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Abstract— Autonomous driving vehicles must be able to
handle difficult weather conditions in order to gain accep-
tance. For example, challenging situations such as falling snow
could significantly affect the performance of vision or LiDAR-
based perception systems. In this paper, we are interested in
characterizing the behavior of LiDARs in snowy conditions,
as there seems to be little information publicly available. In
particular, we present a characterization of the behavior of 4
commonly-used LiDARs (Velodyne HDL-32E, SICK LMS151,
SICK LMS200 and Hokuyo UTM-30LX-EW) during the falling
snow condition. Data was collected from the 4 sensors simulta-
neously during 6 snowfalls. Statistical analysis of these datasets
indicates that these sensors can be modeled in a probabilistic
manner, allowing the use of a Bayesian framework to improve
robustness. Moreover, we were able to observe the temporal
evolution of the impact of the falling snow during these
snowstorms, and characterize the sensitivity of each device.
Finally, we concluded that the falling snow had little impact
beyond a range of 10 m.

I. INTRODUCTION

The robustness of autonomous vehicles has increased
prodigiously in the recent years. While long-range au-
tonomous driving on the highway has been around for
decades already [1], advances in mapping, 3D data pro-
cessing and computer vision have enabled cars to drive
autonomously for thousands of miles in unconstrained, city
environments [2]. While this surely is an impressive feat,
one quickly notes that most of these miles have been logged
in California weather, which provides optimal operating
conditions for sensors such as LiDARs. In order for these
systems to gain acceptance worldwide, it is crucial that they
could be operated in more challenging weather conditions,
such as rain, fog and snow.

As we strive to make autonomous vehicles more adaptable
to varying weather conditions, it is important to understand
how sensors will behave in such conditions. Of particular
interest, snowy conditions may cause challenging situations
for sensors such as LiDARs. Indeed, the laser beams emitted
may illuminate the snowflakes themselves, thus providing
echoes that do not correspond to real obstacles. Consider
fig. 1 for example. The same scene appears drastically
different depending on whether it was captured on a clear
or snowy day. While programmable lighting may help cir-
cumvent this problem [3], current LiDARs may fail under
such circumstances.

In this paper, our main contribution is to provide a
characterization of the behavior of four well-known LiDARs
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Fig. 1. Driving in bad weather. While autonomous vehicles have attained
a great level of performance in nice weather (left), bad weather can
cause significant challenges due to limited visibility (right). In this paper,
we characterize the behavior in snowy conditions for oft-used sensors in
autonomous cars: LiDARs. Photo credit: Nicole Duchesne (left), Gaetan
Chevalier (right).

in snowy conditions. Through an extensive empirical study
performed on a novel dataset captured under varying de-
grees of snowfall, we evaluate how much these LiDARs
are sensitive—or not—to falling snow. We show that recent
advances in sensor design have increased their robustness
even to significant snowfall.

A. Related work

It is well-known that snow poses significant challenges to
sensors mounted on-board outdoor mobile robots or other
autonomous vehicles. For example, in their Antarctica ex-
ploration project, Moorehead et al. indicate that “in heavy
[snow] storms, [...] the laser could not be used” [4]. Similarly,
Yamauchi et al. relate that “LiDAR and stereo vision provide
greater accuracy and resolution in clear weather but has
difficulty with precipitation and obscurants” [5]. Common
approaches for dealing with this problem include filtering
3-D data [4], or video [6], but this is often not enough to
completely remove artifacts.

It is therefore important to characterize how sensors be-
have in such conditions. To this end, Sumi et al. [7] build
a specifically designed simulated snow chamber, with white
polystyrene beads flown with large fans to simulate snow.
In our case, we use real world conditions to acquire a novel
dataset of more than 6 days of snowfall.

Finally, we also mention the work of Servomaa et al. [8],
who use LiDARs (and other sensors) to characterize snow
storms for monitoring and measurement applications. In our
case, we characterize the behavior of the sensors themselves
for robotics applications.



II. DATA ACQUISITION

In this section, we first report on the relevant characteris-
tics of the four sensors used in our dataset. We then describe
the physical configuration of our test setup, then outline the
weather conditions for each of the six collected snowfalls.
Finally, we describe how the information from the LiDARs
was preprocessed before analysis.

A. Sensors

Data acquisition was performed with the following four
LiDARs: the SICK LMS200, SICK LMS151, Hokuyo UTM-
30LX-EW, and the Velodyne HDL-32E. Relevant sensor
information is provided in table I, but the reader is referred to
the manufacturers documentation for additional information1.

The first element that provides a qualitative overview of
the sensor performance is the maximum acquisition distance.
This value depends on several factors, such as lighting con-
ditions and target remission. This value is provided directly
for the HDL-32E and UTM-30LX-EW, but based on a target
remission greater than 75% for the LMS200 and LMS151.
Another element to consider is the shape and area covered
by the beam, which influences the probability of hitting a
snowflake as well as the proportion of area it covers. A
final significant element which changes from one sensor to
the other is the number of echoes returned. The Hokuyo
sensor can return up to three echoes, which means that it
could locate two snowflakes before the beam reaches the
ground. Regarding the LMS151, two echoes are evaluated
by the hardware, but only one is returned. Finally, note that
all LiDARs use class 1 laser with a wavelength of 905 nm.

B. Setup configuration

Data acquisition was conducted at Pouliot Hall of Laval
University, where sensors were placed close to the inner wall
of a window facing N50◦E. As shown in fig. 2, a wooden
structure held the sensors side by side at approximately 14m
above the ground. The main scanning plane (i.e. XY plane in
the sensor reference frame) formed a 30◦ angle with respect
to the building wall, so as to increase the maximum distance
as much as possible without having the laser beams hitting
trees or a pedestrian walkway present near the building. In
addition, an RGB camera was placed alongside the LiDARs
to provide visual information about the scene. In this config-
uration, a slight opening of the window allowed to keep the
instruments inside while scanning outside. To avoid direct
interference between sensors, corrugated plastic layers were
placed between them. Fig. 3 shows the scene as observed by
the RGB camera placed with the sensors.

C. Dataset description

Data acquisition started February 12 and ended on
March 2. A total of 10 episodes were collected for a total of
more than 50 hours of data. Recordings were made using
the Robot Operating System (ROS) [13], which provides
standardized data types as well as time synchronization. Data

1Available here: Velodyne [9], Hokuyo [10], LMS151 [11], LMS200 [12]

Fig. 2. The experimental setup. The 3D axis represent the orientation of
the sensors and the bottom left panel represent the 2D geometry as seen
from the right side of the picture.

Fig. 3. View from the RGB camera.

was acquired at different times of day and in a wide variety
of conditions, covering a wide range of snowflakes size,
falling rate and wind speed. Table II provides an overview
of our data2. Of these, six are used in the current study, as
highlighted in this table. The dataset is publicly available
upon request.

D. Pre-selection of laser data

For each sensor, we selected a combination of angles
and laser rings (for the Velodyne) or angles (for the others)
that had a clear view of the snow-covered ground surface.
Details for each sensor are provided in table III. The range
of the ground in our scans was between x = 15m to
x = 22m, depending on the angle. To simplify the analysis,
we considered as a snowflake echo any measurement which
had a range reading of x < 14.5m. As will be shown later
in sec. IV, this approximation is valid as the vast majority
of those events happened for x < 10m.

2Wind speed, daily precipitation and temperature were measured at
Québec City Jean Lesage International Airport, located at a distance of
9 km from Laval University. Data is available here [14].



Sensor Maximum distance Spot area (at 30 meters) Spot shape Echoes
SICK LMS200 28m 165 cm2 Circle 1
SICK LMS151 50m 22 cm2 Circle 2

Hokuyo UTM-30LX-EW 30m 196 cm2 Ellipse 3
Velodyne HDL-32E 70m 51 cm2 Rectangle 1

TABLE I
OVERVIEW OF CHARACTERISTICS SPECIFIC TO EACH LIDAR.

Beginning Duration Snowflakes Falling Wind speed range Daily precipitation Temperature
time (HH:MM) size rate (kmh−1) (cm) (◦C)

Feb 12, 9:47 am 09:21 Small Variable [2–13] 1.4 -14.1
Feb 14, 10:12 pm 04:12 Small Very low [5–13] 0.2 -21.4
Feb 19, 8:38 am 10:02 Big/small High [3–28] 4.5 -10.9
Mar 2, 1:06 pm 01:27 Big/small Variable [22–36] 1.6 -9.1
Mar 3, 10:33 pm 02:17 Big Medium [7–9] 5.4 -13.3
Mar 4, 11:45 am 04:12 Big/medium Low/none [20–30] 2.0 -4.3
Mar 17, 10:08 am 06:08 Big/medium Low/none [1–31] 2.0 -5.8
Mar 21, 6:44 pm 07:42 Medium/big High [5–33] 8.6 -5.1
Mar 30, 1:06 pm 04:45 Medium/big High [4–8] 8.5 -3.0

Apr 2, 1:56 pm 01:51 Small/rain High [2–10] 1.2 -8.4

TABLE II
OVERVIEW OF OUR SNOW DATASET. DATES IN BOLD CORRESPOND TO THE SIX DAYS USED IN THE PRESENT STUDY.

Sensor Acquisition Selected Selected Window
frequency beams/angles rings size

LMS200 9.375Hz 55–115 N/A 106 s
LMS151 25Hz 310–220 N/A 40 s
Hokuyo 20Hz 440–590 N/A 100 s

Velodyne 10Hz -0.05–0.25 rad 17–31 40 s

TABLE III
DETAILS OF MEASUREMENT SELECTION FOR THE ANALYSIS. THE

WINDOW SIZE IS THE TEMPORAL WINDOW USED TO CALCULATE

STATISTICS DURING THE TEMPORAL EVOLUTION OF A SNOWFALL.

III. TEMPORAL ANALYSIS

In this section, we analyze the temporal behavior of the
four sensors for the duration of six complete snowstorms.
In particular, we are interested in seeing how the fraction
of echoes in snowflakes evolves over time, for all four
sensors. First, we will discuss the highly dynamical nature
of snowstorms. This will be exemplified by how consecutive
scans can have significant quantitative and spatial differences
in the distributions of the snowflakes echoes, which justify
the use of averaging windows for our analysis. We will then
present the actual temporal evolution of these statistics in
the form of graphs for all four sensors, and finally briefly
discuss the results for each sensor.

A. Extraction of temporal statistics

Snowstorms are highly dynamic processes, with large
variation in snowfall rates over their durations. Moreover,
the snow physical characteristics (size, shape or reflectance)
might vary significantly during a storm, affected by ambient
conditions such as humidity level and temperature. Also,
wind gusts might pull snow back up in the air or drive it
sideways, affecting its effective fall rate. Consequently, one
expects during a snowstorm to see significant short, medium

and long term variations in the fraction of LiDAR echoes
corresponding to the falling snow.

Computing and reporting the temporal statistics for every
scan would put too much emphasis on the very short-term
statistics. Indeed, the inter-scan variation in the fraction of
snowflake echoes can be significant. To better illustrate this
point, we have overlaid four consecutive scans in the same
plot for the LMS200 and for the first echo returned by the
multi-echo Hokuyo sensor in fig. 4, for an intense snowing
episode from the 02-19 dataset (see tab. II). In these figures,
we can see strong variations in the fraction of snowflake
echoes and their spatial distribution. One can readily see the
fluctuation in these fractions as reported in the brackets of
the legend in fig. 4.

To smooth out these fluctuations, statistics are extracted
from a number of consecutive scans contained in a time
window of around 1 minute (detailed values in tab. III).
Fig. 5 shows this smoothed fraction of snowflake echoes
compared to all returned laser measurements as a function
of time, for the six snowiest days of our dataset. To allow
for better visualization, only the LMS200 and the Hokuyo’s
first echo are plotted at their actual scale (1x): Others have
been scaled up (from 30x to 200x), with their corresponding
scaling factors reported in the legend. As will be shown
below, some sensors were much more sensitive than others.

B. Detailed analysis, per sensor

1) SICK Sensors LMS200 and LMS151: Our first conclu-
sion based on fig. 5 is that the most sensitive device was the
older LMS200, first introduced in the mid-2000s. For the
most intense snowstorms (fig. 5. b) 02-19, d) 03-17, e) 03-
21 and f) 03-30), it peaked at around 15% of measurements
triggered by the falling snowflakes, for averaging windows
of 106 s. As an older-generation device, it probably uses less
sophisticated algorithms and sensing, and was not directly
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Fig. 4. Four overlaid consecutive scans for the LMS200 sensor (top), and
the first echo scans for the Hokuyo sensor (bottom), taken from the 02-19
dataset. Each symbol corresponds to a particular scan. The curved line at
the top corresponds to the snow surface on the ground. One can see the
rapid variation of the snowflake echoes between scans, and how they are
mostly limited to a range x < 5m. The percentages (in brackets) are the
proportion of those echoes in the snowflakes.

targeted for harsh outdoor environments. Indeed, its technical
description [12] indicates that “raindrops and snow-flakes
are cut out using pixel-oriented evaluation”, but this seems
only applicable to obstacle detection (field computation), not
the actual measurements. No further details are given. On
the other hand, the more recent SICK LMS151 exhibits
much less sensitivity to snowflakes: The reduction factor
for the fraction of snowflakes echoes is in the order of
200-300, granting this device a much higher immunity to
snowstorms. Indeed, the highest peak was around 0.1 % of
echoes in snowflakes during the 02-19 dataset. This seems
to support the claim, obtained in the documentation from
the manufacturer, that this model is targeted for “all weather
conditions” [15].

2) Hokuyo UTM-30LX-EW: For this sensor, we resorted
to a slightly different approach for comparison, as the device
has been designed to return multiple echoes. We thus ex-
tracted statistics for the two most relevant cases: the first and
last echoes. Statistics for the first echo indicate how sensitive
the device is, if one wishes to detect the presence or absence
of falling snow. This information could be used, for example,
to adapt the driving strategy of an autonomous vehicle
or inform vision algorithms of the presence of particles
in the air. Using the last echo increases the probability
that obstacles, such as another vehicle or the snow-covered
ground, will be detected. This information would be used for
localization and navigation purposes.

For the first echo, we observed that the device behaved

similarly to the LMS200. Indeed, the Hokuyo first echo (blue
line) closely tracks the LMS200 curves (red dashed line)
almost everywhere in fig. 5, with a few exceptions. When
using the last echo, the sensor behaves like the LMS151,
not surprisingly as this sensor performs a 2-echo analysis
and filtering. The last echo of the Hokuyo tends to reject the
falling snow, but not as well as the LMS151, as it peaked at
around 0.5 % in some episodes. Nevertheless, this difference
might not be sufficient to impact algorithms relying on laser
data. Note that tab. IV shows similar correlations between
these three sensors for averages taken over the complete 02-
19 dataset.

LMS200 Hokuyo Hokuyo LMS151 Velodyne
first echo last echo HDL-32E

2.67% 3.55% 0.0113% 0.00178% 0.0100%

TABLE IV
OVERALL AVERAGE SNOWFLAKE ECHOES FOR THE COMPLETE 02-19

DATASET, PER SENSOR. THESE AVERAGES ARE SIGNIFICANTLY LOWER

THAN THE INSTANTANEOUS VALUES DISPLAYED IN FIG. 5, AS SNOW

WAS NOT FALLING AT ALL TIMES DURING THAT PERIOD.

3) Velodyne HDL-32E: For all purposes, the behavior of
the Velodyne was similar to the last echo of the Hokuyo
sensor. This is seen both in the temporal behavior in fig. 5
and in the average value displayed in tab. IV.

IV. DISTRIBUTION OF SNOWFLAKE ECHOES AS A
FUNCTION OF RANGE

In the previous section, we showed how the expected
fraction of snowflake echoes varied temporally during snow-
storms. In some sense, it provided for a temporal modeling
of the interaction between a snowstorm and a given LiDAR.
In this section, we evacuate the temporal aspect and instead
focus on how the range x affects the probability for a
snowflake to trigger a measurement. To this end, we will
use histograms to estimate a probability density function of
those events, and show that for the weather conditions and
the sensors we tested, there seems to be an upper bound
on the range x beyond which falling snowflakes no longer
trigger a measurement: in other words, snowflakes become
invisible to the sensor past a certain range.

A. Modeling the impact of range on snowflake detection

When modeling a range sensor, one has to obtain the
probability distribution of certain events (e.g. snowflakes)
as a function of this range. Over the years, many re-
searchers have proposed probabilistic models for sensors,
notably [16]. In the previous section, we have estimated
the probability for a given sensor S that a snowflake would
generate an echo Esnowflake given the weather condition W ,
or PS(Esnowflake|W ). In this section, we take a closer look
at which range x such events would be generated, that is
PS(Esnowflake|x,W ). Having such a formulation would allow
for a more statistically-sound treatment of the information,
such as within a Bayesian probabilistic framework. To this
effect, we use histograms as approximations for the previous



Fig. 5. Temporal evolution of the percentage of echoes coming from the falling snow (range x <5m) during the 6 most intense episodes, for all 4
sensors. The data is smoothed by taking statistics for small time windows. Except for the LMS200 and Hokuyo first echo, all other sensors statistics have
been scaled up (factor in bracket of legend b) for ease of visual comparison. Time is in hour, starting from the beginning of the data capture sequence.

distribution. In fig. 7, we have plotted these histograms
for each of the four sensors. For ease of comparison, they
have all been normalized by their total area in the interval
0 < x < 14m, as the total count varies widely between the
sensors. The numbers in brackets in the legend indicate the
fraction of echoes generated by snowflakes compared to the
total number of data points, for a given dataset.

The general shape of these histograms is close to a log-
normal distribution, with the exception of the LMS200 for
a number of dates (02-12 through 03-17), which seems to
follow a sum of two log-normal distributions. We attribute
this log-normal shape to the interaction between two different
phenomena, illustrated in a cartoon-type model in fig. 6.
At short ranges x < 3m, the building acts as a shield
and decreases the probability of having a snowflake in the
path of the laser. We recognize that this phenomenon would
be most likely absent on an autonomous vehicle, thereby
increasing the probability of having echoes in snowflakes
at close range. However, we believe that this difference is
not problematic, as close obstacles would be easily detected
from i) the overwhelming number of LiDAR echoes on this
obstacle ii) other sensing modalities such as vision or radar.
Furthermore, if the LiDAR is to be mounted on a rooftop, one
can safely ignore echoes in the first 2m, either in software
or directly through the sensor itself (via its configuration).
The other phenomenon, illustrated as the red dashed line in
fig. 6, is the probability of optical detection of a snowflake
by the sensor as a function of the range x. We argue that this
shape is due to the rapidly decreasing light intensity of the
echoes in snowflakes, as a function of x. Combining these
two phenomenon yields a log-normal shaped curve (black
line in fig. 6). Overall, this seems to indicate that a simple
probabilistic model PS(Esnowflake|x,W ) can be derived for
these sensors.

0 5 10 15

Range x (m)

P
ro

b
a
b
ili

ty
 o

f
s
n
o
w

fl
a
k
e
 d

e
te

c
ti
o
n

 

 

Building shielding effet

Optical detection

Product of both

Fig. 6. Cartoon representation of the interaction between the probability
of detecting a snowflake (in red) and the diminution of snowflakes due to
the shielding effect of the building (in blue). The black line is the product
of the two, and bear a close resemblance to the actual histograms extracted
from our dataset.

B. Sensor results

As can be seen from the histograms in fig. 7, most
sensors exhibit the log-normal or sum-of-log-normal distri-
butions discussed above. We note that for certain days, the
distributions are shifted to the right (greater range x). In
particular, for the 03-21 and the 03-30 distributions, this shift
is substantial (on the order of 1m). We suspect that for these
days, the snowflakes were significantly larger, thus allowing
for a stronger optical echo and extended range of detection.

For all sensors, we can also conclude that beyond the
range x > 10m, snowflakes are no longer detected, i.e. they
become invisible. A small notable exception would be for the
Velodyne, for which snowflakes were detected all the way to
x = 14m, albeit at a significantly reduced rate. Again, we
do not think that this would significantly impair their use in
conditions similar to our test setup.

V. DISCUSSION AND CONCLUSION

In this paper, we explored the impact of falling snow on
the usability of 4 commonly deployed LiDARs in the context
of autonomous driving vehicles. To this end, we collected
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Fig. 7. Histograms of echoes in falling snow during important snowfall
days, as a function of distance x reported by the sensor. Each histogram
has been normalized by its area, for ease of comparison. The numbers
in brackets are the fraction of data points in the complete dataset that
correspond to snowflake echoes. Note that for the 03-21 dataset, the LMS151
was not working properly: thus no data is included for that day.

data during 6 snowstorms in the winter of 2015. Upon
analysis, we found that the SICK LMS200 was the most
sensitive LiDAR, having a peak average rate of up to 15 %
of echoes coming from falling snow. Meanwhile, all 3 others
never exceeded 1 %. We also presented a simple probabilistic
model to take into account the effect of the range on
snowflakes interference. Based on a histogram analysis, we
concluded that for our experimental setup, this model can be
approximated by a log-normal distribution. Most importantly,
our data indicate that the impact of snowflakes on LiDAR
beyond a range of 10m is very limited.

A number of questions remain to explore. For example,
as the LiDAR beam travels through the falling snow, its
intensity will diminish. Since the maximum range of a
LiDAR is heavily related to this beam intensity, we expect
the maximum range to be affected during snowstorms. In
our setup, we have not witnessed this issue, indicating that
this effect probably happens beyond our maximum distance
of 20m. Another aspect to be investigated is the relationship
between the returned intensities and the surface type (ground
or snowflakes). Also, because of the shielding effect of the

building, very few snowflakes were present at close range; It
might be the case that at closer range, a snowflake might be
detected at more than one angle, effectively occluding small
targets. Moreover, we have not investigated the impact on
the measurement noise for the snowy ground surface in the
presence of falling snow. Finally, it would be interesting to
mount these LiDARs on a moving vehicle to investigate the
impact of the vehicle velocity on the sensing behavior.
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