depicted in Fig. 1. The accelerometer
is placed near the tip of the probe to ensure maximum
vibration capture. The combined weight of the stylus, the
accelerometer and the mounting bracket is approximately
16 grams. The mounting bracket was fixed to a turntable
with a flexible attachment made of thick leather. This allows
the probe to rotate freely in a plane perpendicular to the
X axis, while granting small rotations in other directions.
This permits the capture of accelerations in all three axes.
Moreover, the flexible attachment reduces the mechanical
coupling between the turntable and the mounting bracket.

Flexible
Attachment

Accelerometer

Mounting
" Bracket

Fig. 1. Design of the tactile probe with a triple axis accelerometer.

The passive tactile probe gathers information about a
surface through a rubbing action, while the surface is rotated
by the turntable. To minimize tangential forces on the stylus’
tip, the tactile probe is oriented in such a way that the X axis
of the accelerometer is parallel to a line going from the tip to
the rotation center of the turntable. A fine tip was selected,
as to be able to track fine surface asperities. The speed of
the surface was kept constant by the turntable. For each data
collection, the Revolution per Minute (RPM) was maintained
to 45.0 and measured by a digital tachometer (TC811B,
Reliability Direct). The distance between the center of the
turntable and the tip was 125.0 mm, giving a constant surface
speed of 58.9 cm/s at the stylus’ tip.

(b) Leatherette

(a) Linoleum

(c) Grass carpet

Fig. 2. Picture of 3 discs used in the surface identification experiments.
The complete test set was comprised of 28 discs.

Data collection from the accelerometer device was per-
formed via a Serial Peripheral Interface Bus (SPI) to Uni-
versal Serial Bus (USB) adapter (SUB-20-B from Dimax.)
The accelerometer was configured to collect information at
a data rate of 800Hz. The accelerometer data resolution was
set to 3.9 milli-G, with a maximum range of £5G.

B. Data Set Gathering

The surfaces in the test set were made into 12-inches discs,
as shown Fig. 2, so they can be placed on the turntable. In
total, 28 different surfaces were used to make these discs.
This large number of surfaces was selected to thoroughly
test the discrimination capabilities of the probe. The probe
support had adjustable height to maintain a probe angle of
45 degree, regardless of a discs’ thickness. Combined with
the controlled speed of the turntable, this ensured that the
data gathering process was kept similar between discs.

Two data sets were collected at the same rotation speed.
The first data set, S;n;tiq1, consisted of approximately 20
minutes of recording for each disc. A second data set, S;41i4,
was collected later to evaluate the impact on the mechanical
manipulation between disc changes on the probe’s measure-
ments. It contained the equivalent of 1 minute of recording,
again for each of the 28 surfaces.

C. Selected Signal Features

The raw data from all three accelerometers’ measurements
was divided into 3-by-W sub-matrices a;, with W being the
width of the time window. The following seven features were
extracted from each row of a;:

o f1: variance,

o fa: skewness,

o f3: kurtosis,



o fy: fifth moment,
e f5: sum of the variation over time:
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e fe: number of times 20 uniformly separated thresholds
are crossed, and
o f7: sum of higher half of amplitude spectrum.

Note that these features are a subset of the features employed
in [15], originally adapted from [16]. The mean values of
a; were not used, avoiding the issue of accelerometer drift
or probe angle impacting the classification. After extraction
from a data set, each feature was normalized with a factor
g; so as to have a standard deviation of one. In total, this
yielded a 21 dimensional data point x; per time-window a,
when all three axes, i.e. the rows aj;, as;, and ag; were used:

, 921 f7(ase)]. (D

From observation, we noted that some of these features f;
had non-Gaussian distributions. This was not an issue for
supervised learning with an appropriate classifier, such as
a Support Vector Machine (see Section IV). However, a
subsequent feature linearization step, described in Section
V-C, was required for clustering.

x; = [g1f1(ae), gof (ast), - - .

IV. SUPERVISED CLASSIFICATION

A. Classifier: Support Vector Machine

We quantified the surface identification performance of
our tactile probe by performing supervised learning on data
sets S;pitiar and Syq1i4. Classification was performed using
Support Vector Machines (SVM) from the LIBSVM library
[17]. This is in contrast with our previous results [15],
where classification was performed with an artificial neural
network. We selected a Radial Basis Function (RBF) kernel:

Kkernel(xivxj) = exp(_’nyi - Xj||2),’}/ > 0.

The best values for v and the regularization term C' of the
SVM were found using stratified n-fold cross-validation.

B. Classification Results

The data set S;;,i154; Was split in half, with the odd samples
placed in S;,,;, and the even samples placed in S;.,;. This
ensured that samples in both sets were equally spread over
time: some features f; extracted from soft surfaces varied
over time, as these surfaces experienced some wear. For time-
window size W = 800 (corresponding to 1 second of data
at 800 Hz) and using 50% of the data set, all 28 surfaces
were identified correctly (100.0%) in Sy¢s;. The SVM trained
on Si.qin Was then used to classify the validation test set
Soaia collected two weeks later. The overall classification
rate was lower (96.7%), with the corresponding confusion
matrix shown in Fig. 3. These results point towards some
possible drift in the probe’s response over long periods of
time. We are further investigating this matter.

C. Relevance of using 3 axis

Our previous tactile probe design [15] used a single-axis
accelerometer. Using a 3-axis accelerometer allowed for a
greater amount of information to be collected per unit of
time, as well as collecting information pertaining to the
probe’s lateral sliding motion. This translated in improved
performances, particularly for small time-window sizes W.
To confirm this, we performed the same experiments as in
Section IV-B, but using only one of the 3 outputs of the
accelerometer at a time (X, Y or Z), as well as a shorter
time-window size W = 200. A coarse grid search with 50 %
fold cross-validation was performed to find the C' and ~y val-
ues producing the highest testing classification rate, for each
axis These parameters were used with the results reported
in Table I. These results indicate that the X axis is the
least informative for surface identification, while the Z axis
is the most. This is not surprising, given that accelerations
in the Z direction correspond to a rotation of the probe
around the flexible attachment. Using all three axes surpassed
any single-axis results, confirming the improvement over the
original single axis accelerometer design.

TABLE I
CLASSIFICATION SUCCESS RATES FOR SINGLE AND 3-AXES MODES,
WITH A TIME WINDOW SIZE W = 200.

Axis Strain Stest Svalid
X 88.0% 85.1% | 66.0%
Y 92.9% 90.4% | 73.5%
Z 96.6% 95.0% 81.4%

XYZ 99.6% 99.5% | 92.9%

D. Supervised Classification Results as a Function of W

Using a smaller window size W implies that less informa-
tion is available to perform classification. Assuming that each
feature f; behaves as an estimator, the standard deviation of
the distributions associated with each feature f; should be
proportional to #W The estimated Bayes error for normal
distributions can be found using the erf function:

1+erf( )
Grate = % (2)

The curves plotted in Fig. 4 correspond to the success
rates, as a function of time window size W. A proper
value of A in Eq. 2 was selected to match the top curve.
The relative closeness of this match indicates that, overall,
the distributions in feature space become wider as W is
decreased. Moreover, this test demonstrates that surfaces can
be quickly identified: more than 50 % of the samples in the
validation test set are correctly identified with as little as 15
milliseconds of data.

V. UNSUPERVISED CLASSIFICATION

One of our long-term objectives is to achieve autonomous
learning of low-level perception models of the environment
by mobile agents, by relying on unsupervised learning tech-
niques. A number of unsupervised learning techniques have
been proposed, such as k-means or Normalized-Cut [18].
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A common drawback is the need to provide the number of
clusters present in a data set. The method described in the
following section, the Dirichlet Process Mixture Model [19],
does not have such constraint. Instead, this method estimates
the number of clusters, based on a prior distribution.

A. Clustering: Dirichlet Process Mixture Models

The fundamental aspect of the Dirichlet process mixture
models (DPMMs) is the Dirichlet process (DP). The DP
is a stochastic process, used in Bayesian nonparametric
models of data, and is a distribution over distributions.
It is parameterized by a base distribution Gy, which can
be seen as a prior guess, and a concentration parameter
o, determining the variance of the distribution. Using this
distribution on the parameters of mixture models leads to
the following specification of DPMMs:

G ‘ OZ,GO NDP(a,GQ)
0, G ~G
x; | 0; ~ F(0;)

3)

where I is the data distribution parameterized by 6. The
distribution G, corresponding to the unknown mixture dis-
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Confusion matrix for the validation test set S, 4;;4 using time-window size of W = 800 samples.

tribution, is discrete with probability one and infinite dimen-
sional, providing DPMMs with countably infinite number of
mixture components.

The discreteness and clustering properties of DPs are es-
sential for clustering with DPMMs. These properties become
evident when the distribution G is integrated out to obtain
a prior distribution on component parameters . In fact, as
demonstrated in [20], the prior probability for an observation
x; to join an existing class or to create a new one is:

o ) _ Mg
p(cz =J | Cl:zfl) i—1+a
Ctorall i< i a )
p(e; # j fora J<Z)—m

where ¢; is the class of x; and n_; ; denotes the number of
data belonging to class j, when excluding the i*" observation.
Eq. 4 ensures that large clusters tend to get bigger, since the
probability to join a class is proportional to its size. On the
other hand, the concentration parameter o, which controls the
new class probability, influences the total number of clusters.

To complete the previous prior, we have to specify the
data distribution F'. Then, given a set of observations, along
with DP parameters G and «, the DPMM yields a posterior
distribution over the component parameters of a mixture.
Exact inference for this posterior is analytically intractable.
However, it is possible to directly sample this posterior with
Markov Chain Monte Carlo methods.

B. Dirichlet process mixture of Gaussians

The traditional approach to Gaussians mixture model is
to fix the number of components a priori. However, from
a Bayesian nonparametric perspective, it is not necessary
to fix this number, since it can be automatically inferred
from the data. Thus, the number of clusters in a data set
can be estimated automatically. The DPMM, as shown in
[21], can be used to produce an infinite Gaussian mixture,
thus avoiding the finite representation. This model has been



further extended in [22], with vague priors over the model
hyperparameters. This section introduces a model based on
these previous approaches.

To define a Dirichlet process mixture of Gaussians (DP-
MoG) from the general DPMM, we specify the distribution
F' in the feature space as Gaussian:

where p is the mean and S is the inverse covariance matrix.
These parameters should then be assigned a prior distribution
G). Following the conditionally conjugate model of [22], this
G prior is:

uj | £7R ~ N(£7R_1) (6)
S| 8,5 ~W(B,(BE)7) @)

where WV denotes the Wishart distribution with /3 degrees of
freedom and scale matrix (3%)~!. This prior determines the
expected covariance of a cluster and its expected position in
the feature space. Moreover, to complete the model, we also
put an inverse-gamma prior on a:

o~ ~ G(1/2,1/2). @®)

Since the base distribution Gy might not be exact, vague
hyperpriors are applied on hyperparameters £, R, 8 and X
to obtain a robust model learning Gy. This part assumes
properly scaled data and is omitted for brevity [22].

C. Experiments with Unlabeled Data Sets

We tried to achieve autonomous learning of surfaces,
with as little information as possible provided by a human.
This task is significantly harder than the supervised learning
experiments presented in Section IV. For the unsupervised
learning experiments, the information provided was limited
to which features to extract: no labels were given, and
the true number of surfaces was unspecified. We removed
features f2, f3 and f4; their respective distribution had
high kurtosis, violating the assumption that features are
normally distributed. Transformations were applied on the
remaining features because i) they are strictly positive and
ii) their variance appeared proportional to the distance from
the origin, giving the data sets a conical shape with apex
on the origin. As a result, we used features +/f71, log(fs5),
log(fs) and log(f7), after which we performed a Principal
Component Analysis for dimensionality reduction. For the
experiments, we generated data sets using time-windows size
W of 200, 400, 800 and 1600.

We used the DPMoG model as a prior on Gaussian mix-
tures. For the learning part, we employed a Gibbs sampling
approach based on auxiliary parameters to sample posterior
mixtures [20]. Markov Chain Monte Carlo methods are often
computationally expensive for large data sets. Hence, we
reduced the size of all training sets to 50 samples x; per
surface.

We first evaluated the capacity to recover the number of
distinct surfaces in our tactile data sets for various windows
size W, by sampling the posterior distribution over the

number of classes. Fig. 5 shows the marginal posterior
distributions over K, with the tails truncated for visibility.
If we only consider the largest window size W = 1600, the
distribution gives highest probability to the true number of
surfaces: 28. Using a smaller window size W yields worst
estimates, but they still give good probability to the true
value. This goes in line with the previous results of Section
IV-D that showed that classification is increasingly harder
with a smaller W.
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W = 1600 samples
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Fig. 5. Estimating the number of surfaces in an unlabeled data set. The
most probable number of surfaces are 28 (W=1600), 29 (W=800), 28 (for
W=400) and 26 (W=200), all close or equal to the true value of 28.

To measure the clustering accuracy, we defined a metric
based on pairwise correct classification. It used the hidden
labels to compute a dissimilarity measure with the true
clusters. An error is made when 2 data points are assigned
to the same cluster and should not be, or when they are
in different clusters and should be in the same one. The
resulting clustering accuracy is then 1 minus the error ratio.
A score of 1 is only achieved for a perfect clustering. Fig. 6
shows the clustering accuracy obtained as the Markov chain
evolved. The initial region corresponds to a burn-in period,
and therefore should not be considered until stationarity is
(probably) reached.
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Fig. 6. Clustering accuracy on unlabeled data sets as a function of the
MCMC iteration, for different time window sizes V. For these experiments,
the true number of classes was unspecified.

We used the MAP estimate learned from the unlabeled
data set to predict samples from new data sets S;. The data
sets S; were comprised of samples x; immediately following
the unlabeled training set, with 2800 samples x; in each of
them. To determine the class, we computed the likelihood
of each Gaussian component, one for each class. The label
assigned to a sample x; corresponded to the class with the



highest likelihood. Classification results with this method are
presented in Table II. As can be seen from these results, the
Gaussian components found using the DPMoG method can
be employed successfully to classify unseen labels.

TABLE II
MAP PREDICTION RESULTS ON FIVE DATA SETS S; OF UNSEEN
SAMPLES, WITH THE TRAINED DPMOG MODEL.

Test set Sy So Sg Sy S5
Success rate 99.96% | 99.96% | 99.39% | 99.50% | 98.61%

D. Comparison with other Unsupervised Learning Methods

We compared the DPMoG results with two other un-
supervised learning algorithms: k-means and Expectation-
Maximization for Gaussian mixtures. Contrary to the DP-
MoG we employed, these two algorithms required the true
number of classes to be provided. Each method was ran
10,000 times, and only the best model was kept for compar-
ison purposes. Table III reports the clustering accuracies for
all three methods. The averaged clustering accuracies from
Fig. 6, excluding the burn-in period, compares favorably with
these two methods. This is despite the fact that DPMoG had
to estimate the number of clusters in the data set.

TABLE III
COMPARISON OF CLUSTERING ACCURACIES BETWEEN DIFFERENT
UNSUPERVISED LEARNING METHODS.

Time-window W =200 | W =400 | W =800 | W = 1600
k-means 0.9783 0.9877 0.9947 0.9961
EM 0.9789 0.9807 0.9915 0.9931
DPMoG 0.9776 0.9924 0.9974 0.9999

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented an improved version of a tactile
probe, employing a triple axis accelerometer fixed near the
tip of the stylus. Surface classification was based on seven
features extracted from the accelerometer’s measurements,
in the time and frequency domains. The good discrimination
capabilities of our tactile probe was established by using a
Support Vector Machine classifier, on a data set comprising
28 different surfaces. We evaluated the impact of using 3
axes compared to 1, as well as the impact of the window
size W on the classification. Finally, we demonstrated that
information captured by this tactile probe can be easily
used in the context of unsupervised learning, even when the
number of surfaces in the data set is unknown. This was
accomplished through the use of a Bayesian nonparametric
modeling named Dirichlet process mixture. Overall, these ex-
periments demonstrated that tactile sensing has the potential
for surface identification by autonomous agents.

As part of future works, we are currently investigating the
impact of the tactile probe’s material on its sensitivity to
surfaces. Our current probe design calls for a stiff material,
but this has not been properly justified. Also, the experiments
were conducted at a single velocity (58.9 cm/s). In our case,
this might not be a major issue, since we assume that we can

always control the velocity of the tactile probe, However,
it would be important to quantify this impact. Finally, we
are looking into how this rich tactile information can be
exploited in the context of object recognition.
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