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Abstract— Accurate pose estimation is often a requirement
for robust robotic grasping and manipulation of objects placed
in cluttered, tight environments, such as a shelf with multiple
objects. When deep learning approaches are employed to
perform this task, they typically require a large amount of
training data. However, obtaining precise 6 degrees of freedom
for ground-truth can be prohibitively expensive. This work
therefore proposes an architecture and a training process to
solve this issue. More precisely, we present a weak object
detector that enables localizing objects and estimating their
6D poses in cluttered and occluded scenes. To minimize the
human labor required for annotations, the proposed detector
is trained with a combination of synthetic and a few weakly
annotated real images (as little as 10 images per object), for
which a human provides only a list of objects present in each
image (no time-consuming annotations, such as bounding boxes,
segmentation masks and object poses). To close the gap between
real and synthetic images, we use multiple domain classifiers
trained adversarially. During the inference phase, the resulting
class-specific heatmaps of the weak detector are used to guide
the search of 6D poses of objects. Our proposed approach
is evaluated on several publicly available datasets for pose
estimation. We also evaluated our model on classification and
localization in unsupervised and semi-supervised settings. The
results clearly indicate that this approach could provide an
efficient way toward fully automating the training process of
computer vision models used in robotics.

I. INTRODUCTION

Robotic manipulators are increasingly deployed in chal-
lenging situations that include significant occlusion and clut-
ter. Prime examples are warehouse automation and logistics,
where such manipulators are tasked with picking up specific
items from dense piles of a large variety of objects, as
illustrated in Fig. 1. The difficult nature of this task was high-
lighted during the recent Amazon Robotics Challenges [1].
These robotic manipulation systems are generally endowed
with a perception pipeline that starts with object recognition,
followed by the object’s six degrees-of-freedom (6D) pose
estimation. It is known to to be a computationally challenging
problem, largely due to the combinatorial nature of the
corresponding global search problem. A typical strategy for
pose estimation methods [2]–[5] consists in generating a
large number of candidate 6D poses for each object in
the scene and refining hypotheses with the Iterative Closest
Point (ICP) [6] method or its variants. The computational
efficiency of this search problem is directly affected by
the number of pose hypotheses. Reducing the number of
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Fig. 1: Overview of our approach for 6D pose estimation
at inference time. This figure shows the pipeline for the
drill object of the YCB-video dataset [7]. A deep learning
model is trained with weakly annotated images. Extracted
class-specific heatmaps, along with 3D models and the
depth image, guide the Stochastic Congruent Sets (StoCS)
method [8] to estimate 6D object poses. Further details of
the network are available in Section III.

candidate poses is thus an essential step towards real-time
grasping of objects.

Training Convolutional Neural Networks (CNN) for tasks
such as object detection and segmentation [9]–[11] makes
it possible to narrow down the regions that are used for
searching for object poses in RGB-D images. However,
CNNs typically require large amounts of annotated images
to achieve a good performance. While such large datasets
are publicly available for general-purpose computer vision,
specialized datasets in certain areas such as robotics and
medical image analysis tend to be significantly scarcer and
time-consuming to obtain. In a warehouse context (our target
context), new items are routinely added to inventories. It
is thus impractical to collect and manually annotate a new
dataset every time an inventory gets updated, particularly if it
must cover all possible lighting and arrangement conditions
that a robot may encounter during deployment. This is even
more challenging if one wants this dataset to be collected
by non-expert workers. The main goal of our approach is
thus to reduce such a need for manual labeling, including
completely eliminating bounding boxes, segmentation masks
and 6D ground truth manual annotations.

Our first solution to reduce manual annotations is to
leverage synthetic images generated with a CAD model
rendered on diverse backgrounds. However, the visual fea-
tures difference between real and synthetic images can be



large to the point of leading to poor performance on real
objects. The problem of learning from data sampled from
non-identical distributions is known as domain adaptation.
Domain adaptation has been increasingly seen as a solution
to bridge the gap between domains [12], [13]. Roughly
speaking, domain adaptation tries to generalize the learning
from a source domain to a target domain, or in our case,
from synthetic to real images. Since labeled data in the target
domain is unavailable or limited, the standard way is to
train on labeled source data, while trying to minimize the
distribution discrepancy between source and target domains.

While having a small labeled dataset on a target domain
allows to boost performances, it may still require significant
human effort for the annotations. Our second solution is
to use weakly supervised learning, which significantly de-
creases annotation efforts, albeit with a reduced performance
compared to fully-annotated images. Some methods [14],
[15] have been shown to be able to retrieve a high level
representation of the input data (such as object localization)
while only being trained for object classification. To the best
of our knowledge, this promising kind of approach has not
yet been applied within a robotic manipulation context.

In this paper, we propose a two-step approach for 6D
pose estimation, as shown in Fig. 1. First, we train a
network for classification through domain adaptation, by
using a combination of weakly labeled synthetic and real
color images. During the inference phase, the weakly su-
pervised network generates class-specific heatmaps that are
subsequently refined with an independent 6D pose estimation
method called Stochastic Congruent Sets (StoCS) [8]. Our
complete method achieves competitive results on the YCB-
video object dataset [7] and Occluded Linemod [3] while
using only synthetic images and few weakly labeled real
images (as little as 10) per object in training. We also
empirically demonstrate that for our test case, using domain
adaptation in semi-supervised settings is preferable than
training in unsupervised settings and fine-tuning on available
weakly labeled real images, a commonly-accepted strategy
when only a few images from the target domain are available.

II. RELATED WORKS

In this paper, we aim at performing object localization
and 6D pose estimation with a deep network, with minimal
human labeling efforts. Our approach is based on training
from synthetic and weakly labeled real images, via domain
adaptation. These various concepts are discussed below.

6D Pose Estimation Recent literature in pose estimation
focuses on learning to predict 6D poses using deep learning
techniques. For example, [7] predicts separately the object
center in images for translation and regresses over the
quaternion representation for predicting the rotation. Another
approach is to first predict 3D object coordinates, followed
by a RANSAC-based scheme to predict the object’s pose
[4], [5]. Similarly, [5] uses geometric consistency to refine
the predictions from the learned model. These methods,
however, need access to several images that are manually
labeled with the full object poses, which is time-consuming

to acquire. Some other approaches make use of the object
segmentation output to guide a global search process for
estimating object poses in the scene [8], [16], [17]. Although
the search process could compensate for errors in prediction
when the segmentation module is trained with synthetic
data, the domain gap could be large, and a computationally
expensive search process may be needed to bridge this gap.

Learning with Synthetic Data Training with synthetic
data has recently gained significant traction, as shown by the
multiple synthetic datasets recently available [18]–[23], with
some focusing on optimizing the realism of the generated
images. While the latter can decrease to a certain degree the
gap between real and synthetic images, it somehow defeats
the purpose of using simulation as a cost-effective way to
create training data. To circumvent this issue, [24], [25]
proposed instead to create images using segmented object
instances copied on real images. This type of approach, akin
to data augmentation, is however limited to the number of
object views and illuminations that are available in the orig-
inal dataset. Recently, [26], [27] showed promising results
by training object detectors with 3D models rendered in
simulation with randomized parameters, such as lighting,
number of objects, object poses, and backgrounds. While
in [26] they only uses synthetic images in training, [27]
demonstrated the benefits of fine-tuning on a limited set of
real labeled images. The last one also showed that using
photorealistic synthetic images does not necessarily improve
object detection, compared to training on a less realistic
synthetic dataset generated with randomized parameters.

Domain Adaptation Domain adaptation techniques [12],
[13] can serve to decrease the distribution discrepancy be-
tween different domains, such as real vs. synthetic. The
popular DANN [28] approach relies on two classifiers: one
for the desired task, trained on labeled data from a source
domain, and another one (called domain classifier) that
classifies whether the input data is from the source or target
domain. Both classifiers share the first part of the network,
which acts as a feature extractor. The network is trained
in an adversarial manner: domain classifier parameters are
optimized to minimize the domain classification loss, and
shared parameters are optimized to maximize the domain
classification loss. It is possible to achieve this minimax
optimization in a single step by using a gradient reversal
layer that reverses the sign of the gradient between shared
and non-shared parameters of the domain classifier. To the
best of our knowledge, the present work is the first use a
DANN-like approach for point-wise object localization, a
fundamental problem in robotic manipulation.

Weakly Supervised Learning We are interested in weakly
supervised learning with inexact supervision, for which only
coarse-grained labels are available [29]. In [14], a network
was trained only with weak image-level labels (classes that
are present in images, but not their position) and max-pooling
was used to retrieve approximate location of objects. The
proposed WILDCAT model [15] performs classification and
weakly supervised point-wise detection and segmentation.
This architecture learns multiple localized features for each
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Fig. 2: Overview of the proposed approach for object localization and 6D pose estimation with domain adaptation, using a
mix of synthetic images and weakly labeled real images.

class, and uses a spatial pooling strategy that generalizes to
many ones (max pooling, global average pooling and nega-
tive evidence). In the present work, we push the paradigm
of minimum human supervision even further. To this effect,
we propose to train WILDCAT with synthetic images, in
addition to weakly supervised real ones, and use MADA (a
variant of DANN) for domain adaptation.

III. PROPOSED APPROACH

We present here our approach to object localization and
6D pose estimation. It is trained using a mix of synthetic
and real images and only requires weak annotations (only
class-presence) in both domains.

A. Overview

Figure 2 depicts an overview of our proposed system. It
comprises i) a ResNet-50 model pre-trained on ImageNet
as a feature extractor (green), ii) a weak classifier inspired
from the WILDCAT model [15] (blue), iii) the Stochastic
Congruent Sets (StoCS) for 6D pose estimation (red) [8],
and iv) the MADA domain adaptation network to bridge
the gap between synthetic and real data. During the in-
ference phase, the domain adaptation part of the network
is discarded. Given a test image, class-specific heatmaps
are generated by the network. These heatmaps indicate the
most probable locations of each object in the image. This
probability distribution is then fed to StoCS, a robust pose
estimation algorithm that is specifically designed to deal with
noisy localization. To force the feature extractor to extract
similar features for both synthetic and real images, a MADA
module (described below) is employed. MADA’s purpose is
to generate gradients during training (via a reversal layer) in
order to improve the generalization capabilities of the feature
extractor.

B. Synthetic Data Generation

For synthetic data generation, we used a modified version
of the SIXD toolkit1. This toolkit generates color and depth
images of 3D object models rendered on black backgrounds.
Virtual camera viewpoints are sampled on spheres of dif-
ferent radii, following the approach described in [30]. We
extended the toolkit with the functionality of rendering
more than one object per image, and also used random
backgrounds taken from the LSUN dataset [31]. Similarly to
recent domain randomization techniques [32], we observed
from our experiments that these simple modifications help
transferring from simulation to real environments where there
are multiple objects of interest, occlusions and diverse back-
grounds. Figure 2 displays some examples of the generated
synthetic images that we used to train our network.

C. Weakly Supervised Learning with WILDCAT

The images used for training our system are weakly
labeled: only a list of object classes present in the image
is provided. In order to recover localization from such
weak labels, we leverage the WILDCAT architecture [15].
Indeed, WILDCAT is able to recover localization information
through its high-level feature map, even though it is only
trained with a classification loss. As a feature extractor, we
employ a ResNet-50 (pretrained on ImageNet) for which
the last layers (global average pooling and fully connected
layers) are removed, as depicted in Figure 2. The WILDCAT
architecture added on top of this ResNet-50 comprises three
main modules: a multimap transfer layer, a class pooling
layer and a spatial pooling layer. The multimap transfer
layer consists of 1 × 1 convolutions that extracts M class-
specific modalities per class C, with M = 8 as per the
original paper [15]. The class pooling module is an average
pooling layer that reduces the number of feature maps

1https://github.com/thodan/sixd_toolkit



from MC to C. Then, the spatial pooling module selects
k regions with maximum/minimum activations to calculate
scores for each class. The classification loss for this module
is a multi-label one-versus-all loss based on max-entropy
(MultiLabelSoftMarginLoss in PyTorch). The classification
scores are then rescaled between 0 and 1 to cooperate with
MADA.

D. Multi-Adversarial Domain Adaptation with MADA

We used the Multi-Adversarial Domain Adaptation
(MADA) approach [33] to bridge the “reality gap”. MADA
extends the Domain Adversarial Networks (DANN) ap-
proach [28] by using one domain discriminator per class,
instead of a single global discriminator as in the original
version of DANN [28]. Having one discriminator per class
has been found to help aligning class-specific features be-
tween domains. In MADA, the loss Ld for the K domain
discriminators and input xi is defined as:

Ld =
1

n

K∑
k=1

∑
xi∈Ds∪Dt

Lk
d

(
Gk

d

(
ŷki Gf (xi)

)
, di

)
, (1)

wherein i ∈ {1, . . . , n}, and n = ns+nt is the total number
of training images in source domain Ds (synthetic images)
and the target domain Dt (real images). Gf is the feature
extractor (the same for both domains), ŷki is the probability
of label k for image xi. This probability ŷki is the output
of the weak classifier WILDCAT. Gk

d is the k-th domain
discriminator and Lk

d is its cross-entropy loss, given the
ground truth domain di ∈ {synthetic, real} of image xi.
Our global objective function is:

C =
1

n

∑
xi∈D

Ly

(
Gy

(
Gf (xi)

)
, yi

)
− λLd , (2)

where Ly is the classification loss, Ld the domain loss and
λ has been found to work well with a value of 0.5. The
heat-map probability distribution extracted from WILDCAT
is used to guide the StoCS algorithm in its search for 6D
poses, as explained in the next section.

E. Pose Estimation with Stochastic Congruent Sets (StoCS)

The StoCS method [8] is a robust pose estimator that
predicts the 6D pose of an object in a depth image from its
3D model and a probability heatmap. We employ a min-max
normalization on the class-specific heatmaps of the Wildcat
network, transforming them into a probability heatmaps wpi ,
using the per-class minimum (wmin) and maximum (wmax)
values:

πpi→Ok
=

wpi
− wmin

wmax − wmin
. (3)

This generates a heatmap providing the probability π of
an object Ok being located at a given pixel pi. The StoCS
algorithm then follows the paradigm of a randomized
alignment technique. It does so by iteratively sampling a
set of four points, called a base B, on the point cloud S
and finds corresponding set of points on the object model
M . Each corresponding set of four points defines a rigid

transformation T , for which an alignment score is computed
between the transformed model cloud and the heatmap for
that object. The optimization criteria is defined as

Topt = argmaxT
∑

mi∈Mk

f(mi, T, Sk), (4)

f(mi, T, Sk) = πk(s∗), if | T (mi)− s∗ |< δs. (5)

The base sampling process in this algorithm considers the
joint probability of all four points belonging to the object
in question, given as

Pr(B → Ok) =
1

Z

4∏
i=1

{φnode(bi)
j<i∏
j=1

φedge(bi, bj)}. (6)

where φnode is obtained from the probability heatmap and
φedge is computed based on the point-pair features of the
pre-processed object model. Thus, the method combines the
normalized output of the Wildcat network with the geometric
model of objects to obtain base samples which belong to the
object with high probability.

In the next two Sections, we demonstrate the usefulness
of our approach. First in Section IV, we quantify the im-
portance of each component (Wildcat, MADA) in order to
train a network that generates relevant feature maps from
weakly labeled images. In Section V, we then evaluate the
performance of using these heatmaps with StoCS for rapid
6D pose estimation, which is the final goal of our paper.

IV. WEAKLY SUPERVISED LEARNING EXPERIMENTS FOR
OBJECT DETECTION AND CLASSIFICATION

In this first experimental section, we perform an ablation
study to evaluate the impact of various components for
classification and point-wise localization. We first tested our
approach without any human labeling, as a baseline. We then
evaluated the gain obtained by employing various numbers
of weakly labeled images for four semi-supervised strategies.

We performed these evaluations on the YCB-video
dataset [7]. This dataset contains 21 objects with available
3D models. It also has full annotations for detection and
pose estimation on 113,198 training images and 20,531 test
images. A subset of 2,949 test images (keyframes) is also
available. Our results are reported for this more challenging
subset, since most images in the bigger test set are video
frames that are too similar and would report optimistic
results.

For these experiments, we trained our network for 20
epochs (500 iterations per epoch) with a batch size of 4
images per domain. We used stochastic gradient descent with
a learning rate of 0.001 (decay of 0.1 at epochs 10 and 16)
and a Nesterov momentum of 0.9. The ResNet-50 was pre-
trained on ImageNet and the weights of the first two blocks
were frozen.

A. Unsupervised Domain Adaptation

For this experiment, we trained our model with weakly
labeled synthetic images (WS) and unlabeled real images



(UR). We tested three architecture configurations of do-
main adaptation: 1) without any domain adaptation mod-
ule (WILDCAT model trained on WS), 2) with DANN
(WS+UR) and 3) with MADA (WS+UR). We evaluated
each of these configurations for both classification and de-
tection. For classification, we used the accuracy metric to
evaluate our model’s capacity to discriminate which objects
are in the image. We used a threshold of 0.5 on classification
scores to predict the presence or absence of an object. For de-
tection, we employed the point-wise localization metric [14],
which is a standard metric to evaluate the ability of weakly
supervised networks to localize objects. For each object in
the image, the maximum value in their class-specific heatmap
was used to retrieve the corresponding pixel in the original
image. If this pixel is located inside the bounding box of the
object of interest, it is counted as a good detection. Since
the class-specific heatmap is a reduced scale of the input
image due to pooling, a tolerance equal to the scale factor
was added to the bounding box. In our case, a location in the
class-specific heatmaps corresponds to a region of 32 pixels
in the original image. In Figure 3a, we report the average
scores of the last 5 epochs over 3 independent random runs
for each network variation. These results a) confirm the
importance of employing a domain adaptation strategy to
bridge the reality gap, and b) the necessity of having one
domain discriminator Gk

d for each of the X objects in the
YCB database (MADA), instead of a single one (DANN).
Next, we evaluate the gains obtained by employing weakly-
annotated real images.

B. Semi-Supervised Domain Adaptation

A significant challenge for agile deployment of robots
in industrial environments is that they ideally should be
trained with limited annotated data, both in terms of numbers
of images and of their extensiveness of labeling (no pose
information, just class). We thus evaluated the performance
of four different strategies as a function of the number of
such weakly-labeled real images:

1) Without domain adaptation:
a) Real Only: Trained only on weakly labeled real

images,
b) Fine-Tuning: Trained on synthetic images and then

fine-tuned on weakly labeled real images,
2) With domain adaptation:

a) Fine-Tuning: Trained on synthetic images and then
fine-tuned on weakly labeled real images,

b) Semi-Supervised: Trained with synthetic images and
weakly labeled real images simultaneously.

For 1.a and 1.b, we validate that using fine-tuning on
a network pre-trained with synthetic data is preferable to
training directly on real images. For 2.a and 2.b, we compare
the performance of our approach trained with fine-tuning,
and in a semi-supervised way (using images from both
domains at the same time). We are particularly interested
in comparing the two approaches 2.a and 2.b, since [36]
achieved the lowest error rate compared to any other semi-

(a)

(b)

Fig. 3: Performance analysis. In (a), we compare classifica-
tion accuracy and point-wise detection when no label on real
images are available. In (b), we compare the performance of
different training processes when different numbers of real
images are weakly labeled.

supervised approach by only using fine-tuning.
Our results are summarized in Figure 3b. From them,

we conclude that training with synthetic images improves
classification accuracy drastically, especially when few labels
are available. Also, our approach performs slightly better
when trained in a semi-supervised setting (2.b) than with
a fine-tuning approach (2.a), which is contrary to [36].

In this Section, we justified our architecture, as well as
the training technique employed, to create a network capable
of performing object identification and localisation through
weak learning. In the next Section, we demonstrate how the
feature maps extracted by our network can be employed to
perform precise 6 DoF object pose estimation via StoCS.

V. 6D POSE ESTIMATION EXPERIMENTS

We evaluated our full approach for 6D pose estimation
on YCB-video [7] and Occluded Linemod [3] datasets. We
used the most common metrics to compare with similar
methods. The average distance (ADD) metric [37] measures
the average distance between the pairwise 3D model points
transformed by the ground truth and predicted pose. For
symmetric objects, the ADD-S metric measures the average
distance using the closest point distance. Also, the visible
surface discrepancy [38] compares the distance maps of
rendered models for estimated and ground-truth poses.



Method Modality Supervision Full Dataset Accuracy (%) Accuracy (%)
YCB-Video Occluded Linemod

PoseCNN [7] RGB Pixelwise labels + 6D poses Yes 75.9 24.9
PoseCNN+ICP [7] RGBD Pixelwise labels + 6D poses Yes 93.0 78.0
DeepHeatmaps [34] RGB Pixelwise labels + 6D poses Yes 81.1 28.7

FCN + Drost et. al. [35] RGBD Pixelwise labels Yes 84.0 -
FCN + StoCS [8] RGBD Pixelwise labels Yes 90.1 -

Brachmann et al. [4] RGBD Pixelwise labels + 6D poses Yes - 56.6
Michel et. al. [5] RGBD Pixelwise labels + 6D poses Yes - 76.7

OURS RGBD Object classes No (10 weakly labeled images) 88.7 68.8
OURS RGBD Object classes Yes 90.2 -

OURS (multiscale inference) RGBD Object classes No (10 weakly labeled images) - 76.6
OURS (multiscale inference) RGBD Object classes Yes 93.6 -

TABLE I: Area under the accuracy-threshold curve for 6D Pose estimation on YCB-Video dataset and Occluded Linemod.

We used the same training details mentionned in section
IV. Since the network architecture is fully convolutional, we
also added an experiment for which we combined the output
of the network for 3 different scales of the input image (at
test time only).

A. YCB-Video Dataset

This dataset comprises several frames from 92 video
sequences of cluttered scenes created with 21 YCB objects.
The training for competing methods [7], [34], [35] is per-
formed using 113,199 frames from 80 video sequences with
semantic (pixelwise) and pose labels. For our proposed ap-
proach, we used only 10 randomly sampled weakly annotated
(class labels only) real images per object class combined
with synthetic images. As in [7], we report the area under
the curve (AUC) of the accuracy-threshold curve, using the
ADD-S metric. Results are reported in Table I. Our proposed
method achieves 88.67% accuracy with a limited number
of weakly labeled images and up to 93.60% when using
the full dataset with multiscale inference. It outperforms
competing approaches, with the exception of PoseCNN+ICP,
which performs similarly. However, our approach has a large
computational advantage with an average runtime of 0.6
seconds per object as opposed to approximately 10 seconds
per object for the modified-ICP refinement for PoseCNN. It
also uses a) nearly a hundredfold less real data, and b) also
only using the class labels. This results thus demonstrate that
we can reach fast and competitive results without the need
of 6D fully-annotated real datasets.

B. Occluded Linemod Dataset

This dataset contains 1215 frames from a single video
sequence with pose labels for 9 objects from the LINEMOD
dataset with high level of occlusion. Competing methods are
trained using the standard LINEMOD dataset, which consists
in average of 1220 images per object. In our case, we used 10
real random images per object (manually labelled) on top of
the generated synthetic images, using the weak (class) labels
only. As reported in Table I, our method achieved scores of
68.8% and 76.6% (multiscale) for the ADD evaluation metric
and using a threshold of 10% of the 3D model diameter.
These results compare with state-of-the-art methods while
using less supervision and a fraction of training data. The
multiscale variant (input image at 3 different resolutions)

made our approach more robust to occlusions. We did
not train with the full Linemod training dataset, since the
dataset only has annotations for 1 object per image and
our method requires the full list of objects that are in the
image. Furthermore, we evaluated our approach on the 6D
pose estimation benchmark [38] using the visual discrepency
metric. We evaluated our network with multiscale inference
and we can see in Table II that we are among the top 3 for
the recall score while being the fastest. We also tested the
effect of combining ICP with StoCS. At the cost of more
processing time, we obtain the best performance among the
methods that were evaluated on the benchmark.

Method Recall Score (%) Time (s)
Vidal-18 [39] 59.3 4.7
Drost-10 [35] 55.4 2.3

Brachmann-16 [40] 52.0 4.4
Hodan-15 [41] 51.4 13.5

Brachmann-14 [4] 41.5 1.4
Buch-17-ppfh [42] 37.0 14.2

Kehl-16 [43] 33.9 1.8
OURS (MS) 55.2 0.6

OURS (MS) + ICP 62.1 6.4

TABLE II: Visual discrepency recall scores (%) (cor-
rect pose estimation) for τ = 20mm and θ = 0.3 on
Occluded Linemod, based on the 6D pose estimation
benchmark [38]. MS means multiscale.

VI. CONCLUSION

In this paper, we explored the problem of 6D pose esti-
mation in the context of limited annotated training datasets.
To this effect, we demonstrated that the output of a weakly-
trained network is sufficiently rich to perform full 6D pose
estimation. Pose estimation experiments on two datasets
showed that our approach is competitive with recent ap-
proaches (such as PoseCNN), despite requiring significantly
less annotated images. Most importantly, our annotation level
requirement for real images is much weaker, as we only need
a class label without any spatial information (either bounding
box or full 6D ground truth). In this end, this makes our ap-
proach compatible with an agile automated warehouse, where
new objects to be manipulated are constantly introduced in
a training database by non-expert employees.
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