

From: World Congress on Neural Networks: Proceedings of the 1993 Annual Meeting
of the International Neural Network Society, vol. 3, pp. 560–563, Hillsdale, NJ: Erlbaum
Associates (1993).

A Constructive Algorithm for Neural Decision Lists

Mario Marchand and Mostefa Golea
Ottawa-Carleton Institute for Physics

University of Ottawa
Ottawa, Canada K1N 6N5

Abstract

We introduce a new type of neural net architecture that we call Neural Decision Lists and
present a greedy algorithm for constructing such networks from examples. We first test our
algorithm on some “artificially generated” target functions and obtain generalization rates as
high as 99% for functions of 50 input variables. We also test the algorithm on data sets taken
from a machine learning data base. The good generalization scores obtained on these “real-
world” data sets indicate that this architecture is useful in practice.

1 Introduction

When training a feedforward net with backpropagation, one has to deal with two major problems: i)
prohibitive training times and ii) having to guess the correct architecture for a given task. To circumvent
this, many have recently proposed [4, 11, 3, 2] to use constructive algorithms. These are algorithms that
construct a feedforward network from examples by training individual perceptrons on some carefully chosen
subset of examples. As a consequence, these algorithms generally run much faster than backpropagation.
The upshot being that one can (and generally does) assist at a spectacular explosion in the number of
neurons needed to load the data. In these situations, the network simply acts as a table lookup and
exhibit no generalization. As a result, very few good generalization results have been reported for these
constructive algorithms. A reason for this failure is that these algorithms are somewhat too general: in
order to have some success, a learning algorithm must be biased toward a restricted class of functions
(and architectures). For this reason, we propose a constructive algorithm for a restricted class of neural
networks that we call Neural Decision Lists (NDL). This class is strictly included in (and less general
than) the class of Neural Decision Trees [4] which, we think, is too general to stand a chance of being
learnable. We present numerical results of good generalization scores obtained for this class of networks on
both “artificially generated” functions and “real world” data obtained from a machine learning data base.

2 Definitions

Each example is a n-dimensional vector with real valued components. A linear threshold function is
specified by n real valued weights wi and a single real valued bias w0. The output of this function is +1
or −1 depending on whether or not:

∑n
i=1 wixi+w0 > 0. Such functions are also referred to as perceptrons

or halfspaces. We denote by H the positive halfspace {~x : ~w · ~x + w0 > 0} and by H its complement.
Halfspace H is said to cover example ~x if ~x ∈ H. Halfspace H is said to be consistent with sample S if
all positive examples of S are covered by H and and all negative examples of S are covered by H. We
generalize the notion of decision lists, introduced by Rivest [9], to neural decision lists (NDL). A NDL
(fig. 1) is a list L of pairs

(H1, v1), (H2, v2), ..., (Hr, vr)

560

1

2

3

4

5

6

(a) (b)

yes

no

x ∈ HIs ?

no

yes

yes

v

1

2

x

. . .

no

= -1x ∈ HIs ?2

x ∈ HIs ?6 v6 = +1

v7 = -1

v1 = -1

Figure 1: (a)A function to learn; the shaded region represents the set of positive examples. (b) A neural
decision list performing this function.

where each Hi is a halfspace and vi is a value in {−1,+1}. The last halfspace Hr is the constant function
+1. (We may think of the constant halfspace (function) as the halfspace covering the whole input space; a
perceptron with zero weights and a positive bias will do the trick.) This defines a function as follows: for
any ~x, L(~x) is defined to be equal to vj where j is the first (least) index for which ~x ∈ Hj . As in [9], we may
think of a NDL as an extended “if–then–elseif–...else-” rule (see fig. 1). NDL’s can be easily generalized
to execute multiple-class functions by allowing each vj to be multi-valued. Compared to Rivest’s decision
lists, NDL’s have the same structure, but the complexity of the decision allowed at each node is greater.
This class of representations, which is a subset of neural decision trees, is strictly richer than halfspace
intersections (unions). Moreover, it can be shown[6] that NDL’s can be represented as cascade neural nets
by a suitable choice of inter-nodes connections.

3 Constructing Neural Decision Lists from Examples

The sequential order of the decisions in a NDL suggests that to build such a structure we should first
find the halfspace H1 that covers the most examples of a given class without covering the examples of the
other class. Then, we only need to build the rest of the NDL on the remaining examples not covered by
H1. We then find the halfspace H2 that covers the most of these (remaining) examples of a given class
without covering the examples of the other class. We proceed similarly for the other halfspaces until all
the examples have been covered. This gives the following greedy heuristic:

1. Let S+ (S−) be the set of positive (negative) examples.

2. If S+ = ∅, append the pair (Hr = 1,−1) to the decision list and stop.
Else if S− = ∅, append the pair (Hr = 1,+1) to the decision list and stop.

3. Find the halfspace H+ that covers the largest number of examples in S+ and none of the examples
in S−. Let f+ be the fraction of examples from S+ covered by H+. Similarly, find the halfspace H−

that covers the largest number of examples in S− and none of the examples in S+. Let f− be the
fraction of examples from S− covered by H−.

4. If f+ > f− then append the pair (H+,+1) to the decision list and remove from S+ the examples
that are covered by H+. Go to step 2.
Else append the pair (H−,−1) to the decision list and remove from S− the examples that are covered
by H−. Go to step 2.

As discussed in [7], the optimization problem encountered in step 3 is NP-complete. Short of solving this
problem in the worst case, we used the approximation algorithm presented in [7] which seems to give good
results for reasonable distribution of examples. This greedy method may seem to be a näıve one since it is

561

easy to imagine some distribution of examples for which the halfspace consistent with the largest number
of examples of a given class is quite different from any one of the target halfspaces—thus causing the above
greedy method to give a larger number of halfspaces than the minimum. But this is not a real setback
since our goal is not to find the minimum number of halfspaces, but to find a good approximation of the
target function.

4 Generalization Tests

4.1 Artificially Generated Target Functions

The greedy method was first tested on the mirror symmetry detector . Here the target output is +1 if and
only if the second half of the n input bits is a mirror reflection of the first half. The greedy always found an
intersection two halfspaces. The generalization rate of the greedy algorithm on this function is impressive:
an average of 97.5% (over 5 tests) for n = 50 after training on only m = 1600 examples! Training was
done on m/2 positive and m/2 negative examples obtained from the uniform distribution on {−1,+1}n.
Testing was done on both M/2 positive and M/2 negative examples obtained from the same distribution.
We have used M = 20000 for n = 50. It is important here to test separately on both the positive and
negative measure because the positive region accounts only for a fraction of 2−n/2 of the total measure.
The greedy method was also tested on other functions with outstanding generalization rates. For a target
function consisting of a intersection of two halfspaces, randomly oriented in the Euclidean region [−1,+1]n,
we have obtained a generalization rate of 99% for n = 50 after training on 14000 examples. Other results
will be reported elsewhere [6].

4.2 Real-World Data Sets

The greedy method was tested on data sets taken from a collection distributed by the machine learning
group of the University of California at Irvine (Contact person: Pat Murphy: pmurphy@ics.uci.edu). The
results of our algorithm are summarized in table 1. We have included, for comparison, the performance of
C4 (a tree induction algorithm [8]) on these data sets as reported by Holte[5]. Also indicated is the “default
accuracy”(Def-acc) one has when classifying all the testing examples according to the class containing the
largest number of examples. We now comment our results:

Dataset m n Def-acc C4 <Gen> < k >
CH 3196 36 52.2% 99.2% ± 0.3 95.2% ± 0.5% 4.0
G2 163 9 53.4% 74.3% ± 6.6 76.4% ± 6.7% 4.7
IR 150 4 33.3% 93.8% ± 3.0 95.1% ± 6.3% 3.4
V0 435 16 61.4% 95.6% ± 1.3 92.0% ± 2.8% 2.0
V1 435 15 61.4% 89.4% ± 2.5 87.3% ± 2.3% 3.4

Table 1: The generalization rate (Gen) of our greedy method, standard deviation (±) and the number of
nodes found (k) for various data sets. The training set consists of 2/3 of the m examples and the test set
consists of the 1/3 remaining. Each result is averaged over 20 trials. n is the number of input variables
and m, the number of examples. Also included, are the results of C4.

CH: Chess End-Game. This data set was originally generated and described by Alen Shapiro[10]. To
goal is to determine whether or not a given chess board configuration is a winning position for the white
player. The white player has a king and rook whereas the black player has a king and pawn where the
pawn is located on “a7” (just ready to be promoted to a Queen). The input consists of 35 binary features
and one ternary feature describing a board position of a chess end-game. The output is whether or not
the position is a winning one for the white player. These features, as described in Shapiro’s book[10], have
been explicitly engineered for C4 by a chess expert working with a version of C4 built specially for this

562

purpose. In view of the importance of representations, it is surprising to see that our algorithm does very
well on “C4-hand-crafted data”.

G2: Glass identification. The goal is to determine if a given piece of glass is “float processed” or
“non-float-processed”. The input vector consists of 9 continuous valued attributes where each attribute
indicates the concentration of a given element (Mg, Na, Al. . .) and one attribute indicates the refractive
index. This study was motivated by criminological investigation. At the scene of the crime, the glass left
can be used as evidence. . . if it is correctly identified! The performance of our greedy method was only
slightly better (but not significantly) than C4. We think that we do not have enough examples to achieve
a higher accuracy.

IR Iris data set . This data set (see [1]) contains 3 classes of 50 instances each. Each class refers to a
type of iris plant: virginica, versicolor or setosa. One class (setosa) is linearly separable from the other 2;
the latter are not linearly separable from each other. The four inputs are continuous valued and correspond
to the length and width of the sepal and petal. Our algorithm achieved good accuracy on this set and
slightly better (but not significantly) than C4.

V0-V1: United States Congressional Voting Records. The V0 data set includes votes for each of the
U.S. House of Representatives Congressmen on 16 key votes (Salvador aid, education spending,. . .). The
result of each vote is expressed as a ternary attribute: yea, nay or “?” where this last value is taken
when a congressmen did not vote, voted present or voted present to avoid conflict of interest. This is a
two-class problem since a congressmen is either Democrat or Republican. The V1 data set is identical to
V0 except that the most informative attribute (physician fee-freeze) has been deleted; which makes the
problem harder. The performance of our algorithm for these sets is slightly less (but not significantly) than
that of C4.

Hence, the greedy method for constructing NDL’s can handle with success these real data sets with
roughly the same level of performance as C4. We must mention however that the version of C4 used in
these tests incorporates pruning. We could probably also improve our results by pruning the NDL’s and
by using a cross-validation data set and other engineering tricks that have proven useful in the past. We
are investigating these possibilities. Ackowlegments: Work supported by NSERC grant: OCG-0042038.

References

[1] Duda R O and Hart P E 1973 Pattern Classification and Scene Analysis (New-York: Wiley)

[2] Frean M 1990 The Upstart Algorithm: A Method for Constructing and Training Neural Networks
Neural Computation 2 198

[3] Gallant S I 1990 Perceptron-Based Learning Algorithms IEEE Trans. Neural Networks 1 179

[4] Golea M and Marchand M 1990 A Growth Algorithm for Neural Network Decision Trees Europhys.
Lett. 12 205

[5] Holte R C 1991 Very Simple Classification Rules Perform Well on Most Data Sets TR-91-16 Computer
Science, University of Ottawa to appear in Machine Learning

[6] Marchand M and Golea M 1993 On Learning Simple Neural Concepts: from Halfspace Intersections
to Neural Decision Lists to appear in Network .

[7] Marchand M and Golea M 1993 An Approximation Algorithm to Find the Largest Linearly Separable
Subset of Training Examples Submitted to WCNN’93 .

[8] Quinlan J R 1986 Induction of Decision Trees Machine Learning 1 81

[9] Rivest R L 1987 Learning Decision Lists Machine Learning 2 229.

[10] Shapiro A D 1987 Structured Induction and Expert Systems (Wokingham, UK: Addison-Wesley)

[11] Mézard M and Nadal J P 1989 Learning in Feedforward Neural Network: the Tiling Algorithm J.
Phys. A 22 2191

563

