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Abstract
Localization of a mobile robot is crucial for au-
tonomous navigation. Using laser scanners, this
can be facilitated by the pairwise alignment of con-
secutive scans. In this paper, we are interested in
improving this scan alignment in challenging nat-
ural environments. For this purpose, local descrip-
tors are generally effective as they facilitate point
matching. However, we show that in some natural
environments, many of them are likely to be unreli-
able, which affects the accuracy and robustness of
the results. Therefore, we propose to filter the unre-
liable descriptors as a prior step to alignment. Our
approach uses a fast machine learning algorithm,
trained on-the-fly under the positive and unlabeled
learning paradigm without the need for human in-
tervention. Our results show that the number of
descriptors can be significantly reduced, while in-
creasing the proportion of reliable ones, thus speed-
ing up and improving the robustness of the scan
alignment process.

1 Introduction
To accomplish autonomous navigation in unknown environ-
ments, a mobile robot must be able to localize itself. Proprio-
ceptive sensors, such as odometry and inertial units, cannot be
used alone to precisely keep track of the long-term robot pose,
as they are subject to drift. Global localization systems like
GPS can fulfill the task, but in some environments they may
not be available. An alternative is to use a 3D laser scanner to
exploit information from the surrounding environment in order
to estimate the robot’s pose. Although being well handled in
structured environments (corridors, buildings), this problem
remains difficult in unstructured environments like wood or
planetary terrains.

To localize using laser scanners, consecutive scans (point
clouds) taken with these sensors can be registered (i.e. aligned)
in a pairwise manner to estimate the motion performed by the
robot at each step. This motion, decomposed in a translation T
and a rotation R, is often computed using the popular Iterative
Closest Point (ICP) algorithm [Besl and McKay, 1992] or
one of its variants [Rusinkiewicz and Levoy, 2001]. However,
because ICP is subject to the problem of local minima, a prior

coarse alignment of the point clouds increases the likelihood
of converging towards the true solution.

This coarse alignment can be performed using measure-
ments from proprioceptive sensors, although they may not be
reliable enough in some situations (e.g. on a slippery terrain
for odometry). In such cases, the coarse alignment must be
determined from the point clouds themselves. For this matter,
one can compute local descriptors (set of values) depicting
the geometry of each point’s vicinity in the scans and match
the similar descriptors to establish correspondences between
scans. Sample Consensus Initial Alignment (SAC-IA), pre-
sented in [Rusu et al., 2009], is an adaptation of Random
Sample Consensus (RANSAC) [Fischler and Bolles, 1981] to
the point cloud registration problem and is based on this idea.
Points are randomly picked in the source cloud and matched
randomly within a list of the most potentially corresponding
points (most similar descriptors) in the target cloud. For 3D
point clouds, three correspondences are thus established and
the geometrical transformation R and T that best aligns these
corresponding points is computed. The process is repeated
for N iterations and the transformation that yields the small-
est alignment error on the clouds is kept. The accuracy of
this coarse alignment therefore depends on the quality of the
descriptors extracted, as more discriminative and robust de-
scriptors should lead to more valid correspondences. On the
other hand, with a descriptor set of poorer quality, the algo-
rithm statistically requires a greater number of iterations to
find an alignment with the same accuracy.

In this paper, we address the coarse registration problem in
natural unstructured environments, including those featuring
dense vegetation. Section 3 explains the issues associated
with descriptors in this type of environment. We aim at in-
creasing the robustness of SAC-IA, as well as its computation
efficiency, by filtering the unreliable descriptors beforehand.
Our approach, based on positive and unlabeled learning, is
described in Section 4. Section 5 details the experimentations
and results, and section 7 concludes.

2 Related work
Many types of descriptors have been proposed over the years.
The interested reader can refer to [Tangelder and Veltkamp,
2008] for a survey. Some description methods extract key-
points as a prior step. The well-known Scale-Invariant Feature
Transform (SIFT) descriptor [Lowe, 2004] includes such key-



point extraction. It has been extended to 3D data [Scovanner
et al., 2007], but requires intensity or RGB values for its com-
putation. Normal Aligned Radial Feature (NARF) [Steder
et al., 2011] also contains a keypoint extraction step, but ap-
plies to range images and thus cannot be computed directly
on laser scans. In this paper, we will focus on Fast Point Fea-
ture Histograms (FPFH) [Rusu et al., 2009] and Signature of
Histograms of Orientations (SHOT) [Tombari et al., 2010], as
these descriptors are state-of-the-art and directly computable
on laser scans. As it will be demonstrated in Section 3, their
effectiveness in natural unstructured environments is limited.
With a similar goal to ours, Rusu et al. [2009] suggested a
method to filter the FPFH descriptors after their computation,
such that only the most useful are used for matching. However,
this method is not well adapted to forested environments. This
will be discussed in Section 3.

It is worth noting that Song et al. [2012] recently presented
a registration method, based on tree trunks extraction, to align
point clouds acquired in forested environments. While effec-
tive, this method assumes that at least a few approximately
parallel trunks exist and are well visible in the environment,
conditions that are not always met.

The concept of a mobile robot collecting sensor data in
order to train an autonomous navigation system has already
been studied. For example, methods have been proposed to
learn appearance models of drivable surfaces in desert ter-
rain [Dahlkamp et al., 2006], to learn rover-terrain interaction
models from experiments [Krebs et al., 2010] and to perform
surface slip prediction using learning from experience [An-
gelova et al., 2006]. Our approach is similar in the sense
that the robot trains itself, without the need for human inter-
vention, based on data that is collected on the run. Machine
learning has also shown to be applicable to descriptors. Sim
and Dudek [1999] presented a method to evaluate and learn,
for a specific environment, a set of visual landmarks useful
for pose estimation. Grabner et al. [2007] learned keypoint
descriptions to improve object tracking. On the descriptor rep-
resentations side, machine learning has been used to find the
optimal parameters of new image descriptor representations
using the DAISY configuration [Winder et al., 2009] and using
a more complex set of predefined building blocks [Brown et
al., 2011]. Trzcinski et al. [2012] applied boosting to find a
non-linear mapping of image intensity patches into a feature
space. To the best of our knowledge, machine learning has
not been employed yet for filtering 3D point cloud descrip-
tors in order to keep the most reliable ones in certain types of
environment.

3 Descriptors in natural environments
In natural unstructured environments, only a subset of all
descriptors are likely to be reliable for point matching. In
fact, many of them are either too common or unstable and
hence lead to mismatches. In the case of forested environ-
ments, the foliage and branches are often undersampled by
the laser scanner. A small viewpoint change can then result
in a significant variation of the measured points. Thus, the
descriptors of points located in these parts of the environment
are inherently unstable. For example, Fig. 1 shows correspon-

dence estimation results between two consecutive clouds of
the Hannover dataset [Wulf et al., 2008], from the Robotic 3D
Scan Repository, using FPFH and SHOT descriptors. For both
examples, the matching threshold was selected at the elbow
point of the precision and recall curve (tmatch = telbow). The
matching precision is about 20% for the FPFH and 25% for the
SHOT. These results show that few valid correspondences can
be established using descriptors of points located in the foliage
of the trees. Thus, filtering these unreliable descriptors can
increase the matching performance. This, in turn, increases
the probability of success of the SAC-IA algorithm, leading to
an improvement in performance and computation efficiency.

For the FPFH descriptors, a filtering method is proposed
by Rusu et al. [2009] to select the most useful descriptors for
matching and registration. In their case, the useful descrip-
tors are the less common. They suggest to approximate the
distribution of all descriptors distances to the mean descrip-
tor, µ , by a gaussian distribution N (µ,σ). The descriptors
whose distances fall outside the µ ±β ·σ interval, where β

is the filter threshold, are called unique and are retained. The
others are discarded. Although this method insures that the
remaining descriptors are salient in the environment, it does
not guarantee their stability or reliability. In particular, for
natural environments, the noisy descriptors in the foliage and
branches are likely to differ significantly from each other, thus
making them appear as unique. This leads to a significant
amount of unreliable descriptors in the subset used for match-
ing. For example, Fig. 2 shows the result of this method on the
same point clouds as above, using β = 1.2 and tmatch = telbow.
In this case, the matching precision increased at about 28%,
but with a recall of only 1.9%. Again, few descriptors in the
foliage led to valid matches. A further analysis of the effect of
this filter is presented in Fig. 3. This plot shows the proportion,
as a function of β , of the unique FPFHs that established valid
correspondences between the scans (valid FPFHs). For com-
parison purposes, the figure also presents the results for the
well-known Standford Bunny1, which has a relatively smooth
and well sampled surface. In the case of the Bunny, this filter-
ing method clearly improves the proportion of valid FPFHs as
β increases. Oppositely, in the case of Hannover, we see that,
as the value of β increases, the descriptors leading to valid
matches are filtered out faster than the others. These results
therefore indicate that this method is not suitable when very
irregular surfaces are present, as typically seen in foliage.

4 Method
In order to reduce the number of unreliable descriptors, we
propose to use a classifier trained on-the-fly. The training pro-
cess can be repeated as needed, allowing the robot to naturally
adapt its classifier to a changing environment as it travels.

4.1 Training Data
In our proposed approach, the training dataset and labeling is
generated by the robot itself. For very short travel distances,
we assume that odometry can provide a close estimate of
the robot’s true motion. Consequently, two consecutive laser
scans, A and B, can be registered using odometry, and this

1Available at http://graphics.stanford.edu/data/3Dscanrep/.



(a) FPFH. (b) SHOT.

Figure 1: Estimated correspondences between scans 22 and 23 of Hannover, using FPFH and SHOT descriptors. Blue and red
lines show valid and wrong correspondences respectively. Shown correspondences are downsampled (1/80).

Figure 2: Estimated correspondences (downsampled to 1/10)
between scans 22 and 23 of Hannover using unique FPFHs
and β = 1.2 (orange and green dots are unique).
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Figure 3: Effect of β on the proportion of the unique FPFHs
that led to valid matches for the Hannover and Bunny datasets.

registration can be used to automatically label descriptors2.
The idea behind this is to have two slightly different viewpoints
of the objects present in the environment. Doing so, objects
that are relatively smooth will have a stable appearance in
both scans, hence similar descriptors. Oppositely, objects
having an irregular surface (such as foliage) will have unstable
descriptors, due to the limited spatial sampling of the laser,
and will mostly lead to mismatches.

Labeling starts by matching descriptors i and k between
scans A and B on a nearest neighbor basis in feature space.
The corresponding point coordinates of these descriptors, with
the origin defined as the position of the laser scanner in A,

2Note that odometry is used here as a shortcut to another registra-
tion technique. For example, it would be possible, albeit much slower,
to compute this alignment using ICP with a high number of iterations
and random restarts. Odometry is no longer used afterwards and can
be arbitrarily bad (slip).

are pi,A and pk,B. The descriptors in scan A are then labeled
known positive if they are sufficiently close (below thresholds)
in physical space to their corresponding descriptors in B, with
a distance metric that takes into account the sensor model of
the laser scanner. The two criteria used are the angular error
φerr between the points:

φerr
def
= cos−1

(
pi,A ·pk,B

‖pi,A‖‖pk,B‖|

)
< φmax (1)

and the range error rerr:

rerr
def
= |‖pi,A‖−‖pk,B‖|< dmax. (2)

The thresholds φmax and dmax are selected based on the laser
scanner error model and the small odometry alignment error.
Descriptors in scan B are not used for training, other than for
identifying the reliable descriptors in A.

For the descriptors that fail any of the two criteria above,
we argue that it would be wrong to consider them as nega-
tive examples. In fact, due to the sensor’s noise, descriptors
belonging to the same parts of the environment may have
slightly different values. The true correspondences could fall
into the second or third nearest neighbor (in feature space), a
situation which is well handled by SAC-IA. Moreover, differ-
ent viewpoints between scans imply that some objects may
not be visible in both of them. In these cases, the true cor-
respondences cannot be established, even if the descriptors
belonging to those objects are reliable. For these reasons, we
will consider the descriptors that failed our test as unlabeled
examples, since they may contain hidden positive examples. A
semi-supervised machine learning paradigm that is well suited
to address this problem is positive and unlabeled learning.
This paradigm is presented in the following subsection.

4.2 Positive and Unlabeled Learning
Positive and unlabeled learning (PU learning) is a variant of
the semi-supervised learning paradigm that is well suited for
situations where the data is available under the form of positive
and unlabeled examples [Elkan and Noto, 2008].

Let S ⊆ X ×L = {(x1,s1),(x2,s2), ...,(xm,sm)} be a set of
m training examples where X is the input space of the training
examples and L = {l,u}. Examples for which s = l are called
known positives and the ones for which s = u, unlabeled. In
this framework, each input example xi is also related to a
(possibly unknown) label yi ∈ {+1,−1}, such that if si = l



then yi =+1 and if si = u, the label yi can be either positive
or negative.

We aim to perform binary classification between positive
and negative examples in a supervised learning fashion. There-
fore, we must take into account that some positive examples
may be hidden in the unlabeled examples.

Algorithms like the One Class SVM [Schölkopf et al., 2001]
address this type of problem by using only the known positive
examples to train an estimator of p(y =+1 | x). However, in
contrast with PU learning, this approach does not make full
use of the available data, since the information contained in
the unlabeled data is discarded by the algorithm.

A method called PosOnly, proposed by Elkan and
Noto [2008], allows to adapt to PU learning any supervised
learning algorithm that outputs probabilistic classifiers. Such
a classifier provides an estimation of the probability that an
example has a certain label. This method is based on the
nontrivial result that:

p(y =+1 | x) = p(s = l | x)
c

(3)

where p(s = l | x) is the probability that an example x is a
known positive and c def

= p(s = l | y = +1) is the probability
that an example is a known positive given the fact that it is a
positive one.

Their method goes as follows. First, a subset of examples
V ⊆ S is retained as a hold out set. Then, a probabilistic
estimator of p(s = l | x), g ∈ X → [0,1], is trained using S\V .
Then c is estimated as follows:

c≈ 1
|G| ∑x∈G

g(x) (4)

where G is the set of all known positive examples in V . Fi-
nally, from Equation (3), Equation (4) and g, an estimator of
p(y =+1 | x) is obtained. We thus have a classifier of positive
and negative examples that was trained using positive and
unlabeled examples only.

4.3 Proposed learning algorithm
While selecting an appropriate learning algorithm, we attempt
to exploit the nature of the learning problem. Suppose that
the ratio of positive examples hidden in the set of unlabeled
examples U is γ . Then, as the value of γ increases, the noise
introduced by the positive examples hidden in the U also
increases. Therefore, we can expect that the trained predictors
will be affected by the value of γ .

Based on this observation, Mordelet and Vert [2010; 2013]
proposed to use bootstrap aggregating (bagging) [Breiman,
1996] to learn predictors from positive and unlabeled examples.
Bagging consists in training a set of predictors and aggregating
their predictions. All such predictors are trained using the
same learning algorithm but on different training sets. These
training sets are obtained from the original dataset by sampling
with replacement; this is what we call a bootstrap sample.
As pointed out by Breiman [2001], this method works well
when the predictors are not correlated. Random sampling with
replacement from U is likely to yield different values of γ .
Hence, as pointed out by Mordelet and Vert, we can therefore
expect to obtain uncorrelated predictors.

The random forest algorithm, proposed by Breiman [2001],
is of bagging type. It also has the appealing property of being
highly scalable. This is a suitable property for our problem,
since laser scans often contain hundreds of thousands of points
and since calculations must be done online. Because of this
requirement, algorithms that we found to be time consuming,
like bagging SVM [Mordelet and Vert, 2013], were left aside
in the favor of random forest.

Our algorithm slightly differs from the original random for-
est algorithm in its bootstrap sampling phase: we sample |P|
examples from P with replacement and |P| examples from U
with replacement, instead of randomly sampling |P∪U | ex-
amples from P∪U with replacement. This approach is similar
to the one proposed by Mordelet and Vert [2010; 2013], in the
sense that it gives balanced classes to the learning algorithm
and that it reduces the training time when |P| � |U |, which is
our case.

Although random forest does not typically produce a proba-
bilistic classifier, we use the mean class probabilities of each
tree to estimate p(s = l | x). We then use the PosOnly method
described in Section 4.2 to adapt the probabilistic classifier to
PU learning.

5 Experiments
We tested our approach on the state-of-the-art FPFH descrip-
tors. Their relatively low dimensionality3 (33), compared to
other descriptors such as SHOT (352), made them an ideal
candidate to our approach. Moreover, FPFH descriptors com-
putation relies on a single intuitive parameter (radius of the
neighborhood), making the results less sensitive to tuning.

5.1 Testing framework
Our proposed method was tested on two sequences of 3D
laser scans extracted from publicly available datasets. The
first sequence was the scans 22 to 80 from the Hannover
dataset (Fig. 4a), featuring trees and bushes as well as build-
ings (ground truth was not available for scans 1-21). The robot
trajectory for these scans covered a total distance of about
84 m and contained 13,557 points on average. The second
sequence was the complete Wood Summer dataset (Fig. 4b),
from the Autonomous Systems Lab [Pomerleau et al., 2012],
and consisted in 37 scans featuring dense vegetation in an
unstructured environment, with a robot trajectory covering a
distance of about 21 m and an average of about 182,000 points
per scan.

For each of these sequences, the classifier was trained only
once, using the first two scans, according to the method de-
scribed in Section 4. This trained classifier was then used
to filter the descriptors for the rest of the sequence, without
further training. This was done to verify that a learned model
at a certain location in the environment could still give satis-
factory results at a different location, provided that the type
of environment had not changed significantly. The values of
derr and φerr used were 0.5 m and 5◦ for Hannover, and 0.2 m
and 2◦ for Wood Summer. The SAC-IA algorithm was used to

3 These are the default implementation values in the Point Cloud
Library (PCL) [Rusu and Cousins, 2011]. The dimensionality can
change according to some parameters.



a) Hannover scans 22 to 80. b) Wood Summer (scan 0 only)

Figure 4: Overview of the sequences used for testing.

perform 100 registration attempts between each pair of consec-
utive scans, to take into account its probabilistic nature. The
number of iterations within each registration was fixed to 100.

Recall that the SAC-IA algorithm performs a coarse regis-
tration, which is a preprocessing step to a local registration
algorithm such as ICP. Therefore, smaller errors and error vari-
ances indicate an improvement in convergence and robustness.
This directly improves the probability of falling within the
basin of convergence of ICP’s global minimum.

We compared the following three approaches:
• using all descriptors;
• using reliable descriptors, classified using our method;
• using a random subset of size Nrand of all descriptors.

The third approach, a valid way to speed up the scan align-
ment, was included to demonstrate that our method did indeed
increase the proportion of reliable descriptors in the remaining
data. The value of Nrand was set to the average number of
predicted reliable descriptors by our classifier for the whole
series of scans. This choice insured a fair comparison with our
method, as they had similar computation times.

To evaluate and compare the different approaches, we used
the accuracy of scan registrations, in terms of rotation and
translation error norms. We also compared the computation
times for all the approaches, to estimate the speedup.

5.2 Results
Fig. 5(a) and Fig. 5(c) show the boxplot distributions of the
translation and rotation error norms respectively, for the Han-
nover test sequence. For the subsampling method, we used
Nrand = 4,500. Our filtering method significantly improved
the quality of the alignments, both in rotation and translation,
for the scans immediately after training (number 22-27). This
improvement is still noticeable, albeit smaller, for scans 28-79.
The histogram distributions of all the errors for scans 22-79
are shown in Fig. 5(b)) and Fig. 5(d)). These distributions
show a reduction in the median error (dashed vertical lines)
with our approach over the complete sequences, compared to
using all or a randomly picked subset of descriptors. Finally,
the number of large errors (over 2 m in translation or 10o in ro-
tation) was significantly reduced, as indicated by the location
of the 95th percentile (solid vertical lines). This reduction can
be key to improving robustness, as it increases the probability
of a local alignment algorithm (e.g. ICP) to converge towards
the true solution.

Fig. 6(a)) and Fig. 6(c)) show the same curves for the Wood
Summer dataset. In this case, Nrand = 25,000 samples were
used in the subsampling method. Here, the improvement in
translational error is even more significant, with a reduction of
about 40% in the median error (Fig. 6(b)). Again, the number
of large errors (over 0.6 m in translation or 10o in rotation) was
significantly reduced. This increased robustness and accuracy
indicate that our approach can offer significant improvements
for challenging forested environments.

Table 1: Breakdown of average computation times (in seconds)
for our approach and for scan alignments using all descriptors.

Dataset All Our Approach
Align Gen. Train Filter Align

Hannover 17.4 0.8 4.2 0.2 2.7
Wood S. 311 217 29.5 2.3 15.3

The other benefit of our approach is the significant speedup
of the alignment process. Table 1 details the average time
taken to generate the training dataset, train the classifier, filter
the descriptors and align the scans. We can see that, once the
classifier was trained, the filtering and alignment resulted in a
speedup by a factor of 17.4/(0.2+2.7) = 6 for Hannover and
311/(2.3+ 15.3) = 17.7 for Wood Summer. If we take into
account the training overhead (Gen.+Train), our method was
still faster than using all the descriptors, and this after only a
single alignment. Indeed, this overhead is less than the time
needed to perform a single alignment with all the descriptors.
For Hannover: (0.8+4.2+0.2+2.7) = 7.9 s < 17.4 s and for
Wood Summer: (217+29.5+2.3+15.3) = 264.1 s < 311 s.
Keeping in mind that the dataset generation and training steps
are executed only once, this overhead can be amortized over
the subsequent scans, as long as the environment stays similar.

5.3 Implementation details

All the computations were performed sequentially, although
all the steps of our proposed method can be parallelized. The
computations were performed using the Point Cloud Library
(PCL) [Rusu and Cousins, 2011] and the Python Scikit-learn
library [Pedregosa et al., 2011].
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(a) Translation error norms through Hannover test sequence.
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(b) Translation error norms distribution
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(c) Rotation error norms through Hannover test sequence.
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(d) Rotation error norms distribution

Figure 5: Alignment results for the Hannover test sequence. Subfigures (a) and (c) show the boxplot distributions of the
translation and rotation error norms throughout the test sequence. Results were bundled in groups of six scans to simplify the
plots. Subfigures (b) and (d) show the histogram distributions of all the errors over the complete sequence, in translation and
rotation respectively. The vertical dashed lines indicate the median values of the distributions, whereas the vertical solid lines
indicate the 95th percentiles.

6 Future Works
In our experiments, we used sequences of contiguous scans
taken from the same environment. The results that were ob-
tained are encouraging, although they are based on the assump-
tion that the environment in which the robot operates remains
similar. An interesting extension to our work would be to al-
low operation through changing environments. As previously
mentionned, the training process can be repeated as needed,
and its computation overhead is relatively small. Therefore,
given a detection mechanism for a changing environment, one
could trigger the retraining process, thus allowing to adapt
the predictor to the new environment. Such a mechanism
could consist in using a supervised anomaly detection algo-
rithm [Chandola et al., 2009]. Then, given a threshold on the
number of anomalies detected, one could trigger retraining. A
simpler and straightforward method could be to uncondition-
ally retrain the predictor at given scan intervals.

7 Conclusion
In this paper, we have addressed the issues related to the in-
stability of descriptors in natural environments featuring trees
and vegetation. We demonstrated that these unstable descrip-
tors are unreliable for point matching and scan registration. To
solve this problem, we have shown that positive and unlabeled

learning is a well suited machine learning paradigm. We have
adapted the random forest algorithm, modified in its bootstrap
sampling phase to balance classes, to this paradigm. This ap-
proach gave rise to a fast and more robust learning algorithm
that allows to filter out unreliable descriptors. A key contribu-
tion of our paper is having shown that classifiers can be trained
using data collected by the robot itself, without any human
intervention. The subset of filtered descriptors provided two
benefits to the SAC-IA alignment algorithm: a better registra-
tion accuracy and robustness, and faster processing time. Our
approach has been tested on two real datasets, one of them
featuring dense vegetation in an unstructured environment,
with encouraging results.
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(a) Translation error norms through Wood Summer test sequence.
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(b) Translation error norms distribution
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(c) Rotation error norms through Wood Summer test sequence.
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Figure 6: Alignment results for the Wood Summer test sequence. See the legend of Fig. 5 for details.
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