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Abstract— Cooperative localization is one of the fundamental
techniques in GPS-denied environments, such as underwater,
indoor, or on other planets, where teams of robots use each
other to improve their pose estimation. In this paper, we present
a novel schema for performing cooperative localization using
bearing only measurements. These measurements correspond
to the angles of pairs of landmarks located on each robot,
extracted from camera images. Thus, the only exteroceptive
measurements used are the camera images taken by each robot,
under the condition that both cameras are mutually visible.
An analytical solution is derived, together with an analysis of
uncertainty as a function to the relative pose of the robots.
A theoretical comparison with a standard stereo camera pose
reconstruction is also provided. Finally, the feasibility and
performance of the proposed method were validated, through
simulations and experiments with a mobile robot setup.

I. INTRODUCTION

The methodology of Cooperative Localization (CL) is a
popular localization approach for teams of robots, in situa-
tions where external measurements of the environment are
not reliable or even unavailable. The key concept is to utilize
proprioceptive measurements together with measurements
relative to other robots to get an accurate estimate of the
pose of each robot. In this paradigm, no external positioning
systems are available, such as GPS or external cameras
setups that are frequently used in motion capture systems.

Underwater and underground environments, indoor areas,
as well as, areas on other planets are all GPS denied areas
where CL can improve the accuracy of state estimation.
The most important contribution of CL is the decoupling
of uncertainty from the environment. When robots operate
in an unknown environments, the statistical properties of the
noise affecting their sensors is, at best, an educated guess. For
example, poor reflectance of walls can give skewed results
in range finders and distorted images to cameras. Similarly,
spills on the floor can affect the odometric measurements.
By carefully engineering robot tracking sensors, usually a
sensor on one robot and a target on the other, the uncertainty
increase is bounded by the known parameters of the system.

For robots moving in 2D, the relative information between
any two robots can be measured as a triplet of one distance
and two angles z = [l, θ, φ]; where l is the distance between
the two robots, θ is the bearing at which the observing
robot sees the observed robot, and finally, φ is the perceived
orientation of the observed robot. When robustness and
minimal uncertainty is more valued than efficiency [1], [2], a
team of robots will always keep some robots stationary to act
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Fig. 1. An iRobot Create with a USB camera and a four marker target
mounted on it. A Hokuyo laser range finder can be seen behind which was
used to collect ground truth measurements.

as fixed reference points, while others move. Consequently
the uncertainty accumulation results only from the noise of
the robot tracker sensor. When efficiency is important and
all robots move at the same time [3], [4] the uncertainty
reduction is proportional to the number of robots [5]. Most
approaches up to now utilized direct measurements of the
relative distance l between two robots. In this paper, we
propose a novel scheme where only relative angles are used.
As such, a vision based sensor mounted on each robot suffice
to achieve localization; see Fig. 1 for an early prototype 1.

Traditionally, different probabilistic reasoning algorithms
have been employed to combine the sensor data into an
accurate estimate of the collective pose of the robot team [6],
[7]. In this paper, we present an analytical calculation
of the robot’s pose together with a study on the different
factors that affect the uncertainty accumulation, such as,
distance between the robots and also relative orientation;
probabilistically fusing odometry measurements with the
robot tracker data is beyond the scope of this paper.

In the following section, an overview of related work is
provided. Section III describes the CL problem we are ad-
dressing, as well as its approximate solution. Next in Section
IV, we present an uncertainty study based on an omnidirec-
tional camera model. This study includes a comparison with
a stereo camera localization system. Experimental results
from a prototype system are presented. Finally, we present
future directions for this work.

II. RELATED WORK

The first time cooperative localization was used was in the
work of Kurazume et al. [1] termed cooperative positioning.
The authors studied the effect of CL to the uncertainty
reduction by keeping at least a member of the robot team

1In this setup, we placed two sets of two different landmarks, in order to
find the best type of LED markers.



stationary. Early work presented results from simulation,
later work [8] used a laser scanner and a cube-target to
recover range and bearing between robots and derived opti-
mal motion strategies. A vision based system with a helical-
pattern was presented in [9] recovering range bearing and the
orientation of the observed robot and was used in a follow-
the-leader scenarion. The term cooperative localization was
used in [10] using the helical pattern to facilitate mapping.
The accuracy of the vision based system was severely limited
by discretization errors. Later work used a laser range finder
and a three plane target producing estimates on the order of
0.01 m accuracy [11]. Alternative vision based detection [12]
used colored cylinders. Using CL with a team of small robots
Grabowski et al. [13] employed range only estimates from a
single sonar transducer with centimeter accuracy. Ultrasound
transducers were used also in [14] with similar accuracy.

Alternative approaches used different sensors to provide:
the bearing of the observed robot using omnidirectional
cameras [15], [16]; or both bearing and distance, with stereo
vision and active lighting in [17] and combining vision and
laser range finders in [18]. Relative bearing and/or range has
been employed in a constraint optimization framework [19].
An analysis of the different sensor modalities with solutions
to range only [20] in 2D [21] and in 3D [22] was presented.

The first ever analytical evaluation of estimating the un-
certainty propagation during CL was presented in [5]. The
initial formulation was based on the algorithm described in
[23]. The main difference was that the robots instead of
measuring their relative orientations, had access to absolute
orientation measurements. Further studies of performance
were presented in [24].

III. DESCRIPTION OF THE PROBLEM

The problem of cooperative localization of two robots we
are addressing consists of combining measurements relative
to each other, in order to recover the individual robot poses in
a common frame of reference. For simplicity, let us consider
two robots (A and B) that are moving on a plane, their state
described as follows:

~xi = [xi, yi, θi]
T (1)

where [x, y] describes the position and θ the orientation. Each
robot i is equipped with a number of identifiable co-linear
visual markers; in our implementation three landmarks were
used (LED lights) placed at equal distance d/2 from each
other. In addition, each robot is equipped with a camera
located directly below the central marker, as depicted in Fig.
2. Using only relative orientation measurements from the two
cameras, the relative position and orientation of one robot
with respect to the other can be derived.

In general, the two robots move on the plane using their
odometry, or other sensors to localize. When two robots
meet, they orient themselves in such a way that each camera
can see the markers on the other robot, and thus, the other
robot’s camera. From this configuration, each robot takes a
picture and transmits it to the other robot. From the pair
of images IA and IB , each robot extracts the following

Fig. 2. The three angles ϕ1 ϕ2 and ϕ3 measured by a single camera. The
angles ϕ1 and ϕ3 correspond to the angular positions, in the image, of the
landmarks. The angle ϕ2 correspond to the angular position of the other
camera.

6 angular measurements: ϕA1 , ϕA2 , ϕA3 , ϕB1 , ϕB2 and ϕB3 .
These angles ϕ correspond to the three visual markers on the
other robot, as depicted in Fig. 2. Central to the proposed
solution is identifying the orientation and location of the
other camera, which will be used as the reference point for
the robot location. The relative localization of B compared
to A will be deduced from:

• the angle α = |ϕB1 − ϕB3 |, corresponding to the angle
between the outer markers of robot A, as seen by camera
B;

• the angle β = ϕA2 , corresponding to the bearing of the
location of camera B within the frame of reference of
A.

These measurements, α and β, induce the following con-
straints on the location of camera B relative to camera A:

• camera B must be located on a circle of radius r =
d/(2 sinα) passing through markers D and E (inscribed
and central angle theorem);

• camera B must be located along a line of angle β, with
respect to camera A.

The intersection of these two constraints, illustrated in Fig.
3, uniquely locates camera B with respect to camera A. The
relative position of A compared to B can also be computed,
using ϕA1 , ϕA3 and ϕB2 in a similar manner. Next, we are
going to derive the analytical expression of the pose of robot
B in the frame of reference of robot A.

Fig. 3. Schema of the localization technique between two robots separated
by an unknown distance l. The angle α between the two visual markers
D and E spaced by d is measured from the image taken by camera B,
yielding a circular constraint. The camera A is used to measure the relative
angle β. Camera B is at the intersection of the circle and the line.



A. Analytical Solution for the position of robot B relative to
robot A

Let us set the origin A = (0, 0) as the position of the
camera on the A robot. The outer landmarks D and E of
robot A are located at LAl = (−d/2, 0) and LAr = (d/2, 0),
respectively. The position of the camera on the B robot is
at B = (xb, yb), with the center of the circumscribing circle
containing the position of robot B and the position of the
two markers D and E on robot A located at C = (xc, yc).
All of these positions are depicted in Fig. 3.

The values of α, β and d will then be used to estimate
the unknown position of robot B relative to A. Let us first
calculate the center and radius r of the circumscribing circle.
From the law of the inscribed angle theorem, the angle D̂CE
between the two markers at the center of the circle C is 2α.
With the origin (0,0) at A and the optical axis of the camera
pointing along the y-axis, the circle must be located directly
in front of camera A, because of the symmetric location of
the markers D and E with respect to camera A. The center
of the circle (0, yc) and its radius r are

yc =
d

2 tanα
, r =

d

2 sinα
. (2)

The distance l = |AB| between the two robots can be
calculated from the triangle ACB, where, |AC| = yc,
|CB| = r and the B̂AC angle is β. From the construction
of the circle

r2 = y2c + |AB|2 − 2yc|AB| cosβ ⇔
|AB| = l = d

2 sinα

(
cosα cosβ +

√
1− cos2 α sin2 β

)
.(3)

Given l, then the position of B is:

B =

[
xb
yb

]
=

[
l cos(90o − β)
l sin(90o − β)

]
=

[
l sin(β)
l cos(β)

]
, (4)

where l is calculated from Eq. 3.

B. Approximate Solution for the position of robot B relative
to robot A

By assuming that l� d, a number of approximations can
be made. Most importantly, we will assume that the camera
A is on the circumscribing circle, as shown as point P in
Fig. 4, as opposed to (0,0). This approximation is possible,
since the distance between P and (0,0) tends to 0 as l/d
grows.

Fig. 4. Geometric relationships used in the approximate solution for the
localization problem.

The angle between the tangent at P and the line PB is
equal to 90o − β. Using the fact that the angle formed by

a chord and a tangent that intersect on a circle is half the
measure of the intercepted arc, we have that the angle γ in
Fig. 4 is equal to:

γ = 2(90o − β). (5)

The approximate position xb from the camera A is:

xb ≈ r sin γ = r sin (2(90o − β)) = r sin 2β. (6)

Combining Eq. 2 and 6, we have:

xb(α, β, d) ≈
d sin 2β

2 sinα
. (7)

The approximate solution for yb is:

yb ≈ r(1− cos(γ)) = r(1 + cos(2β)). (8)

Combining Eq. 2 and 8, we have:

yb(α, β, d) ≈
d(1 + cos(2β))

2 sinα
. (9)

IV. UNCERTAINTY STUDY: JACOBIAN OF xb AND yb

The precision for the localization of robot B relative to A
is a function of the Jacobian J of the measurement functions
xb(α, β, d) and yb(α, β, d):

J =

[
∂xb

∂α
∂xb

∂β
∂xb

∂d
∂yb
∂α

∂yb
∂β

∂yb
∂d

]
(10)

and of the measurement errors of the various angles ϕj . In
this study, we will assume that these errors are distributed
normally, with a standard deviation σϕ. Since the angle α is
based on the difference ϕ1−ϕ3 and assuming that the errors
are uncorrelated2, we have the following standard deviation
on α:

σα =
√
2σϕ.

The angle β simply corresponds to the second angle β = ϕ2,
leading to the following standard deviation on β:

σβ = σϕ.

In order to better see the impact of the distance l on the
precision of localization, we can reformulate Eqs. 7 and 9
in terms of (l, β, d) instead of (α, β, d). This can be done
using the dependency between α and β, through the law of
sines applied to the triangle of Fig. 4 b):

sinα

d
≈ sin(ω)

l
≈ sin(β + 90o)

l
=

cos(β)

l
. (11)

Using this approximation and cos2(β) = 1
2 (1 + cos(2β)),

we get

∂yb
∂α

= − l
2

d
cos(α)

1 + cos(2β)

1 + cos(2β)
= − l

2

d
cos(α). (12)

2There is some amount of correlation, but the error due to neglecting it
is smaller than the actual noise.



Finally, for the conditions where d � l, we get α � 1 and
cos(α) ≈ 1:

∂yb
∂α
≈ − l

2

d
(13)

The next partial derivative is approximated by using Eq.11

∂yb
∂β

= −d sin(2β)
sin(α)

≈ −l sin(2β)
cos(β)

= −2l sin(β) (14)

By making use of the identity sin(2β) = 2 sin(β) cos(β).
The last element for yb, using Eq. 11, gives:

∂yb
∂d

=
(1 + cos(2β))

2 sinα
≈ l(1 + cos(2β))

2d cos(β)
=

l

d
(cos(β)) .

(15)
In like manner, we approximate the partial derivatives of xb:

∂xb
∂α
≈ −d cos(α) sin 2β

2 sin2 α
≈ − l

2

d
tanβ , (16)

∂xb
∂β
≈ d cos 2β

sinα
= l

cos(2β)

cos(β)
. (17)

and
∂xb
∂d
≈ l sin 2β

2d cos(β)
=

l

d
(sin(β)) . (18)

Thus, the Jacobian J of the system is approximated as:

J ≈

[
− l

2

d tanβ l cos(2β)cos(β)
l
d (sin(β))

− l
2

d −2l sin(β) l
d (cos(β))

]
. (19)

Fig. 5 shows the distributions of the estimates of the
position of robot B relative to A, for different angles β and
l = 10 m, using a simulation in matlab. Robot A is located
at the origin (0,0), with its markers D and E located at (-1,0)
and (1,0), respectively. Analysis of these simulation results
confirmed the validity of Eq. 19.

V. COMPARISON WITH OTHER TECHNIQUES

A. Theoretical Comparison with Stereo Camera Based Lo-
calization

Distance and relative heading can be estimated also if
both cameras are located on a single robot, forming a stereo
camera pair. However, our method presents a number of
advantages compared to a stereo system:

• only one camera per robot is required, reducing the
computing load, weight and cost;

• perceived heading φ between the robots can be mea-
sured with higher precision; and

• with more than two robots, all the robots need to be
equipped with stereo pairs, in order to avoid the case
when two robots with only targets meet, thus being
unable to localize.

In this section, we demonstrate that the localization errors
σx and σy are, for all purposes, similar for both systems.
The reason for this similarity is that cameras and view points
can be interchanged, as captured by the Carlsson-Weinshall

Fig. 5. Distribution of pose estimates of camera B with a distance between
the robots of l = 10 m at different relative bearings β, in simulation. The
samples are generated with Gaussian noise

√
2σϕ for α and σϕ for β, with

σϕ =1.745e-3 rad. As can be seen from the distributions at location 1© and
2©, the value of σy is relatively independent of β.

duality principle [25]. The relative heading error, however,
is much smaller for our method.

For this comparison, we model a pair of stereo cameras
with a baseline of d identical to the distance between the
landmarks in our configuration. Both cameras are oriented
so as to see the marker L on robot B, as shown in Fig. 6
b). This baseline d is the same as the distance between the
landmarks used in our proposed method, and is reproduced
again in Fig. 6 a).

B. Derivation of Precision for Stereo Camera

Fig. 6. Comparison between landmark (L) and camera (C) configurations
for our method a) and an equivalent stereo system b). The positions of the
cameras and markers are interchanged.

For this equivalent stereo camera system, the variance in
the location of the target in the space (x, y) is [26]:

σ2
xStereo =

(b2 + x2)y2

2b2f2
σ2
p, (20)

and

σ2
yStereo =

y4

2b2f2
σ2
p, (21)



where σp is the standard deviation of the landmark in the
image plane, f is the focal length and b is the baseline of the
system. Since our system operates in 2D, we have changed
the original notation so that z = y, to conform with our axes.
The error functions for σxStereo and σyStereo in Eqs. 20 and
21 can be expressed in terms of β and σβ , to compare directly
with the errors in our system, based on angles α and β. First,
we take the square root and use f = 1:

σxStereo =

√
b2 + x2√
2bf

yσp =

√
b2 + x2√

2b
yσp. (22)

From the definition of β, we replace x by x = y tan(β) and
move the denominator b inside the square root:

σxStereo =

√
1 + y2

b2 tan(β)2
√
2

yσp. (23)

From the definition of β and a focal distance f = 1, we
get that the position on the image plane is p = tanβ. This
converts the pixel noise σp into angular noise σβ = σϕ:

σp =
∂p

∂β
σϕ =

∂

∂β
tanβσϕ = sec2(β)σϕ. (24)

Replacing σp in Eq. 23 by Eq. 24 and from the problem
definition y = l cos(β), we get that the error on position
σxStereo expressed as a function of β and σϕ is:

σxStereo =

√
1 +

(
l
b sin(β)

)2
√
2 cos(β)

lσϕ . (25)

In a similar manner, we can show that error on position
σyStereo, expressed as a function of σϕ, is equal to:

σyStereo =
l2√
2b
σϕ . (26)

C. Comparison with our Method

We can estimate the error on the x position using partial
derivatives:

σ2
x =

(
∂xb
∂β

σβ

)2

+

(
∂xb
∂α

σα

)2

(27)

since we assume that σd = 0. We have σα =
√
2σϕ and

σβ = σϕ. Taking the expressions from Eq. 19, we have:

σ2
x =

(
l
cos(2β)

cos(β)
σϕ

)2

+

(
− l

2

d
tanβ

√
2σϕ

)2

. (28)

Substituting d = 2b for the baseline definition in [26] and
using standard trigonometric identities, we get:

σx =

√
1 + cos(4β) +

(
l
b sin(β)

)2
√
2 cos(β)

lσϕ . (29)

For a similar level of angular noise σϕ, both systems
perform nearly identically. In fact, Eq 29 only differs from
Eq. 26 by the extra cos(4β) term. However, this term does

not contribute significantly beyond 10o when l� b, since it
is being dominated by ( lbsin(β))

2.
Similarly for σy and using the partial derivatives in Eq.

19, we have:

σ2
y =

(
∂yb
∂β

σβ

)2

+

(
∂yb
∂α

σα

)2

=

(
2 sin2(β) +

l2

4b2

)
l2σ2

ϕ.

(30)
If we only consider the cases where the robots are within

their field of views (β < 45o) and at a distance l� b, then

2 sin2(β)� l2

4b2

and we can approximate Eq. 30:

σy ≈
l2

2b
σϕ . (31)

Thus, we have a depth evaluation better by a factor of 1/
√
2,

compared to a stereo system with one landmark observed. If
two landmarks are observed with the stereo system and the
estimated depth averaged, then the error σyStereo should be
the same as in Eq. 31.

One must keep in mind that the analysis above was done
for the case where a stereo baseline distance 2b is equal to
d. However, most stereo systems on mobile robots use short
baseline distances 2b, to facilitate image registration. Since
our approach is not bound by such limitations, we can use an
arbitrarily large d� 2b between our landmarks. In practice,
this allows our system to significantly outperform standard
stereo systems on mobile robots.

D. Perceived Heading φ
Compared to a single stereo pair, we are able to recover the

perceived heading φ between the two cameras with very high
precision. The perceived heading estimate for our approach
is equal to:

φ = β2 − β1, (32)

with a noise equal to

σφ =
√
2σϕ . (33)

Measuring this perceived heading, using a single stereo pair,
would not be able to capture an estimate of φ with this
level of precision. The reason is that finding φ involves the
following computation:

φstereo ≈ cos−1

(
(ϕ3 − ϕ1)lmeasured

d

)
. (34)

With ϕδ = ϕ3 − ϕ1, the estimated noise on φstereo is

σ2
φstereo

≈
(
∂φstereo
∂ϕδ

√
2σϕ

)2

+

(
∂φstereo
∂l

σl

)2

(35)

σ2
φstereo

≈ 1

(d− lϕδ)(d+ lϕδ)

(
2l2σ2

ϕ + ϕ2
δσ

2
l

)
(36)

The best possible case is when ϕδ = 0 and the other robot
is located straight ahead, which means that:

σφstereo
≥
√
2
l

d
σϕ (37)



and is always greater than our perceived heading estimate
noise in Eq. 33, for l� d.

E. Simulated Comparison against a one Camera and 3 Non-
colinear Landmarks

It is possible to retrieve both heading and distance infor-
mation without exchanging images between robots, if the
robots have at least 3 non-colinear markers on them. For
comparison, we simulated the performance of such system
with one camera, and 3 markers located on a square of
side d = 1, with a distance l = 10 between the robots
and σϕ =1.745e-3 rad. For our mutual camera approach,
information gathered from both sides of the square were
optimally combined. Simulation results, presented in Fig. 7,
show that the uncertainty on the location of the robot is much
larger for the 3 markers case.
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Fig. 7. Simulations results between a one camera and 3 non-colinear
markers vs. our approach, for various locations of robot B at a distance
l = 10. The markers on the robot A are located at (−d, 0), (0, 0) and
(0,−d) (outside the graph).

VI. EXPERIMENTAL RESULTS

We evaluated the performance of our localization method
on two real data sets. The experimental setup comprised one
iRobot Create robot with an on-board computing module, 2
Logitech C905 1600x1200 pixels webcams and a number of
LED marker glowsticks. The outer markers were separated
by a distance of d = 0.759 m on the robot, with a camera
and another marker exactly in the middle, as shown in Fig. 8.
The other camera was mounted on a fixed setup, with an
LED marker above. Ground truth was established by using a
Hokuyo URG-04LX-UG01 LIDAR mounted on the robot and
placing 10 boxes in the environment as landmarks. The robot
moved forward by 5.25 cm between each step and along a
nearly straight trajectory towards the fixed camera. Pictures
were taken at each step forward and used as the test sets.

Fig. 9 shows the estimated robot position found by our
method, using one α and one β per sample, compared with
ground truth. The average absolute position error over the
complete trajectory was 4.09 cm for experiment 1 (140
samples) and 4.40 cm for experiment 2 (110 samples).
When combining with the range information obtained by the
other α, β pair, the average absolute measurement error for
experiment 1 dropped to 2.82 cm, a reduction by a factor

Fig. 8. Platform used for the data collection (top), with one picture used
for localization (bottom).

Fig. 9. Comparison between the estimated robot position using our method
and ground truth, for two trials. The fixed camera was located at (0, 0).

Fig. 10. Comparison between the absolute position error and the predicted
error, as a function of the distance l. As can be seen, the predicted errors
for an angular noise of σϕ = 0.0003 rad are consistent with the measured
errors. With a focal distance of f = 1320 pixels for the webcam, the noise
is equivalent to 0.4 pixel.

of ∼
√
2, as expected when averaging two uncorrelated

noisy estimates. The distribution of absolute errors, shown
in Fig. 10, are consistent with the noise σy predicted by
Eq. 31. Histograms of step measurements, for three brackets
of distance l, are shown in Fig. 11. These correspond to



Fig. 11. Robot step (5.25 cm) measurement distributions with our method
(a-c) and LIDAR (d).

Fig. 12. Robot perceived heading estimates, during experiment 1. As a
comparison, laser scan alignments performed with ICP resulted in noisier
estimates.

the estimated distance between the 5.25 cm steps of the
robot. Thus, a perfect system would measure this value, and
noisy systems should have a distribution with a spread related
to the measurement noise. The standard deviation of these
distributions are, again, in agreement with our noise model.

The perceived heading φ for experiment 1 is plotted in
Fig. 12, along with the perceived heading derived from the
Hokuyo laser data. One can see that the heading φ computed
with our method is much less noisy than the one found with
a LIDAR, which is the common method for evaluating the
heading of a robot in its environment.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach to cooperative
localization, based on mutual observation of landmark bear-
ing angles between two robots. We derived a mathematical
solution along with a theoretical noise model that compared
favorably against an equivalent stereo camera system. During
experiments with a mobile robot, our system demonstrated
good position estimation (average error around 4 cm over
250 samples), despite the use of off-the-shelf cameras and
markers. This makes our solution particularly well suited for
deployment on fleets of inexpensive robots.

The biggest challenge with the current physical implemen-
tation is to establish mutual observations, without interfering
with the normal operation of the vehicles. To eliminate this
problem, omnidirectional cameras can be employed. Our
method is completely compatible with such cameras.

We plan on extending this methodology to vehicles that
move freely in three dimensions. Of particular interest are
underactuated square blimps that move at slow speeds [27],
since the required hardware for our solution is very light.
Applications to underwater vehicles [28] are also considered,
since they are generally deployed in unstructured environ-
ments without GPS. Another current direction of research
is to employ Unscented Kalman Filtering (UKF) to improve
the state estimation, by exploiting odometry measurements.
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