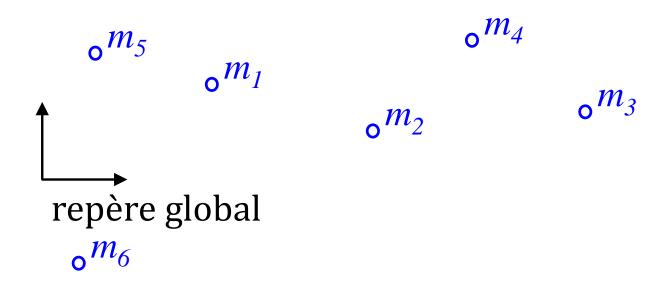


GLO-4001/7021 INTRODUCTION À LA ROBOTIQUE MOBILE

Cartes + Planification

Cartes

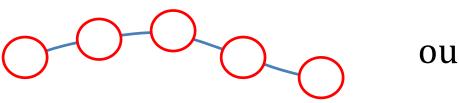
Représentation du monde : carte

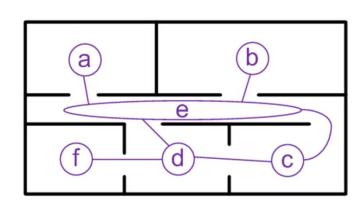

- Notre robot accumule de l'information sur le monde : **connaissance**
- Une carte permettra de raisonner sur le monde
- Plusieurs types possibles de représentation de cette **connaissance**
- Problème fondamental en intelligence artificielle
 - représentation des connaissances
- Compromis entre taille stockage, facilité d'usage, objectifs à accomplir

Types de cartes en robotique mobile

Métrique

- décrire un environnement avec un système de coordonnées absolu
- notion de distance calculable entre tous les points


Types de cartes en robotique mobile


Métrique

- décrire un environnement avec un système de coordonnées absolu
- notion de distance calculable entre tous les points

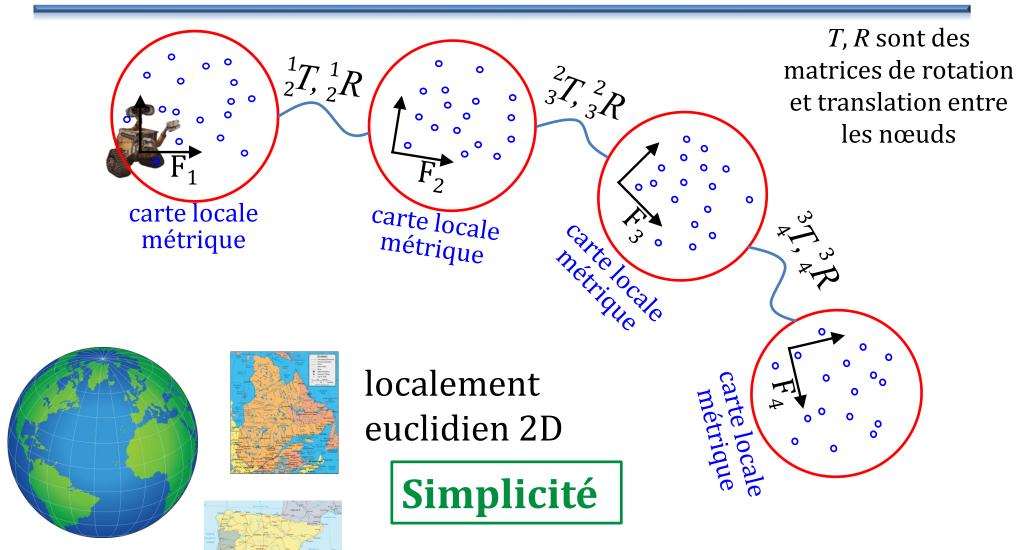
Topologique

- graphe (nœud=endroit, arêtes=connexion)
- évacue beaucoup d'information (distance)
- représentation des relations locales entre les endroits

Types de cartes en robotique mobile

Métrique

- décrire un environnement avec un système de coordonnées absolu
- notion de distance calculable entre tous les points


Topologique

- graphe (nœud=endroit, arêtes=connexion)
- évacue beaucoup d'information (distance)
- représentation des relations locales entre les endroits

Topométrique

- graphe, carte métrique à chaque nœud
- arêtes peuvent contenir une notion de distance +

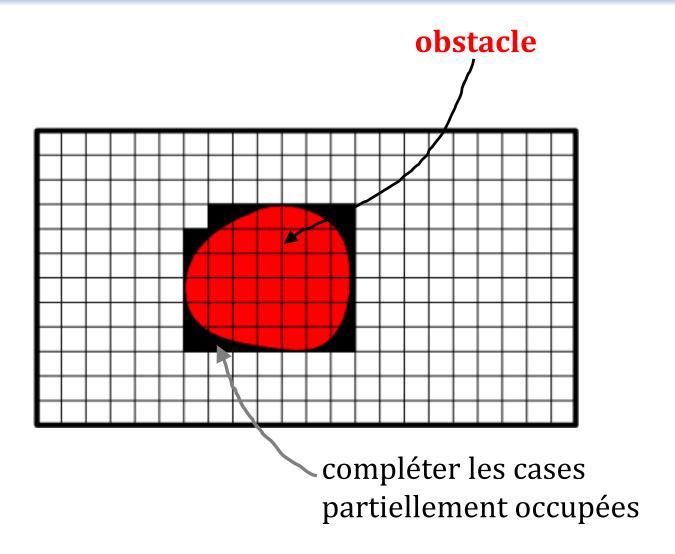
Exemple carte topométrique

(manifold dans 3D)

Local Metrical and Global Topological Maps in the Hybrid Spatial Semantic Hierarchy, B. Kuipers, et al., *ICRA* 2004. 11

Caractéristiques des cartes (2)

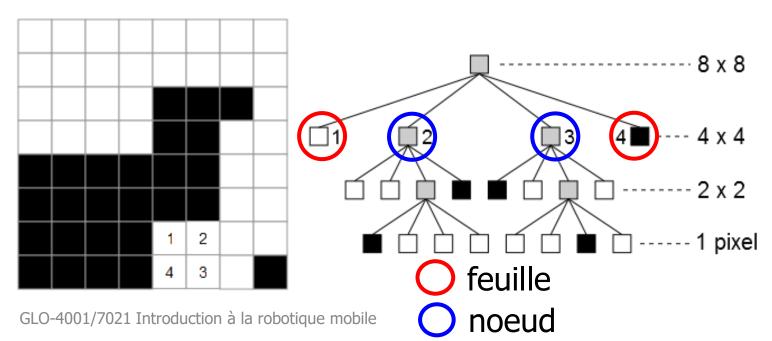
Continue


- positions sont des réels
 - une lampe à (-1.45534, +5.899485)
 - impact laser sur mur à (+2.323, +1.234)

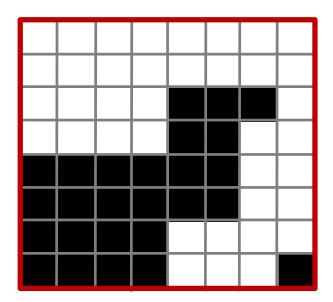
Discrète

- discrétiser le monde en case de taille fixe
- valeur binaire : 0= libre 1= obstacle
- valeur continue
 - [0, 1] (probabilité obstacle)
 - $[0, \infty]$ (cote obstacle)
 - $[-\infty,\infty]$ log(cote)
- e.g. grilles d'occupation (occupancy grids)

Cartes: grillage uniforme

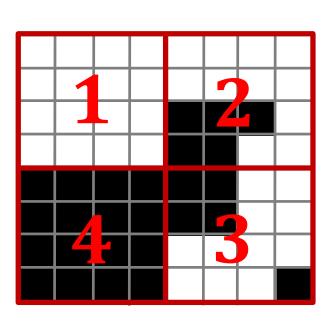

Cartes: grille uniforme

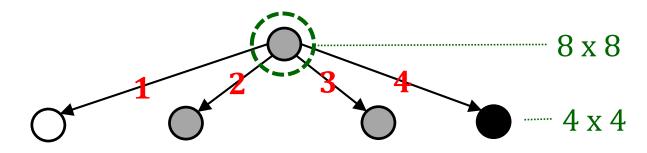
- Décide de l'intervalle échantillonnage, e.g. 1 cm
- 2D : pièce de 10 *m* x 10 *m*
 - $-1000 \times 1000 = 1000000$ « pixels »
- 3D : pièce de 10 *m* x 10 *m* x 3 *m*
 - $-1000 \times 1000 \times 300 = 300\,000\,000 \text{ woxels}$
 - (-) Espace de stockage
 - (-) Erreur de discrétisation
 - (+) Temps d'accès rapide


Cartes: échantillonnage Quadtree

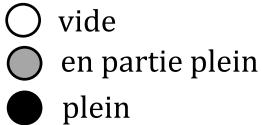
- Structure de données en arbre
- Compression de l'information
- Par contre, structure de l'arbre change beaucoup pour petits changements d'image

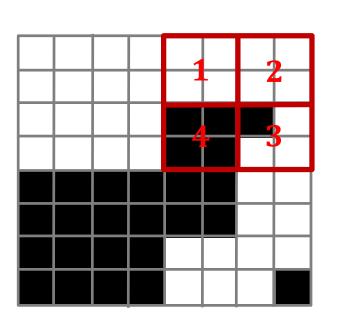
feuille O vide
nœud en partie plein
feuille plein

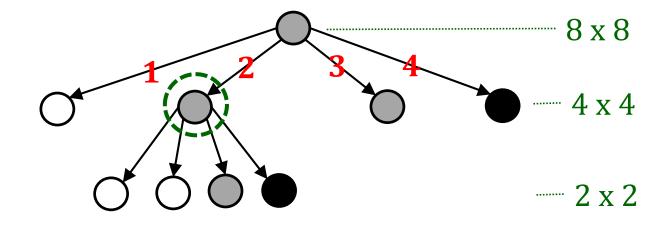

feuille nœud feuille



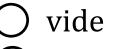
en partie plein

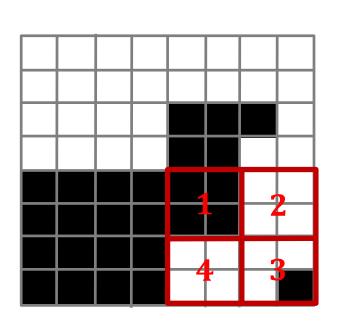

plein

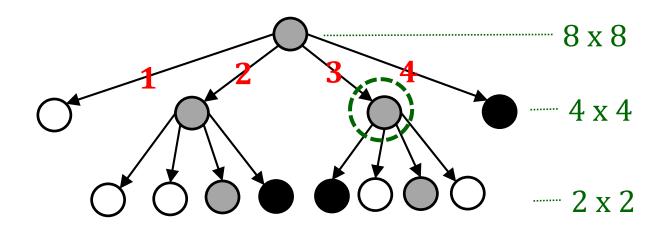




feuille C nœud feuille

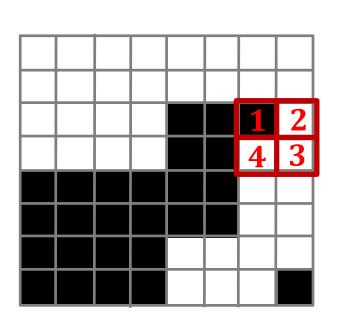


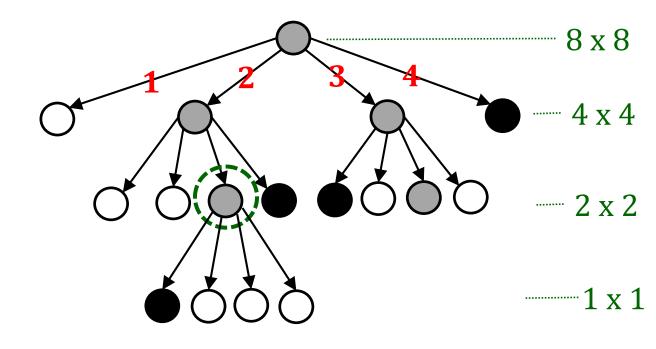



feuille nœud feuille

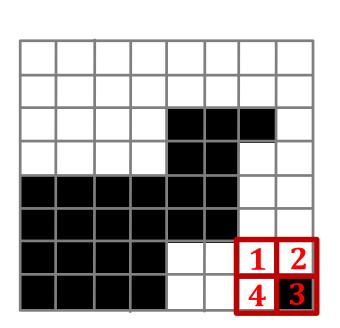
en partie plein

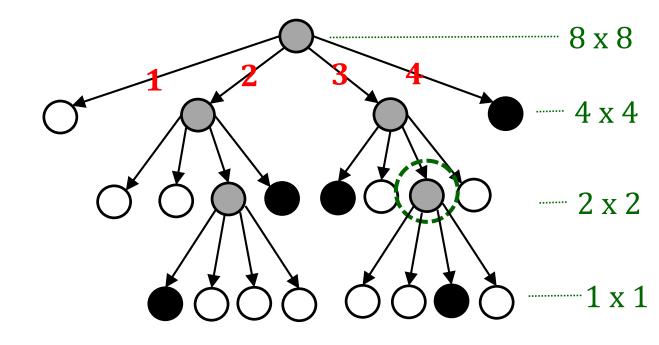
plein


feuille nœud feuille

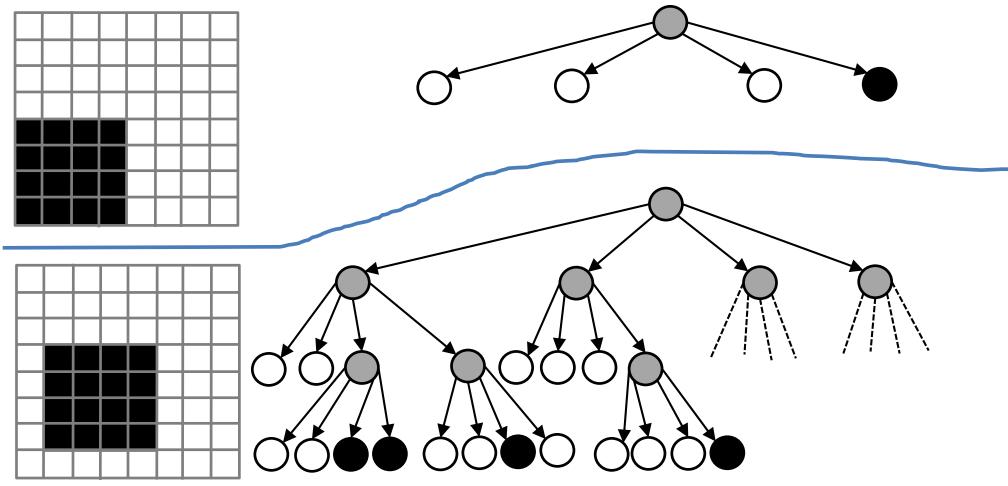


en partie plein

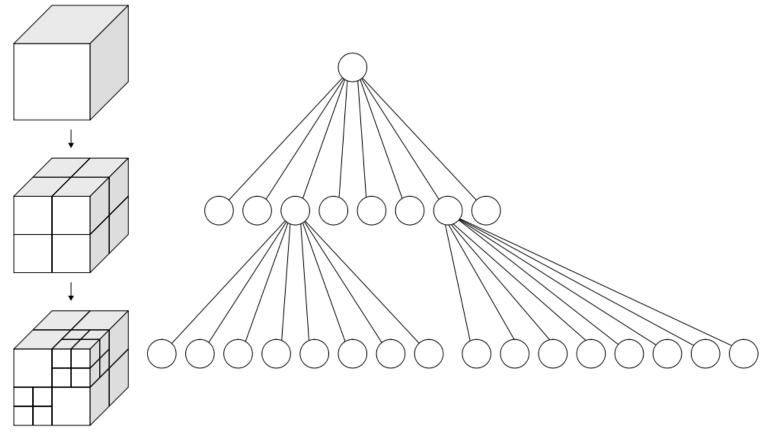

plein



feuille ovide
nœud en partie plein
feuille plein

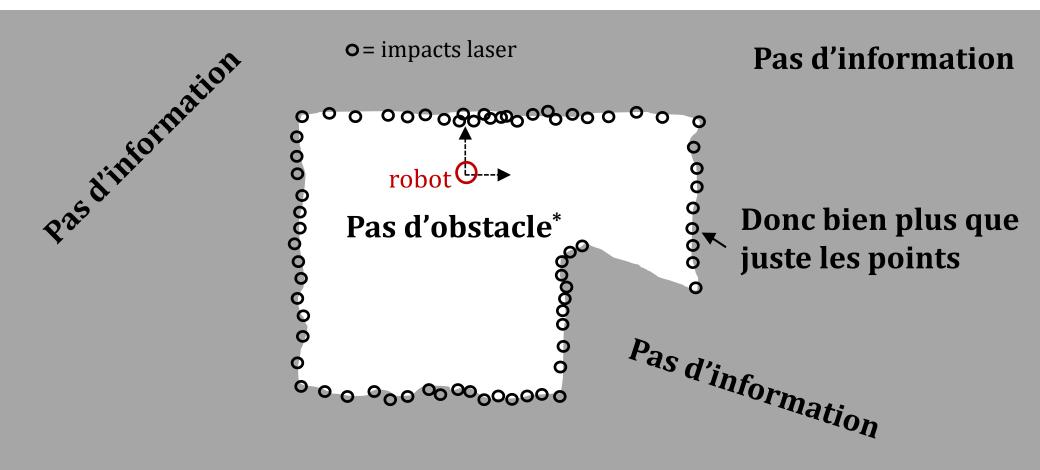


Quadtree : instabilité


• Petit changement à l'entrée ≠ petit changement à la sortie

Octree

• Pour les représentations en 3D



Construction d'une carte de type grille d'occupation (occupancy grid)

Grille d'occupation : intuition

Quelles informations vous avez, avec ces mesures laser?

^{*}En supposant que les obstacles soient plus larges que l'espace entre les faisceaux

Gérer l'information : grille d'occupation

- Carte du monde divisée en carrés de tailles égales (10x10 cm)
- Chaque case de la grille encode la probabilité qu'un obstacle y soit présent :
 - -p(c)=0 \square si libre (certain)
 - -p(c)=0.5 si on ne connait rien
 - -p(c)=1.0 si obstacle (certain)
- On connaît parfaitement la pose x_t du robot¹
- Au début, toutes les cases sont à p(c) = 0.5 (environnement inconnu)
- Mesure z_t du capteur indique présence/absence d'obstacle, en probabilité, via l'inverse de la fonction du capteur

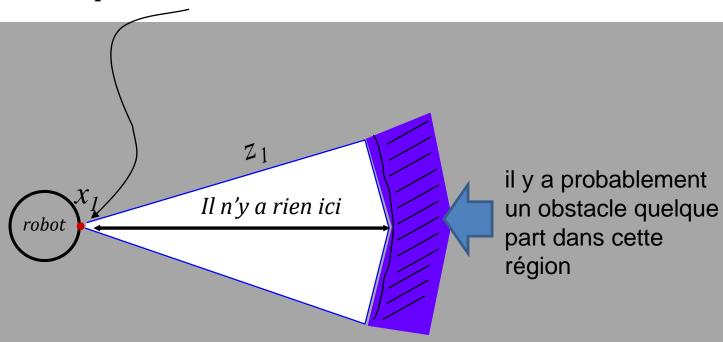
Création de la carte d'occupation m

• L'on cherche carte m composée de cases c_i contenant un obstacle $\sqrt{\text{(notez l'absence des commandes } u_{1:t)}}$

$$p(m | x_{1:t}, z_{1:t}) | où m = \{c_1, ..., c_N\}$$

• En considérant les cases comme indépendantes¹, on peut simplifier le problème en factorisant selon c_i : $p(c_1,c_2|A)=p(c_1|A)p(c_2|A)$

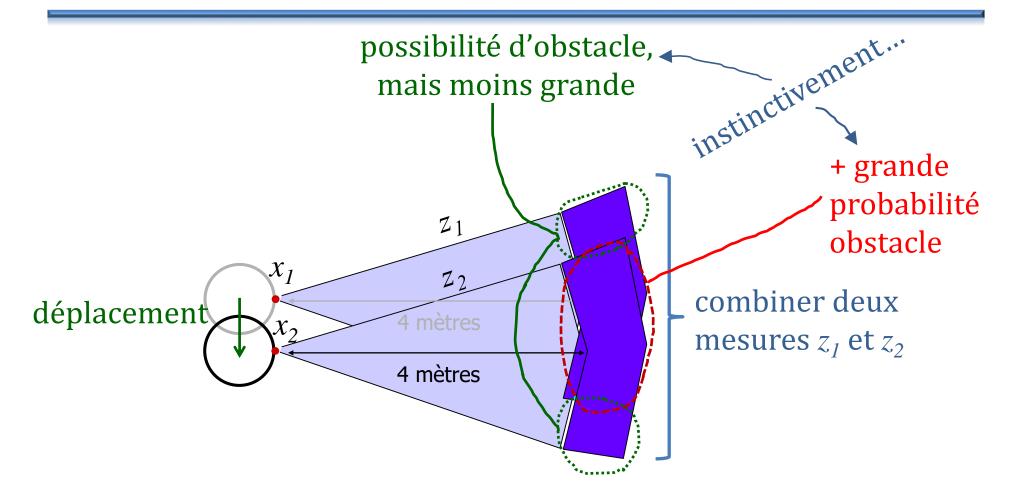
$$p(m \mid x_{1:t}, z_{1:t}) = \prod_{i=1}^{N} p(c_i \mid x_{1:t}, z_{1:t})$$


Création de la carte d'occupation m

- Comme les cases c_i sont indépendantes, incorporer une nouvelle donnée $\{x_t, z_t\}$ consistera à mettre à jour de façon individuelle les cases c_i affectées
- Simplifie/accélère grandement le problème...
- ... mais au prix d'une certaine perte d'exactitude (corrélation spatiale non-respectée)
- Quelles sont les cases c_i affectées?
 - dépend (du modèle inverse) du capteur

Grille d'occupation avec sonar

Si un sonar indique obstacle à 4 mètres?



Rappel : sonar émet en forme de cône

Carte locale

vide
pas d'information
obstacle

Grille d'occupation : accumulation d'évidences

Comment combiner ces informations de manière fondée et efficace?

Combinaison d'évidences sonar

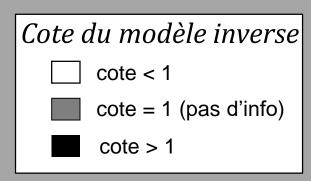
• Combiner les cotes:
$$cote(p) = \frac{p}{(1-p)} = \frac{p}{\overline{p}}$$
 p ne s'est pas produit

• Si p=75% chance de gagner, la cote sera :

$$\frac{0.75}{(1-0.75)} = \frac{0.75}{0.25} = 3$$

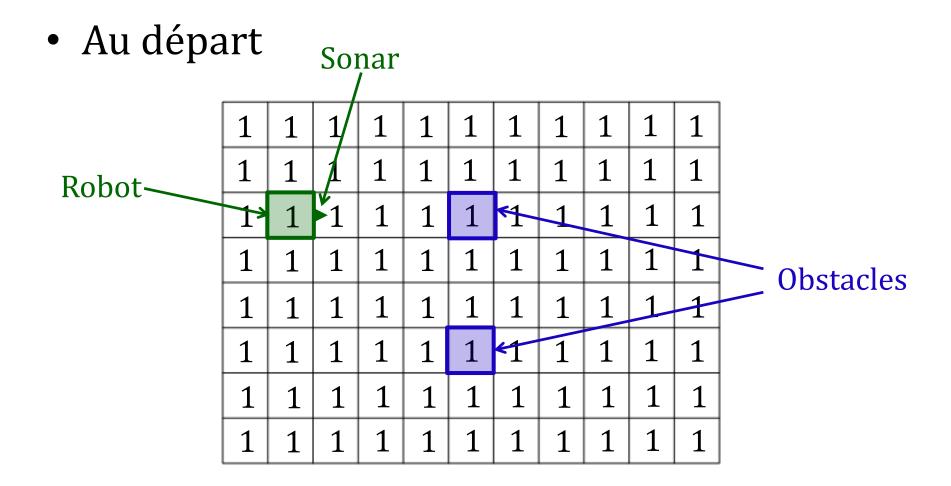
- Chacune des cases c_i contiendra la cote (ou log(cote) qui encode la probabilité de présence d'un obstacle.
- Pourquoi les cotes? pour faciliter les calculs¹...

Algorithme grille d'occupation


```
occupancy_grid_mapping(\{C_{i,t-1}\}, X_t, Z_t)
    for all cells m; in map do
         if m_i is in perceptual field of Z_f then
           c_{i,t} = c_{i,t-1} \times \text{cote\_sensor}(m_i, x_t, z_t)
         else
                                        Inverse du modèle du capteur
           c_{i,t} = c_{i,t-1}
         endif
    endfor
    return \{c_{i,t}\}
Carte de départ est le prior c_{i,0} = \frac{p(libre)}{p(occup\acute{e})}
                                                            (souvent 1)
```

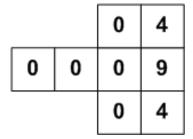

Modèle inverse du capteur

Si un sonar indique obstacle à 4 mètres? il y a probablement Il n'y a rien ici un obstacle quelque robot part dans cette région


Rappel : sonar émet en forme de cône

Fonction du capteur sonar pour z = 4 m

À l'intérieur du cône de sonar

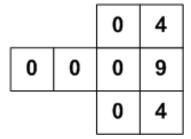


• Première mesure $Z_1 = 4 m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	-1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

			0	4
0	0	0	0	9
			0	4

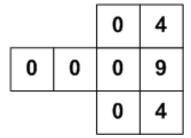


• Première mesure $Z_1 = 4 m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	-0	0	0	9	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

			0	4
0	0	0	0	9
			0	4



Déplacement

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	9	1	1	1	1	1
1	1	-1	1	0	4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

			0	4
0	0	0	0	9
			0	4

• Mesure $Z_2 = 4 m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	9	1	1	1	1	1
1	1	-1	1	0	4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1			1
1	1 1	1	1 1 1	1	1			1		1

cote_sensor(z=4)

			0	4
0	0	0	0	9
			0	4

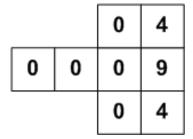
		0	4
0	0	0	9
		0	4

• Mesure $Z_2 = 4 m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1		1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	0	-0	0	0	36	1	1	1	1	1
1	1	1	1	0	4			1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

			0	4
0	0	0	0	9
			0	4


		0	4
0	0	0	9
		0	4

Déplacement

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	1	-1	1	0	4	1	1	1	1	1
1	1		1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

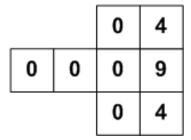
			0	4
0	0	0	0	9
			0	4

• Mesure $Z_3 = 4 m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	1	-1	1	0	4	1	1	1	1	1
1	1	1	1	1	1					1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

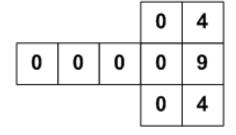
			0	4
0	0	0	0	9
			0	4

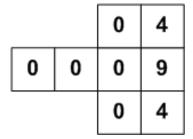

		0	4
0	0	0	9
		0	4

• Mesure $Z_3 = 4 m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	0	0	0	0	144	1	1	1	1	1
1	0	-0	0	0	36	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

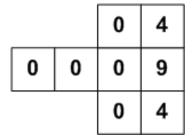

			0	4
0	0	0	0	9
			0	4



Long déplacement...

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	0	0	0	0	144	1	1	1	1	1
1	0	0	0	Q	36	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

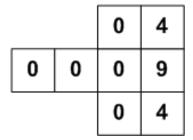


• Mesure $Z_4=3m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	36	1	1	1	1	1
1	0	0	0	0	144	1	1	1	1	1
1	0	0	0	Q	36	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

			0	4
0	0	0	0	9
			0	4

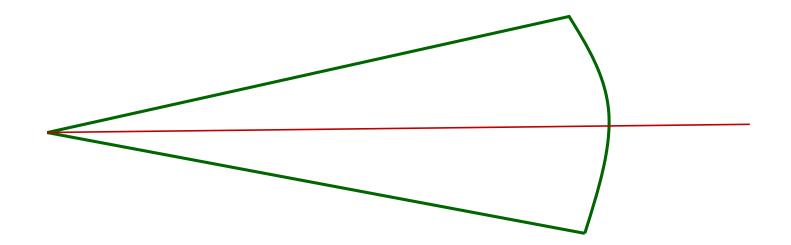


• Mesure $Z_4=3m$

1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	0	0	0	0	144	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1
1	0	0	0	Q	36	1	1	1	1	1
1	1	1	1	0	4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

cote_sensor(z=4)

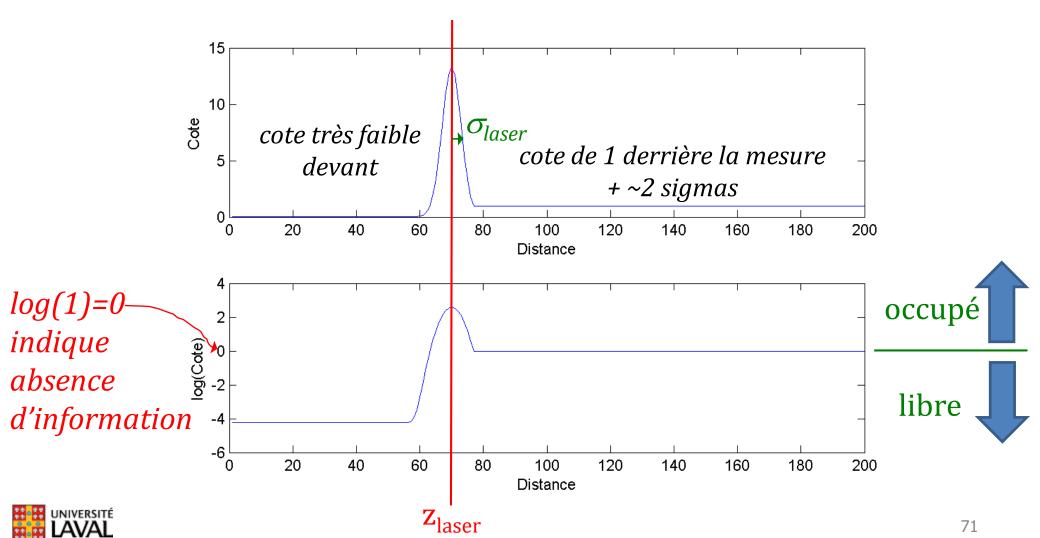
			0	4
0	0	0	0	9
			0	4


Notes sur l'exemple précédent

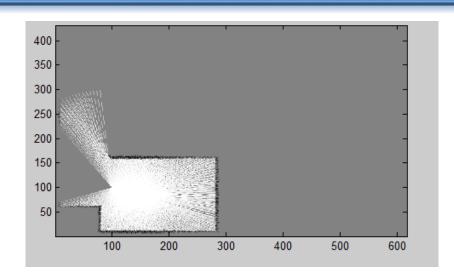
- Mauvaise idée d'avoir des cotes de 0 pour le capteur. Préférable d'avoir des valeurs faibles mais non nulles pour tenir compte des erreurs possibles
- Importance de la trajectoire dans la construction
- Peut utiliser le log des cotes :
 - passe de multiplications à des additions
 - va aller de -∞ à +∞ (0 = aucune connaissance)
 - meilleure stabilité numérique

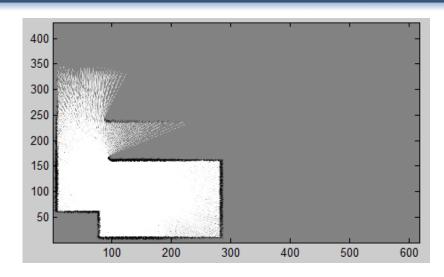
Avec laser 2D?

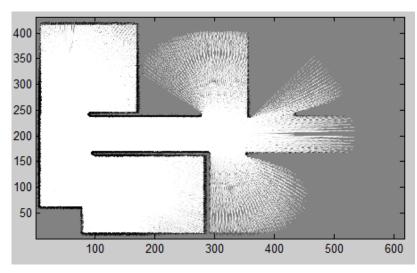
• Un peu plus compliqué, car le « cône » du laser est beaucoup plus étroit...

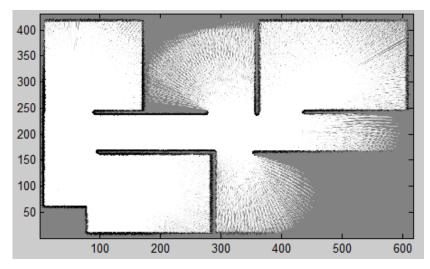


• Il ne mettra pas à jour beaucoup de cases...




Exemple matlab GridMap.zip


Pour les cotes du capteur, j'ai utilisé un modèle approximatif



Exemple matlab GridMap.zip

