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Abstract

We present an approximation algorithm for the NP-hard problem of finding the largest linearly
separable subset of examples among a training set. The algorithm uses, incrementally, a Linear
Programming procedure. We present numerical evidence of its superiority over the Pocket
algorithm used by many neural net constructive algorithms.

1 Introduction

In this paper, we present an approximation algorithm for finding the largest linearly separable subset of
examples among a training set. The study of this problem is motivated by the recent interest in constructive
algorithms [8, 4, 3, 2]. These are algorithms that construct a feedforward network from examples by training
individual perceptrons on some carefully chosen subset of examples. Hence the success of these algorithms
strongly depends on the performance of the single perceptron training procedure they use. Moreover, it
has been shown recently [7] that if one can always find the largest linearly separable subset of examples in
a training set, then there exists some constructive algorithms that can provably learn the class of functions
representable as Neural Decision Lists [7]. Unfortunately, finding the largest linearly separable subset of
examples among a training set is NP-hard since it contains, as a particular case, a NP-complete problem
known as the Densest Hemisphere [5]. Since we cannot solve this problem in the worst case, we present
an approximation algorithm that seems to give good results in practice under reasonable distributions of
examples like the uniform one. Because it is a Linear Programming (LP) problem to find if a data set
is linearly separable, and since LP problems can be solved efficiently, our approximation algorithm uses,
incrementally, a LP algorithm. We present numerical evidence for the superiority of this method over the
Pocket algorithm [3], used by many constructive neural net algorithms.

2 The Approximation Algorithm

Let us first define our notation. Each input example is a n-dimensional vector with real valued components.
A linear threshold function is specified by n real valued weights wi and a single real valued bias w0. The
output of this function is +1 or −1 depending on whether or not:

∑n
i=1 wixi +w0 > 0. Such functions are

also referred to as perceptrons or halfspaces. We denote by H the positive halfspace {~x : ~w · ~x + w0 > 0}
and by H its complement. Halfspace H is said to cover example ~x if ~x ∈ H. Halfspace H is said to be
consistent with sample S if all positive examples of S are covered by H and and all negative examples of
S are covered by H.

We are of course concerned with the case where the data is not linearly separable, because the linearly
separable case is directly solvable by LP. One way to approach this problem is to try to minimize the
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perceptron criterion function [1] which can be converted to a linear cost function and, hence, solvable by
LP. This however has nothing to do with minimizing the number of misclassifications which is a truly
nonlinear cost function of the weights. As a consequence, a set of weights that minimize the perceptron
criterion function will, in general, contain too many misclassified examples; each being close to the sepa-
rating hyperplane. Another way to approach this problem is to use, incrementally, a LP procedure to try
to incorporate one example at a time into a linearly separated data set. Hence, we propose the following
greedy heuristic; call it the Incremental Linear Programming (IncLP) algorithm:

IncLP(L, H, S)
Parameters
L: an initial set of linearly separated examples (may be empty).
H: an initial halfspace consistent with L.
S: A set of training examples.
Output: (L,H) where H is a halfspace consistent with L.
Description: The algorithm builds on the set L by adding to it examples from S.

1. Set R = S .

2. If R is empty, Return (L,H).

3. Choose (possibly at random) an example ~x from R. Set R = R− {~x}.

4. By using your favorite LP procedure, find a halfspace Ha consistent with L ∪ {~x}.

5. If such halfspace exists Then set L = L ∪ {~x} and H = Ha.

6. Goto step 2.

This procedure will return a halfspace H that is consistent with a subset L of training examples. It
may happen, however, that a bad sequence of examples will be chosen such that the resulting subset L is
small. Since the number of linearly separable dichotomies increases exponentially with n, it is not feasible
to find all of them. So we must instead look for ways to find, with high probability, large linearly separable
subsets. The first procedure that we might try (call it mult IncLP), simply consists of running IncLP a
certain number of times on the same training set (with random reordering of the examples) and returning
the best solution found among the multiple attempts. However, it may happen that only small a subset
will be found by IncLP at each attempt; causing mult IncLP to return only a small subset. Each time
that a small subset is returned by IncLP, this means that we must avoid loading this group of examples.
Hence, a good “rule of thumb” would be to remove these examples from a working set W and use IncLP
to find another subset from the remaining examples in W . This is repeated until no example is left in
W . At the end, we just retain the largest subset found. Hence, instead of mult IncLP, we propose the
following approximation algorithm:

Find large subset(S, S∗, H∗)
Parameters
S: A set of training examples.
S∗: A set (may be empty) of linearly separable examples which must be included in the returned set Lm
H∗: A halfspace consistent with S∗

Output: (Lm, Hm) where Lm is a (hopefully large) subset of S ∪ S∗ consistent with Hm.
Description:

1. Set W = S (W will hold the remaining training examples).
Set U = ∅ (U will hold the removed examples).
Set Lm = S∗ ( Lm will hold the largest subset found).

2. If W is empty, Return Lm.

3. Set L = S∗ and H = H∗
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4. (L,H) = IncLP(L, H, W ).

5. Set W = W − L.

6. (L,H) = IncLP(L, H, U).

7. If |L| > |Lm| Then (Lm, Hm) = (L,H).

8. Set U = U ∪ L. Goto step 2.

Note that we have included an extra parameter S∗, in case we require that the solution contains a set S∗

of examples (considered as rules not to be violated) that we want to be present in the solution Lm. Note
also that, in addition to what has been said above, the algorithm tries (in step 6) to build a larger linearly
separable set by trying to include examples belonging to the subsets already found. In the worst case, our
approximation algorithm runs in polynomial time if we use Karmarkar’s[6] polynomial time algorithm for
LP. We have, however, used the Simplex algorithm which is reputed to be very efficient in practice. Finally,
note that we can use Find large subset repeatedly on the same training set, with a random reordering
of the examples, to try to find a better solution. This leads to a convergence theorem similar to that of
the Pocket algorithm. In practice, we find it sufficient to use the approximation algorithm only once.

3 Numerical Results

Because most of the constructive algorithms use the pocket algorithm at the single neuron level to find
the “optimal” halfspace, we include here a numerical comparison of our approximation algorithm with the
pocket algorithm on both linearly and non linearly separable functions.

The Linearly Separable Case. In this case, the approximation algorithm requires only one pass of
IncLP. We took a great care in implementing the pocket as explained in [3]. For each test, we generate at
random a hyperplane in the [−1,+1]n region. The training examples were drawn randomly in [−1,+1]n

and classified according to this target function. Because both algorithms are guaranteed to converge to
a solution, the performance criteria will be the time needed to find it. The average CPU time, taken
on a 1.4 MFLOPS computer, is reported in fig. 1(a). Although the CPU time depends on both the
machine and the code written, it is a good measure of the relative efficiency of the algorithms. One can
see that the approximation algorithm outperforms the pocket by many orders of magnitude. Whereas the
approximation algorithm scales linearly with the number of examples in the training set, the pocket clearly
scales super-linearly with the number of examples. This can be explained by the fact that because the
pocket choose examples at random, it will spend most of the time checking examples already well classified.

The Non Linearly Separable Case. Since one of the simplest non linearly separable function is
the intersection of two parallel halfspaces, we tested our algorithm on this problem. Each target function
consist of an intersection of two halfspaces defined by two parallel hyperplanes, a distance of 0.5 apart,
randomly oriented and centered at the origin. Hence the optimal plane for this target function covers half of
the total negative measure and all of the positive measure. Each training example is a n-dimensional vector
generated uniformly in the Euclidean region [−1,+1]n and classified according to the target function. The
relevant question is: given the same amount of time and the same training set, which algorithm returns the
largest cluster (subset) of negative examples that can be linearly separated from all the positive examples?
We present the results in fig. 1(b) for three algorithms: i) our approximation algorithm Find large subset,
ii) the pocket algorithm with rules (each positive example is taken as a rule that must not be violated),
and iii) mult IncLP described above. For each test, we first run Find large subset on a training set to
find a subset (cluster) of negative examples and note both the time spent by the algorithm and the size of
the cluster returned. Then, we run the Pocket with rules for the same amount of time and on the same
training set and we note the size of the cluster returned. Finally we do the same for mult IncLP. Each
point on the graph of fig. 1(b) is the average number of negative examples in the largest linearly separable
subset found by the algorithm. The average is done over five different target networks; each being tested
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Figure 1: Comparison of the approximation algorithm Find large subset (full circles) with the pocket
algorithm (squares) on (a) linearly separable functions for n = 10. Each point on the graph is the average
over 100 tests. (b) On non linearly separable functions for n = 16. The average “cluster size” is the
average number of negative examples in the largest linearly separable subset found. Each point on the
graph is the average over 50 tests. The error bars indicate the standard deviations. The open circles are
for mult IncLP.

ten times (a total of 50 tests for each point of the graph). Clearly, Find large subset outperforms the
pocket algorithm. The fact that it also outperforms mult IncLP provides strong numerical evidence of
the importance of removing bad sequences of examples when they are found. This is the basic difference
between Find large subset and mult IncLP. Note also the large error bars (standard deviation of the
cluster size returned) of mult IncLP and the very small ones for Find large subset. This shows that
mult IncLP is much less reliable and consistent than Find large subset. Also, we must mention that,
for n = 16 and for a training set of 300 or more negative examples, Find large subset returned, on
average, an optimal cluster containing half of the total number of negative examples in the training set.

Finally, we conclude by saying that we have tested our approximation algorithm on other non linearly
separable functions and have used it in some constructive neural net algorithms [7] with very good results.
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