CELLO-3D: Estimating the Covariance of ICP in the Real World
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Abstract— The fusion of Iterative Closest Point (ICP) reg-
istrations in existing state estimation frameworks relies on an
accurate estimation of their uncertainty. In this paper, we study
the estimation of this uncertainty in the form of a covariance.
First, we scrutinize the limitations of existing closed-form
covariance estimation algorithms over 3D datasets. Then, we
set out to estimate the covariance of ICP registrations through
a data-driven approach, with over 5 100 000 registrations on
1020 pairs from real 3D point clouds. We assess our solution
upon a wide spectrum of environments, ranging from structured
to unstructured and indoor to outdoor. The capacity of our
algorithm to predict covariances is accurately assessed, as
well as the usefulness of these estimations for uncertainty
estimation over trajectories. The proposed method estimates
covariances better than existing closed-form solutions, and
makes predictions that are consistent with observed trajectories.

I. INTRODUCTION

The ICP algorithm [1], [2] is ubiquitous in mobile robotics
for the tasks of localization and mapping. It estimates the
rigid transformation between the reference frames of two
point clouds, by iteratively pairing closest points in both
point clouds and minimizing a distance between those pairs.
This is equivalent to optimizing an objective function that
maps rigid transformations to a scalar optimization score
for a pair of point clouds. There is an abundance of ICP
variants [3], each of which yields slightly different trans-
formations due to their different objective functions. One
notable variation is the choice of error metric between each
pair of points, where common choices of metric are point-to-
point [1] and point-to-plane [2]. The registration process is
subject to a number of sources of uncertainty and error, be-
cause of a bad adequation between the objective function and
the desired result. Chief among them is the presence of local
minima in the objective function. Other causes of uncertainty
comprise noise from the range sensor, and underconstrained
environments such as featureless hallways [4].

The fusion of ICP measurements in existing state esti-
mation frameworks (e.g. SLAM) relies on an appropriate
estimation of the uncertainty of ICP, expressed as a co-
variance [5]. In this context, ICP is modeled as a function
of input point clouds and an initial estimate which yields
a registration transformation that is normally distributed.
Optimistic covariance estimates can lead to inconsistency and
navigation failures, whereas pessimistic ones inhibit efficient
state estimation. Figure 1 illustrates the process of estimating
the covariance of a registration. The registration process
shown takes place in a hallway, and is consequently loosely
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Fig. 1: A reading point cloud (red) is being registered against a reference
point cloud (blue). This paper studies the estimation of covariances like the
green ellipsoid to allow integration of ICP in state estimation toolchains.
The result of ICP was sampled, and the black balls indicate the density of
registration transformations at a particular location. There are three larger
clusters which correspond to local minima in the objective function caused
by the regularly spaced pillars. We project the translation part of a covariance
in R3 for illustration purposes, but in general the covariances of a 6 degrees
of freedom phenomenon is studied here.

constrained in one axis. In this figure, optimistic covariance
estimation frameworks might miss this underconstrainedness
and encompass only the central samples.

This paper focuses on the problem of estimating the
covariance of ICP in such real 3D environments. To this
effect, we first provide an experimental explanation as to
why current covariance estimation algorithms may perform
poorly in that context. Furthermore, we present CELLO-3D,
a data-driven approach to estimating the uncertainty of 3D
ICP that works with any error metric.

II. RELATED WORKS

There are many approaches to estimating the covariance
of the ICP algorithm, each of which must balance quality
of prediction and computation time. On one end of the
spectrum, Monte-Carlo (also called brute force) algorithms
such as [6], [7] provide an accurate estimate ICP’s co-
variance. They consist in sampling a large number of ICP
registration transformations, and using the covariance of the
sampled results as the covariance estimation. If a model
of the environment is available, brute-force algorithms can
take sensor noise into account by simulating many scans of
the environment given some noise model. However, Monte-
Carlo algorithms cannot be used online due to their high
computational cost. This limits their practicality in mobile
robotics applications.

Another important category of covariance estimation al-
gorithms rely on the objective function’s Hessian [4], [6],
[8]-[11]. These closed-form methods are motivated by the
need for a covariance estimation that can be used online.
Their underlying assumption is that the objective function
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Fig. 2: The objective function of point-to-plane ICP around the ground truth when registering a simple cube. The black dots are sampled registration
transformations, with their associated translation projected on the xy plane. The green circle is a 30 covariance ellipse of the distribution of registration
transformations. The white dashed circle is a similar representation, but of Censi’s covariance estimate. Rightmost frame: the transitions from one plateau
to another are explained by point reassociations. At a scale smaller than the scale of the covariance of the registration transformations, the error landscape

is dominated by point reassociations.

J(T) used in ICP can be linearized around the point of
convergence. This allows the use of linear regression theory
to derive a covariance from the Hessian of J. If J is
analytically differentiable, then the Hessian can be computed
directly [6], [10]. Otherwise, it can also be approximated
numerically by sampling [8], [9]. This approach accounts for
errors that are due to the environment structure, but not for
errors due to sensor noise. However, modelling the effect of
sensor noise on the objective function J proves to be crucial
for covariance estimation algorithm. Censi [4] addresses this
by using the implicit function theorem. His model of the
covariance contains the Hessian of J, but also the effect of
the sensor noise on it. It is successfully evaluated on 2D
datasets. The equations for the 3D case are derived in [11],
but Censi’s algorithm is considered to be largely optimistic
in that situation [12]. More elaborate noise models alleviate
this difficulty, but only for specific sensors [13].

Closed-form approaches have the shortcoming of not
taking point reassociation into account. Therefore, they must
assume that 1) ICP converged to a loosely defined region of
attraction of the “true” solution [4], and 2) the reassociation
of points that occur in that region have a negligible influence
on the objective function. Bonnabel ef al. [14] show that for
point-to-point ICP variants, the second assumption is broken.
However, they present a proof that Censi’s method is accurate
using the point-to-plane ICP variant in a noiseless context.
They do so by demonstrating that changes in J due to point
reassociations are small enough for the covariance estimation
methods to remain valid under certain conditions. In spite of
this, Mendes et al. [12] indicates that this covariance is still
optimistic in a noisy experimental context.

A data-driven alternative to covariance estimation emerged
from the Covariance Estimation and Learning through Likeli-
hood Optimization (CELLO) framework [15]. It is a general
covariance estimation strategy that projects point clouds
in a descriptor space, then estimate the covariance within
this space. It uses a machine learning algorithm that first
estimates a distance metric between the predictors, and
then uses this metric to weigh the learning examples dur-
ing online inference. This procedure can be done with
ground-truth data [15], but also without it [16] exploiting
expectation-maximization. In the presence of ground-truth
data, expectation-maximization should be avoided to sim-
plify the machine learning process. The general strategy

of CELLO was successfully applied to the estimation of
the reliability of visual features for visual-inertial naviga-
tion [17], [18]. Peretroukhin et al. [18] used the prediction
space to generate a noise model for visual landmarks, which
in turn was used to predict the ego-motion of the sensor.
For an application to 3D ICP, these data-driven approaches
are challenging in that extracting relevant features from 3D
point clouds is still an open problem. Hand-crafted feature
designers must tread carefully between the expressiveness
and the generality of the descriptor for this approach to be
viable. Consequently, this method was never assessed in a
3D ICP context to the best of our knowledge.

Finally, Liu et al. [19] circumvent the explicit design
of features by training a deep neural network directly on
the sensor data. Their method successfully estimates the
covariance of 2D visual odometry. Unfortunately, the use
of deep neural networks on 3D point clouds is still an active
research area, and further work is required to apply this
method to such data.

III. SHORTCOMINGS OF CLOSED-FORM COVARIANCE

ESTIMATION ALGORITHM

As discussed earlier, Bonnabel et al. [14] point out that
closed-form covariance estimation methods are potentially
ill-founded if point reassociations occur at a scale that is
smaller than that of the covariance to be estimated. Our own
analysis on 3D simulated data shows that it is likely that point
reassociations happen at a scale this small. For example,
Figure 2 shows the objective function J(T') observed when
registering a pair of 1 x 1 x 1 m cube shaped point clouds.
The points lie on the surface of the cube and have a 0 = 0.01
m noise applied on them on every axis. At a larger scale, this
objective function J(T') corresponds to our intuition, with a
seemingly-smooth slope towards large global minimum. At
a smaller scale, however, it is composed of a large number
of “plateaus”, each of them corresponding to one fixed
association of points between the reading and the reference.
This litters the objective function with local minima to which
ICP is sensitive. In turn, a larger covariance of ICP results
is observed.

There is a mathematical explanation for the optimism
of Censi’s algorithm for the point-to-point variant of ICP
in Bonnabel er al. [14]. We do not know of such a proof the
point-to-plane case. Furthermore, the results in Bonnabel et
al. [14] were encouraging about the validity of Censi’s algo-
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Fig. 3: Trace of covariance computations of ICP against sensor noise.

Censi’s covariance estimate increases slowly as the sensor noise model

grows. The sampled covariance of ICP increases dramatically with sensor

noise, even on simulated datasets. This is attributed to the point reassociation
provoked by sensor noise.

rithm in the point-to-plane case. They show that the change
in the objective function provoked by point reassociations
is bounded under certain conditions, proving the correctness
of Censi’s estimate. On the contrary, our own experiments
show that caution is required even in the point-to-plane
case. Indeed, Figure 3 shows that sensor noise significantly
impacts the empirically sampled covariance of ICP as it
grows. On the other hand, Censi’s covariance estimate grows
slowly as the estimate of the sensor noise grows. To use
Censi’s estimate in that experimental context, we would need
to inflate our estimation of the sensor noise to values that are
beyond a meaningful range.

Consequently, we argue that a viable covariance estimation
algorithm for ICP should take into account the effect of noise.
More precisely, it should model both the direct effect of the
sensor noise on the objective function of ICP, and also the
point reassociations that it provokes around ground truth.
Monte-Carlo based approaches circumvent those difficulties
by incorporating the effect of noise directly. The complexity
we observe in the 3D registration process motivates our
shift from analytical to data-driven solutions. Our general
approach is to implement the CELLO framework for 3D ICP
and work towards learning covariance models from training
data generated through a sampling process. We aim at getting
the best of both worlds: the accuracy of brute-force methods
and the rapid inference of machine learning approaches.

IV. 3D COVARIANCE ESTIMATION OF ICP

Casting CELLO onto a 3D registration problem requires
a primer on notations. A rigid transformation §T" € SE(3)
allows to express a point cloud ®P e R3*" in the coordinate
system b in a second coordinate system a. Using the Lie
algebra, we can express the matrix T as a vector £ € se(3)
using log(T') and reverse the process using exp(&). The
vector & is split into a translation u € R? and an angle-axis
rotation w € R3. This allows us us to express the uncertainty
on a rigid transformation as a covariance matrix Y € R6%6
such that

u Yuu
£ = [w] and Y = [Ywu
Generally speaking, we need to_rely on prior information,

for which we use the notation (-), to produce an estimate
() of a true quantity (-). For example, having access to a
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Fig. 4: Overview of different variables used to estimate the covariance of
ICP. Top row: A single example of two cylinders being registered together
using ICP and converging to well aligned point clouds P (blue) and Q (red).
Middle row: A view of the translation components w of a set of initiation
transformation O before ICP (left) and after ICP (right). Bottom row: Same
view, but for the rotational components w. For the rotations, the spread
along the vertical axis is explained by the cylinder being unconstrained
around one axis. The presence of points in the outer ring is explained by
P first turning upside down and hen being unconstrained around the same
axis.

reference point cloud @ € R3*™, it is possible to produce a
transformation estimate T that reduces the alignment error
between P and @ by relying on a prior transformation 7.
A typical solution to this registration problem is the ICP

algorithm: . -
T = icp(P,Q,T). @)

The initial transformation T' can be seen as an element ran-
domly selected from a distribution of transformations O, for

which the shape typically depend on odometry computation.
Similarly, the estimated value T" comes from a distribution of
transformations Z which has a complex shape that depends
on both point clouds, O@ and the configuration of icp(-).
Estimating the covariance Y of ICP corresponds to making
the (oversimplifying but tractable) assumption that the Z is
normally distributed

I~N(TY), 3)

where the right hand side is shorthand for
[ with &~ N(0,Y). 4)

T = exp(§)T

Note the use of T in Equation 3, which supposes that ICP is
unbiased. Figure 4 shows an example of those symbols, with
two cylinders being registered starting with a wrongful initial
alignment T'. The distribution O was manually configured
and sampled to feed multiple 7' to ICP. The 5000 resulting
transformations T' form a distribution with covariance Y
that approximates Z. The covariance approximates the trans-
lations well, but some points in rotations were considered
divergent and filtered away.

A. Covariance prediction

Vega-Brown er al. [15] propose a data-driven framework
for covariance estimation, in which the estimation function F'



is posed as a weighted average of training examples. The first
step in such an approach is to collect a training dataset D =
{(do,Yp), ..., (dy,, Y,)} composed of point cloud descriptors
d;, and sampled covariances Yj. Our formulation differs
from the original CELLO framework, which has error vectors
in the place of the covariance matrices Yj. This was rendered
necessary due to the limited availability of 3D point cloud
pairs with associated ground truth: it allows us to extract
more knowledge from existing point cloud pairs.

The descriptors dj, are computed by a function
g(“P,4T Q) that extract features from a registered point
cloud pair. One can then predict a covariance F'(d) for an
unseen example d using

~ 1

F(d) Ss(pdd))Ye.  ©)

© Ss(od) T

The function p is a distance between a pair of point cloud
descriptors which is defined as

pld,d) = (d—-d)'©'ed-d) (6)

where © is an upper triangular matrix. The weighing func-
tion s(x) = e~ % is chosen here, but any decreasing positive
function is appropriate [15]. Large datasets could motivate
a choice of s that completely ignores examples with large
distances to make runtime predictions more efficient [18].
For the training of ©, the loss for an individual covariance
prediction F'(dy) is

L(F(d))|©) = det (F(dy)) +tr (F(d)'Y0)), (D)
along with a regularization term [15].

B. 3D point cloud descriptor

It is important for a point cloud descriptor d;, to contain
relevant information to the prediction of the covariance for
P, Q, while being small enough to be amenable to machine
learning algorithms. Thus, the descriptor extraction function
g(-) should capture the geometry of the scene, in a way that
translates our assumption that this geometry is an important
factor of the covariance. One consequence of this is that
the extracted descriptors should not be rotation invariant,
so as to capture the correct orientation of the covariance.
For instance, the covariance of ICP in a featureless hallway
should be aligned with its walls, as depicted in Figure 1.
There is a wide variety of descriptors that could be used for
3D point clouds [20], but a more thorough evaluation of the
existing descriptors is a question that is left for future work.

ICP—at least in its robust version—acts mainly on the
overlapping region of point clouds. Consequently, descriptors
should only be extracted from this overlapping region. In our
approach, g first extracts a single point cloud S containing
the subset of points from both P and @ that are overlapping,
after registration. Then, descriptors are extracted from S. The
extraction pipeline separates the space into a fixed-size grid,
from which all local descriptors are extracted. First, two de-
scriptors capture the overall “planarity” p and “cylindricality”
c of the entire voxel, from the average values of these two

TABLE I: ICP pipeline used for the sampled covariance computation

Pipeline Element Configuration

Point cloud filters
Point matcher

Maximum density, random subsampling
k-d tree, 3 nearest neighbors
Trimmed distance (keep the closest 70%
of associations)
point-to-plane
Max. 80 iterations

Outlier filter

Error minimizer
Transformation checkers

metrics defined in [21] computed at each point within the
voxel. Then, the orientation of the estimated surface normals
vectors for every point in a voxel are summarized in a 9-
histogram {hq, ..., ho} [22]. The local descriptor of voxel
i, j, k is vix = {p,¢, h1,....,ho}. The full descriptor d
for the overlaping point cloud S is the concatenation the
local descriptors for every voxel. This way, our descriptor
preserves a certain amount of global information, namely
the spatial distribution of the local features.

C. Covariance sampling

We employ a brute-force approach similar to [7] to esti-
mate the covariance of ICP for training. We sample the result
of ICP for every point cloud pair in our dataset. Every sample
uses an initial estimate T' drawn from O. The distribution of
results is then used to compute a sampled covariance Y} for
the point cloud pairs through

! Zas? (8)

Y. =
k n—1

with &; = log(’.’[_’,; 1ZIA}) the n perturbations of the sampled
transformations. In some cases, like in the lower row of
Figure 4, ICP converges to many clusters. If we suppose that
we estimate the covariance of ICP when it converges, it is
ultimately up to the designer to decide what converged from
what did not. We use the DBSCAN clustering algorithm [23]
on the set of &;, and keep only the points in the cluster
which is closest to ground truth. This filtering method has the
benefit of avoiding unrepresentative sampled covariances Y
in the training dataset. It does so without imposing an upper
bound to the covariance of the samples. One more look at
Figure 4 illustrates the results of this procedure. The central
line of samples is explained by the fact that rotations around
the z axis are not constrained on this cylinder. The outer
ring corresponds to situations where ICP converged upside-
down, and then spun freely around the z axis. Our filtering
strategy is able to remove results that converged incorrectly
(i.e. the outer ring) while capturing the information about an
underconstrained axis (i.e. the central line).
V. EXPERIMENTS
A. Training datasets

To be realistic, we used datasets that are representative
of a wide variety of environments that a mobile robot can
encounter. Consequently, we used a subset of the Challeng-
ing data sets for point cloud registration algorithms [24].
It comprises point clouds taken in environments ranging
from structured to unstructured, and indoor to outdoor. Every
Challenging dataset contains a sequence of [ point clouds P;
as well as ground truth positions T} for them. To generate a



learning dataset D = {(do, Y¥p), ..., (dn, Y,)}, we considered
pairs of point clouds P;, P; for all ¢, j such that i < j <
and j —1 < 4.

The descriptors dj, were generated using g(-). We used a
grid of 4 x 4 x 4 spanning 25 m in the x and y axes (parallel
to the ground plane) and 10m in the z axis (perpendicular
to the ground plane) [20]. This grid was chosen because it
encapsulates the typical spatial extent of a point cloud from
the Challenging datasets.

Each sampled covariance Y; was computed from 5000
registrations. Every registration had a O that was centered
at the ground truth and a covariance of al. We set a =
0.05 to simulate a reasonable odometry scenario. A typical
ICP registration pipeline was used, featuring the point-to-
plane error metric. Table I describes the full registration
pipeline, in terms of the framework layed down in [25]. As
discussed in Section IV-C, the outliers were filtered from
the registration transformations to enforce the assumption
that ICP converged. Point cloud pairs where ICP failed
consistently were removed from the training dataset. To do
so we identified the pairs where ICP converged on average
more than 1m or 1rad away from ground truth. In total, this
work uses the data from about 5100000 registrations on
1020 pairs. These registrations were performed on Compute
Canada’s computing clusters using a total of approximately
5 CPU-Years.

Data augmentation was performed to extract more knowl-
edge from the computationally expensive sampling of the
Y,. By applying a transformation T on the point clouds
before sending them in g(-), we obtained new descriptors
daue. The sampled covariances were transformed similarily
using the adjoint representation of T' such that Y., =
Adjr Yy - Adj;. For our application we chose to perform
data augmentation only by rotating the frames of reference
around the z axis of the reference point cloud. The z axis
was chosen to preserve the 2.5D aspect of the dataset,
while giving some rotation invariance to our algorithm. Other
rotations were expected to create examples that are not close
to the registration pairs encountered online, such as examples
where the trees of a forest are sideways. A 6-DOF robot
would warrant a more complete data augmentation.

B. ICP trajectories computation

Once the models were trained, we evaluated our covari-
ance estimation algorithm for state estimation on indoor
and outdoor trajectories. In that spirit, we computed an ICP
odometry from our trajectory datasets. Since the point cloud
pairs are in a sequence of length [, we compounded their
ICP registration transformations using ’_IA“F = (1)1A" ;f’ lill’f
where Ty is the final pose estimate of the odometry. The
distribution of initial transformations was O ~ N(; +i T,al)
with @ = 0.05. In a second step, we computed covariance
estimatign Y, for each T} using a covariance estimation
model F'. Finally, we compounded the covariances with the
4™ order approximation in Barfoot er al. [26] to obtain a
final covariance estimate Y. This setup allowed us to assess
the quality of the covariance estimation in context, over
trajectories.

VI. RESULTS

We trained on one trajectory dataset, while testing on
one or many others that had the same type of environ-
ment/structure. Testing on separate (but similar) datasets
was done to obtain a fair evaluation, while avoiding overly
optimistic result due to overfitting. This correspondence is
detailed in Table II. The weighting matrix ® was trained by
stochastic gradient descent using the loss from Equation 7.
The batch size was 4 and the learning was le—5.

A. Single-Pair Covariance Prediction

First, we validated the quality of our approach, for single
pairs of point clouds. As a quality metric, we used the
Kullback-Leibler (KL) divergence from our estimated distri-
bution to the sampled distribution (covariance). This metric
measures the amount of information lost when using the
covariance F'(d},) instead of Y} to express the distribution
of ICP results Z. Results reported in Table II are the average
KL divergence over all pairs within a testing group. For
comparison, we also computed the average KL divergence
from a baseline covariance Y ase %Zk Y. using the
Y of the training dataset. We made similar computations
with a Censi estimate Ycensi, for the same point cloud pairs.
One should keep in mind that the mere prediction of the
scale of the ICP covariance has been historically challenging.
As hinted by Figure 3, Censi’s covariance estimate have
large divergences, since they are orders of magnitude smaller
than the sampled covariances. At worst, our approach makes
predictions that have the correct order of magnitude, as seen
in Table II.

Trajectory in self-similar environments will have point
clouds (and covariances) that are similar to one another. For
these self-similar environment, gains over the baseline are
expected to be modest. In this situation, we observe that
our predictor’s parameters ® converges to nearly uniform
weights after training. Consequently, CELLO-3D treats train-
ing examples nearly equally, and outputs (something close
to) their mean. This phenomenon is clearly visible in Table II,
where gains over the baseline are limited for Wood Autumn
and Wood Summer. For the Gazebo environments, they also
exhibit a certain degree of self-similarity, as measured by
the low KL-divergence of the baseline. Again, gains for our
approach are modest there. However, for the three indoor
environments (apt, haupt, and stairs), we can see that they
have the highest baseline KL-divergence. This indicates
that the sampled covariance varies largely throughout the
trajectory, in comparison to the average (baseline) one. As
expected, it is where our algorithm makes the strongest gains.
These gains for indoor environments are also explained by
their structured nature, well-suited for our descriptors.

B. Consistency over Trajectories

We evaluated the consistency of the estimated covariances
when computing ICP odometry trajectories in diverse loca-
tions. This represents the fundamental situation where our
predictor is used within a state-estimation algorithm. To
visualize the error on the covariance in all dimensions at



TABLE II: Loss of the CELLO algorithm in various training scenarios.

Dataset Trained on N. Avg. KL Divergence

Pairs

Baseline Ours  Censi
Apartment Haupt. & Stairs 1190 34.1 26.6 9.19e7
Hauptgebaude Apt & Stairs 938 34.0 26.7 2.06e8
Stairs Apt & Haupt. 798 33.7 27.0 7.65e7
Gazebo Summer Gzb. Winter 826 20.8 19.8 2.55e6
Gazebo Winter Gzb. Summer 798 20.3 18.9 2.25¢6
Wood Autumn Wd Summer 812 13.2 11.5  4.94e6
Wood Summer Wd Autumn 966 13.6 11.3  3.52e7

TABLE III: Final odometry error and consistency of CELLO-3D.

Length Translation Rotation Dy
Traj @  Julm Dy [w|@ad Dy
Apartment 22 0.115 0.274 0.0331 0.160  0.540
Haupt. 24 0.168 0.467 0.00910 0346  1.15
Stairs 12 0.0664  0.0998 0.0127 0.307  0.592
Gzb. Smmr 14 0.0396 0.278 0.0165 0.278  0.491
Gzb. Wntr 15 0.0311 2.000 0.0144 2.90 2.50
Wd Atmn 18 0.217 0.205 0.0178 0.394  0.405
Wd Smmr 21 0.332 0.208 0.0299 0.533  0.762

once, we resort to computing the Mahalanobis distance Dy
between TF and the ground truth lT

Dy = £\/ETY L€, )

in which & log(3T—! T). The distance Dy can be
thought of as the number of standard deviations between
a sample and the mean, with a value zero meaning that T
was exactly on the ground truth. Table III shows the average
Dy of 100 trajectories for every covariance model. It also
lists the average Mahalanobis distances of the translation u
against Y,,,, and rotation w against Y,,,, for the trajectories.
The average values of Dy indicate that our algorithm is
consistent overall. We consider that an average D)y above 3
indicates an optimistic covariance estimate, while an average
below 1.5 insicates a pessimistic estimate. In that sense, the
covariance estimation algorithm is pessimistic for the Stairs
or Apartment datasets. However, not extreme values were
found demonstrating a functional solution.

In Figure 5, we take a closer look at the behaviour of
CELLO-3D over short trajectories, in the Wood Summer
(unstructured) and Gazebo Winter (semi-structured) envi-
ronments. The figure compares the compounded sampled
covariances Y}, with our estimated covariances F(dy). In
there, we sampled 20 ICP odometry trajectories to compare
against the covariance predictions at each step (the grey
ellipses). The green dots represent the final Tx for each
trajectory, with the green ellipses being YF This figure
shows that our covariance estimates are consistent with
the compounded trajectories, within 2 sigma. Note that
the CELLO-3D uncertainty estimate grows more steadily
and uniformly than that of the sampled covariances. This
indicates that, while our algorithm does not seem to model
the input descriptors in very sharp detail, it is able to extract
a consistent knowledge from the training dataset.

Sampled Covariances Learned Covariances

. (m?;f) 5.0 . (mQ)TS 5.0

Fig. 5: Comparison of covariance estimations for Wood Summer (top) and
Gazebo Winter (bottom). Every frame as 20 ICP odometry trajectories,
although some are not visible because they are overlapping. The ground
truth trajectory is shown as a thick black line. The green dots represent the
final poses T, while the green ellipses represent Y. The data is projected
on the ground plane for the sake of visualization.

VII. CONCLUSION

In this work, we presented CELLO-3D, an online co-
variance estimation algorithm for ICP that works well in
3D. CELLO-3D uses the covariances of a learning dataset
to predict the covariance of similar point cloud pairs at
runtime. It was successfully validated on individual pairs of
point clouds and over trajectories, on challenging datasets. It
provides also a better uncertainty estimate when compared to
existing solutions. Our predicted covariances are neither too
optimistic nor too pessimistic, and represent well sampled
particles over trajectories of several meters.

Throughout the course of this work, some challenges
became visible with the transition from 2D to 3D. Due to the
curse of dimensionality, generating a dataset for covariance
in 3D requires more samples than in 2D. With this larger
number of samples, we noticed that approximating Z as
a normal distribution is prone to larger estimation errors
in SE(3), as we observe mainly multimodal distributions
(see Figure 1 and Figure 4). Moreover, the original CELLO
framework proposed the use of weak descriptors to alleviate
the difficulties of descriptor design. However, the quality of
the input features is found to be critical to the success of
covariance predictions. Inspired by [19], we intend to meet
this challenge using Deep Neural Networks (DNNs) directly
on 3D point clouds.
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