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Abstract—In this paper we examine the interplay between
terrain classification accuracy and gait in a walking robot,
and show how changes in walking speed can be used for
terrain-dependent walk optimizations, as well as to enhance
terrain identification. The details of a walking gait have a great
influence on the performance of locomotive systems and their
interaction with the terrain. Most legged robots can benefit
from adapting their gait (and specifically walk speed) to the
particular terrain on which they are walking. To achieve this,
the agent should first be capable of identifying the terrain
in order to choose the optimal speed. In this work we are
interested in analyzing the performance of a legged robot on
different terrains and with different gait parameters. We also
discuss the effects of gait parameters, such as speed; on the
terrain identification computed by a legged robot. We use
an unsupervised classification algorithm to classify terrains
based on inertial measurement samples and actuator feedback
collected over different terrains and operation speeds. We
present the effects of speed on the terrain classification in our
classification results.
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I. INTRODUCTION

In this paper we consider automated terrain classification
by robot vehicles, and how terrain identification can facilitate
efficient locomotion. In particular, we consider how changes
in the temporal period of a walking gait for a legged robot
(based on the Aqua design) can be used to optimize terrain
classification, as well as tune the effectiveness of the walk
itself in a terrain-depending manner.

Walking robots have the potential to function over a wide
range of terrain types such as sand, mud, grass, snow, ice,
etc. but different terrains imply different optimal walking
behaviours; a phenomenon well known to any person who
has had to walk across an ice-covered sidewalk during a
Canadian winter. Similarly, terrain-specific gait changes in
legged robots are needed to optimize performance. The gait
transition from walking to running in humans and other ani-
mals has been the subject of extensive prior research. There
are several analyses of the transition from walking to running
in biological systems as the speed of motion increases [1],
[2]. One possible explanation for gait transitions is that the
shift to a new mode of locomotion occurs at the mechanical
limit of whatever locomotion mode is being used [3]. That is,

Figure 1. The hexapod Aqua robot, shown equipped with semi-circle legs
for land locomotion.

once the mechanical limit of the legs, walking in particular
gait, has been reached due to the speed of motion, the
system must switch to a new gait to go any faster. Another
explanation proposes that gait transitions occur in order to
minimize total metabolic cost, switching mechanism known
as an “energetic trigger”. The transition can be predicted by
observing when the rate of energy expenditure for walking
surpasses that for running; this is equivalent to the speed
at which running becomes more efficient than walking in
terms of energy expenditure per unit distance. Human data
indicates this speed to be 2.2-2.3 m/s [4] [5].

Terrain is one more major factor affecting the decision
for the gait changes. The gaits used to walk on different
terrains such as grass, sand, snow, ice tend to be different
from one another. Stability of the system is greatly affected
by gait-depending interactions between the dynamic walker
and the terrain on which it is walking. A running gait which
would be efficient on grass can fail to maintain stability of
the system when used on ice, due to slipping.

In this paper, we concentrate on the performance of the
Aqua robot [6] (Figure 1) when operated with varying leg-
cycle periods on a range of terrains like dry sand, wet
sand, grass and concrete. This vehicle is a hexapod with
six compliant legs and a body plan based on that of the
RHex robot [7] [8]. We compare the performance of the
robot in terms of the energy efficiency per meter of walk. We
also compare the terrain sensitivity of the robot at different



operation speeds. We use an unsupervised machine learn-
ing algorithm on the proprioceptive measurements captured
over Aqua’s walking trials in order to achieve effective
terrain identification, following the methodology developed
by Giguere et al. [9]. Terrain classification and identification
helps in developing terrain models to assess mobility on a
given terrain. The classification results for different speeds
are compared among each other and the results are also
compared with other related works.

II. RELATED WORK

There has been a body of prior work on contact-based
terrain classification for both wheeled [10] [11] [12] and
legged robots [9] [13] [14] [15], gait transitions in legged
robots [16], gait adaptations [17] and explicit tactile sensors
[18] [19]. However, substantial work needs to be done
in the area of studying the effects of gait-speeds on the
performance of the legged robots walking on varied terrains.
One of the works by Garcia Bermudez, et al. [13], discusses
the maximum velocity achieved by the robot on different
terrains. Through our work, we analyze the performance
in terms of physical speed and the power efficiency of the
robot. Furthermore, a walking robot can optimize its ability
to classify the terrain by controlling the way it interacts
with the terrain [20]. We have done our investigation on this
by comparing the performance of the unsupervised terrain
classification [9] over varied speeds of run of the robot on
four different terrains.

The study made by Coyle, et al. [21] uses singular
value decomposition interpolation (SVDI) to make terrain
classification independent of speed. According to this work,
the issue with reaction-based terrain classification is the
need for large data sets for training the algorithm. Such
an approach could be adapted to our system. However, due
to our unsupervised learning approach, the cost of using
and collecting training data is small. One more similar
work is done by DuPont, et al. [22] in which the speed
dependency of the terrain classification is eliminated by
applying Principal Component Analysis (PCA) on the terrain
signatures. Instead, in our work we make use of speed
dependencies to increase the classification accuracy of the
algorithm.

III. APPROACH

We would like to start our approach by introducing the
Buehler clock which is an essential part of walking gaits
of the Aqua robot. The Buehler clock is the computational
analog of the central pattern generator [23] in animals. The
Buehler clock was originally developed for RHex [7] [24]
and is based on a study which shows Cockroach legs are
excited by a strongly stereotypical clock reference signal
[25]. As the Aqua is based on RHex, it follows a similar
pattern for walking. To achieve the tripod-gait, this clock
uses a piece-wise linear angle vs. time reference trajectory

characterized by four parameters [26]: the total stride or
cycle period tc, the duty factor (the ratio of a single stance
period over the cycle period) ts/tc, the leg angle swept
during stance Φs and an angle offset to break symmetry in
the gait Φ0. In our work we change these parameters which
in turn affect the velocity of the leg motors. We will refer
to these changes as the change in the cycle-frequency fc as
we are affecting the total cycle period tc of the leg.

As discussed in the introductory section, the optimal gait
for an agent can be decided based on many factors: the speed
at which it is walking; the energy efficiency of the gait; the
mechanical constraint on the legs of the agent; the terrain
on which it is walking. We separate the problem into two
sub problems as discussed further in this section.

Firstly, the problem is to come up with an optimal cycle
frequency - for a particular terrain - at which the robot
achieves highest physical speed or operates at power efficient
speeds or a trade-off between both. We have investigated
this problem by taking the walking trials of robot on four
different terrains, like dry sand, wet sand, grass, and concrete
floor, with five different cycle-frequencies. We computed the
physical speed of the robot by measuring the time from
the recorded video and the physical distance between the
flag posts. We also recorded the battery current and battery
voltage during the runs and computed the power consumed
by the robot for every run. Thus we have an estimate of
the physical speeds and power consumption of the robot
on different terrains when operated with different cycle-
frequencies fc for further analysis of the performance of
Aqua.

As a second sub problem, we address the issue related to
terrain sensitivity and differentiability. In this work, terrain
differentiability is defined as the separation between the
terrain classes within a chosen set of features. We collected
the inertial measurement samples and the actuator feedback
from the walking trials on different terrains as mentioned
earlier. The aim is to observe the changes in the terrain
differentiability as the cycle-frequency (fc) changes.

One of the features is the electric current (Il) flowing
in the electric motor of robot legs. A feedback controller
maintains the error between the leg angle and the desired
trajectory close to zero, by modulating the actuator torque
on the legs. This torque at each leg can be modelled as a
function of physical features of the terrain, actual leg angle,
leg point of contact to the ground and acceleration of the
robot. Indeed, this torque is generated by an electrical motor
proportional to the electric current flowing in it [14]. Hence
leg motor current (Il) measurements form an important
part of the feature set containing the information about the
terrain.

Another informative feature is the vertical acceleration of
the robot. As the mechanical properties of terrain change,
the impact on the robot’s dynamics also changes. One
of the major impacts in legged robots would be on the



Figure 2. Tripod leg configuration for the walking gait of the AQUA
robot. [14]

vertical acceleration as the robot’s legs provide different
push based on the terrain they are interacting with. Further
discussion about the feature set reduction is explained in the
experiments section.

We also propose the idea of enhancing the performance
of terrain classification by using optimal cycle-frequency for
classification. We make use of an unsupervised clustering
algorithm [9] which exploits the time-dependency between
samples. We use the inertial measurement samples and
actuator feedback from the previous experiments to feed
the clustering algorithm. We compare the results of the
clustering with different cycle-frequencies and with other
similar previous works.

IV. EXPERIMENTAL SETUP

A. Description of the Robot (Aqua 1.0)

The robot used for the experiments (Figure 1) [6] [8] is a
hexapod robot that is specifically designed for amphibious
locomotion. This robot is based on the RHex [7] [24] robot.
There are many kinds of legs designed for the appropriate
functionality: semicircle compliant legs for walking, am-
phibious straight legs for walking and swimming and flippers
for underwater swimming. In our experiments for this paper
we have used the semicircle legs as in (Figure 1).

B. Robot Gait

The locomotion of the robot on land is achieved by
rotating the legs in two groups of three legs, sometimes
known as a tripod gait. In this mode of walking, the three
legs, two on one side and one on the other side of the robot,
form a stable tripod. While one tripod formation is in contact
with the ground and propelling the robot forward, the other
tripod formation is circulated rapidly around to be ready for
the next support phase [14] (Figure 2). This quick alternation
of support coupled with the compliant nature of the legs
results in a complex dynamic interaction between the robot
and the ground. This tripod gait is used for the experiments
mentioned in this paper.

C. Data collection

The experiment trials were performed on four different
terrain types with five cycle-frequencies fc evaluated on each

Figure 3. The terrains used for the experiment (dry sand, wet sand, grass,
and concrete surface) and the field setup for the experiments.

terrain. The fc of the Buehler clock is controlled by changing
the input speed levels in the graphical interface of Aqua.
Five different fc are achieved by changing the input speed
control setting to five levels, like 0.1, 0.2, 0.4, 0.6 and 0.8,
on the graphical speed bar of the interface. For each speed
control setting and every terrain, five trials are taken.

The Collected data is a mixture of many sensor mea-
surements as mentioned below. The Relative leg rotations
are measured using optical encoders attached to the motor
shafts and a MSI-P400 quadrature decoder card is used
to decode the signals from light receivers. Leg motor
electrical currents are estimated using carefully calibrated
motor models [27]. These models compute an electrical
current estimate based on the physical parameters of the
motors, the voltage command to the motors and their
angular velocities. The robot is equipped with a 3-axis
Inertial Measurement Unit (3DM-GX1TM), which possesses
3 Micro-Electro-Mechanical Systems (MEMS) acceleration
sensors, 3 MEMS rate gyroscopes and 3 magnetometers. The
accelerometers measure the acceleration of the robot’s body,
in m/s2. The rate gyroscopes return the angular velocity of
the robot’s body in rad/s. The data is collected from these
sensors at a rate of 20 Hz, i.e. 20 readings of sensor data
per second.

The video of all the trials was recorded from a fixed
distance as explained in the next subsection. This video is
used to compute the time taken by the robot to cover the
experimental path distance. This time is more accurate than
the stopwatch timing and it is used in computing the physical
speed of robot.

D. Terrains and the field setup

The experiments were conducted on four kinds of terrains
(Figure 3a), namely dry sand, wet sand, grass and concrete
surface. The setup as seen in Figure 3b was used on these
terrains and Aqua was made to walk from start point till end
point.



Figure 4. Physical speed of robot plotted against the speed control readings
of the leg rotation. The plot shows the variation found over different terrains.

V. EXPERIMENTAL RESULTS AND OBSERVATIONS

A. Performance at varying speeds

This experiment was done to see the effect of speed
(fc) on the performance of Aqua robot. The performance is
measured in terms of physical speed and power consumed
per meter walk. In Figure 4, we can see that the physical
speed of the robot increases with cycle-frequency for soft
granular terrains like dry and wet sand. However, the physi-
cal speed of the robot on hard terrains like grass and concrete
surface starts to decrease at the higher speed control setting
of 0.8. We suspect that the robot legs start to slip from
the surface of terrain when rotated at very high speeds on
hard terrains. On soft terrains, the granularity of the terrain
gives grip to the legs and helps the robot achieve higher
physical speeds. Thus, to achieve higher physical speeds on
hard terrains, the speed control setting of the robot should
be capped to the range 0.6 to 0.7. To achieve the same on
soft granular terrains the robot needs to operate at its highest
cycle-frequency of the leg motors. These results thus clearly
show that the type of terrain has a strong influence on the
velocity of the robot, for fixed gait parameters.

The plot (Figure 5) shows the variation of power con-
sumed per unit distance walk of the robot with varying
cycle-frequencies. From the results it is evident that the
robot reacts differently to hard and soft granular terrains.
There is a trade-off between the cycle-frequency at which the
robot consumes less power yet achieves acceptable physical
speeds. For example, on wet sand the robot can operate
at high cycle-frequency of 0.8 achieving highest physical
speed, still maintaining less power consumption compared
to other terrains. However on dry sand it is very power
expensive to operate at high cycle-frequency.

Figure 5. Root mean square of the power consumed per a meter walk of
the robot. The plot shows the errors in the readings over five trials for each
speed and terrain.

B. Terrain differentiability

We have analyzed the effects of cycle-frequencies (oper-
ating speeds) on the differentiability of the terrain classes.
We created a feature set as explained in the section 2 by
considering the leg motor currents (Il) and vertical accel-
erations (Az) as these features of robot are most affected
by physical interaction with the terrains. The dimensionality
of the feature set was reduced by sampling the data at
one particular angle of the leg rotation cycle, at which the
separation between the terrain classes was the highest [28].
In Figure 6, the features Il and Az are plotted as a function
of leg angle. The plot also shows the optimal angle (1.25
radians) at which the classes are well separated. The optimal
angle was computed by considering the angle at which the
average distance between the classes was Maximum. Then
the data was sampled at leg angle of 1.25 radians and used
for further results.

The results in Figure 7 show the data samples from
different terrains sampled at the leg angle of 1.25 radians.
The data samples were collected over all 5 speed control
settings (i.e. fc of leg rotation). It can be inferred from
the results that the separation between the classes varies
as the speed control setting changes from 0.1 through 0.8.
Moreover, this class separation is terrain-dependant. For
example, the terrains grass and dry sand are well separated
at the speed control setting of 0.1, but not separated at the
speed of 0.8. Similar observations can be made for different
pairs of terrains. This emphasizes the impact of terrains on
the robot’s dynamics.

These results can be used to analyze how difficult it is to
classify the classes at different fc. They can also be used to
verify the terrain identified by the robot. For example, if the
robot identifies the terrain to be concrete while walking with



Figure 6. Leg motor current and Vertical acceleration (Az) plotted as
a function of Leg angle. The plot also shows the angle (1.25 radians) at
which the data sets collected from different terrains are well classifiable.

Figure 7. Distribution of sensor measurements in feature space (motor
current Il, vertical acceleration Az) sampled at leg angle 1.25 rad, with
changes in the speeds of operation (fc of the leg rotation).. The data shows
four terrain classes.

a speed control setting of 0.1, it can switch the speed control
setting to 0.8 and re-run the identification to be sure of the
terrain detected. Once the terrain is verified, the robot can
also choose a fc at which that particular terrain is isolated
and verify which all terrains the robot is not on. Thus, these
results are very useful in real-time gait adaptation for the
terrain qualities.

C. Terrain Classification and the cycle-frequency

We have already identified how the changes in cycle
frequency have an impact on the way the terrain classes
are distributed in the feature space. To assess the effect of

cycle-frequency on the terrain classification, we classified
the terrain data with an unsupervised terrain classification
algorithm proposed by Giguere et al [9].

1) Algorithm and Data sampling: The algorithm used is
an unsupervised clustering of unlabelled samples of the sen-
sor data. These samples represent sequences of consecutive
measurement from the robot as it traverses the terrains. Since
the samples are generated through a physical system interact-
ing with a continuous or piece-wise continuous terrain, time-
dependency will be present between consecutive samples.
The clustering algorithm [9] explicitly exploits this time-
dependency. It is a single-stage batch method, eliminating
the need for a moving time-window.

The algorithm works by minimizing a cost function which
minimizes the variation of classifier posterior probabilities
over time, while simultaneously maintaining a wide distri-
bution of posterior probabilities. The aim of the algorithm is
to search for the parameters ~θ that minimizes the following
cost function,

arg min
~θ

Nc∑
i=1

∑T−1
t=1 (p(ci| ~xt+1, ~θ)− p(ci|~xt, ~θ))2

var(p(ci| ~X, ~θ))2

The dataset needed for the algorithm are,
• A sample set ~X of T time-samples of feature vectors
~xi, generated by a Markovian process with Nc (No. of
Classes) states.

• A classifier with parameters ~θ used to estimate the
probability P (ci|~xt, ~θ), that the sample belongs to class
ci ⊂ C.

• A set of parameters ~θ that is able to classify the data
set ~X reasonably well.

The classifier input ~xt used for this work was collected
by sampling 13 sensors - comprising of 3 accelerometers, 3
rate gyroscopes, 1 leg angle encoder and 6 motor current
estimators - at a rate of 30 samples per one cycle of
the leg. Thus each feature vector, ~xt is of size 13x30.
The dimensionality of the dataset was reduced by applying
Principal Component Analysis and only the top Nf = 5
number of features were selected for the classification. The
advantage of this algorithm is that it can be evaluated with
three different kinds of classifiers based on the knowledge
about the class distributions. For this work we have used the
k-Nearest Neighbors (kNN) classifier with this cost function.

2) Results: The results indicate that there are specific
cycles-frequencies or speed control settings at which the
classification between different sets of terrains becomes
more accurate. As illustrated in Figure 8, the speed control
setting of 0.4 is optimal for most of pairs of terrains.
However, for dry sand and grass, a speed control setting
of 0.8 gives better classification success rates and for Grass
and Concrete, a speed control setting of 0.2 gives better
classification success rates. The classifier performs better
when the speed factor is involved. The success rate for two



Figure 8. Plot to show the variation in the performance of the classifier
with the cycle-frequency. It shows a comparison between different pairs of
terrains.

Figure 9. Results of the classification algorithm run on the data set
collected at a speed (Cf ) of 0.4 and Nf=5 (PCA features) selected from
the data. Also shows the confusion matrix of the classification.

class classifier is estimated around 90% at the optimal speed.
This is more efficient than the success rate of 73.75% in [9].

The previous results suggest that 0.4 speed control setting
is optimal for classification of most of the terrains. Hence,
we classified the data from four different terrains collected
at the speed control setting of 0.4. Top 5 (Nf ) PCA features
from the data were used. We see from Figure 9 that the
performance is very good and comparable to the similar
experiments done in [13] with an overall success rate of
92.11%. But the advantage here is the use of unsupervised
algorithm on unlabelled data and still being able to produce
similar results. There was training with just unlabelled data
and the feature set used is also very small. Thus the results
are very promising and push us to do more work on similar
lines in future.

VI. CONCLUSION

The main aim of this work was to quantitatively measure
the effects that gait parameters can have on the performance
of a robot when it walks on different terrains. We also

Figure 10. Gait-switch system - A complete real-time gait adaptation
system with a controller to choose optimal speed of walk before the terrain
classification is invoked.

evaluated the performance of the terrain classification when
operated at different cycle-frequencies. Some of our results
suggest that the optimal speed of leg rotation for energy
consumption is tied to the terrain type. Thus, by controlling
the cycle-frequency one can achieve a trade-off between the
physical speed and power consumption of the robot.

We also demonstrated that the terrain identification sensi-
tivity of the robot, and thus the error margin of the classifier,
differs when it walks with different cycle-frequencies. This
implied that active gait selection should improve classifica-
tion accuracy. In fact, we observed a significant increase in
efficiency of the terrain classification algorithm by varying
the cycle-frequency of the leg rotation. While this notion is
consistent with human experience, we believe this is the first
time this phenomenon has been reported or quantified in a
robotics context.

VII. FUTURE WORK

The classification problem is highly dependent on the set
of features selected. We would like to experiment with the
larger feature sets and evaluate the obtained results. We also
plan to extend and generalize our results to a more diverse
set of terrain types, more rugged non-flat terrains, like gravel,
rocky paths, etc.

In the near future, we plan to build a gait-switching system
(Figure 10) for automated real-time gait adaptation in Aqua
[6] based on real-time terrain classification. Our current
results suggest that gait-alterations can be used to enhance
both walking efficiency as well as identification itself.

The increased performance of the classifier with varied
cycle-frequencies suggests that the accuracy of the gait-
switch system can be improved by including a speed con-
troller. This controller would switch the robot to an optimal
speed for the classification, so that the classifier predicts the
terrain more accurately. We also plan to build the controller
to be decision tree based; so that it could choose an optimal
speed from a set of speeds. Decision could be made based
on some conditional queries about the current terrain the
robot is walking on and the probability with which the next
terrain is predicted.
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