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Abstract In this paper, we We a close look at the problem of l&ing simple neural concepts 
under the uniform diseibution of examples By simple neural concepts we mean concepts 
that can be represented as simple combinations of perceptrons (halfspaces). One such class of 
concepts is the class of halfspace intersections. By formalizing the problem of learning halfspace 
in&ections as a sei-coveringproblem. we are led to mnsider the following subproblem: given 
a set of nonliniarly separable examples, find the largest linearly separable subset of it We 
give an approximation algorithm for this NP-hard sub-problem. Simulations, on. both linearly 
and nonlinearly separable functions, show-thai this approximation algorithm works well uirder 
the uniform dishibution. outperforming the packet algorithm vsed, by many WnsLNctive neural 
algorithms. Based on this approximation algorithm, we present a p d y  method for learning 
halfspace inferseclions, We also present extensive numericaI results that strongly suggest Ihat 
this greedy method leams ha l f spa  i n t e d o n s  under the uniform dishibution of examples. 
Finally, we infroduce a new class of simple. yet very rich, neural co"cepts that we call neural 
decision luis. We show how the greedy method can be generalized to handle this class of 
concepts. Both greedy methods for halfspak intersections and'neural decision lists were vied 
on rea-world data with very encouraging nsults. This shows that these concepts are not only 
important from the theoretical point of view, but also in practice. 

1. Introduction 

Learning in feedfonvard layered neural networks has attracted much attention recently [391. 
Unfortunately, training these systems has certainly proven to be a very difficult task. It is 
now recognized that the most popular 'learning rule', backpropagation [38], generally needs 
prohibitive training times because of the local minimum problem. This has culminated in 
the important work of Judd [25] who showed the NP-hardness of the problem of training in 
fued network architectures. To circumvent this problem, several constructive (or growth) 
algorithms have been proposed recently [13-15,18,28-30,37,41.43]. These algorithms 
share the feature that the network architecture is not fixed (and guessed) before training. 
Instead, units are added, one by one, by using an algorithm that minimizes some emr 
criterion at the single-neuron level. As a consequence, these algorithms generally run 
much faster than backpropagation. The upshot is that one can (and generally does) assist a 
spectacular explosion in the number of neurons needed to load the data. In these situations, 
the network simply acts as a table lookup and exhibits no generalization. As a result, very 
few good generalization results have been reported for these constructive algorithms. 

A meaningful question to ask here is whether or not one can leam concepts (functions) 
representable as relatively simple feedfonvard nets (FFNS). To be able to answer this 
question, we need to define more precisely what we mean by learning. For that, we appeal to 
the PAC leaming model [7,21,32,44]. Loosely speaking, the learning algorithm has access 
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to a set of examples generated according to a fixed but otherwise arbitrary distribution 
P(z). The examples are labelled according to an unknown target function which may be 
any one from some known class of functions. The algorithm is said to be efficient if, given 
a ‘reasonable’ number of examples, it is ‘likely’ to produce, in polynomial time, a ‘ g o d  
approximation of the unknown function. For precise definitions, the reader is referred to 
the literature cited. 

If we adopt the PAC’s point of view, the list of neural networks that are learnable 
is deceptively small [6,27j. Even simple neural concepts like halfspace intersections 
are known to be not properly leamable under an arbitrary distribution of examples. To 
our knowledge, only single halfspaces [7] and border-augmented symmetric differences of 
halfspaces 1451 have proven to be learnable. 

In view of the scarcity of positive PAC leaming results, researchers have looked for 
positive results by providing the learning algorithm with additional information in the 
form of queries [1,2Oj or by restricting the ‘distribution of examples [5,17]. Taking the 
second approach, Bartlett and Williamson [2] have proposed to pennit only reasonable 
distributions (i.e. bounded distributions which are non-zero everywhere in the domain). 
One such distribution is the uniform one. 

In this paper, we first investigate the learnability of halfspace intersections under the 
uniform distribution of examples. Our task is to find in polynomial time, a halfspace 
 intersection^ hypothesis net that approximates the most to the halfspace intersection target 
net. Furthermore, we allow for a possibly larger number of halfspaces in the hypothesis net. 
By the Occam’s razor principle [7 81, if the hypothesis function is not too large compared 
with the target function, we are guaranteed to learn. We stress here the fact that algorithms 
such as the backpropagation 1381 and the cascade-correlation [I31 do not solve our problem 
because there is no guarantee that they do converge to a solution in polynomial time. We 
present a greedy method for this problem which, although we are not yet able to prove its 
PAC correctness, does very well experimentally under the uniform distribution of examples 
up to 50 dimensions. To our knowledge, the tests reported here go beyond any in the 
literature in terms of testing generalization by a greedy method in high dimensions. 

The greedy method, like all the other constructive algorithms, is built around a single- 
perceptron training procedure. This procedure tries to find a halfspace consistent with 
all the positive examples and a large number of negative examples. Because finding the 
halfspace consistent with the largest subset of negative examples~ is NP-hard, we give 
an approximation algorithm for it. In view of the fact that it is a linear programming 
(LP) problem to find whether or not a data set is linearly separabl-and for which there 
exist very efficient algorithms--our approximation algorithm incorporates an ‘incremental’ 
LP algorithm (IncLP). We present numerical evidence for the superiority of this single- 
perceptron training procedure over the pocket algorithm, used by many constructive neural 
algorithms. 

The greedy method for halfspace intersections is extended to a class of functions we 
call neural decision lists. These are a generalization of the decision lists of Rivest [35] by 
allowing each node to be a halfspace (perceptron). This class of functions is strictly richer 
than halfspace intersections (unions). 

Both greedy methods for halfspace intersections and neural decision lists are tried on 
real-world data with very encouraging results. Their performance is comparable to C4, a 
‘state of the art’ tree-induction algorithm [34j. This shows that these simple neural concepts 
are not only important from the theoretical point of view, but also in practice. 

This paper is organized as follows. In section 2 we present some definitions. Our greedy 
method for halfspace intersections is presented in section 3. In section 4, we present OUT 
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approximation algorithm for training single neurons. Our approach is generalized to neural 
decision lists in section 5 .  In section 6, we present the numerical results of our extensive 
simulation on both random nets and real-world data. The conclusions are summarized in 
section 7. 

2. Definitions 

Let X = {XI, x2, . . . , x n ]  be the set of n-input variables and I" the n-dimensional input 
(or instance) space which can either he [-I ,  +I)" ,  [ - I ,  +1]" or a subset of R". 

An example of a boolean function f : I" 4 [ - I ,  +I], is an an ordered pair (e, f (x)), 
where x E I". Point x is said to be a positive example i f f  (z) = + I ,  otherwise it is said 
to be a negative example. A sample is a set of examples. We assume that the distribution 
D generating the examples is unifonn on I". 

A linear threshold function on a set X of n variables is specified by a vector of n 
real-valued weights wi and a single real-valued bias WO. The output of the function is +1 
or - I  depending on whether the following inequality holds: 

c wixi+ WO > 0. 
I , E X  

Such functions are also referred to as perceptrons or halfspaces. We denote by H the 
positive halfspace (I : w . z + WO > 01 and by p its comptement. Halfspace H is said 
to cover example x if x E H. Halfspace H is said to be consistent with sample S if all 
positive examples of S are covered by H and and all negative examples of S are covered 
by p. 

A function f : I" + (-1, + I )  is said to be a halfspace intersection if it can be 
written as a conjunction (AND) of halfspaces. These functions have an obvious neural net 
representation: a FFN made of one layer of hidden units connected to a single output unit 
that performs the 'AND' operation (see figure I). 

Figure 1. (a )  Tk function represented by Ur intersection of four halfspaces. The shaded region 
represents Ur set of positive examples. ( b )  The equivalent m. The input units arc not shown. 

We generalize the notion of decision lists, introduced by Rivest [35], to neural decision 
lists (NDL). A NDL (figure 2) is a list I: of pairs 

(HI.uI).(H~,uz)~ .... (Hr,vr)  
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Figure 2. (0 )  A function to leam; the shaded region represents the set of positive examples. 
(h)  A NDL performing this function. ( c )  The equivalent cascade FFN. Each hidden unit receives 
conneclions from the input mi= (not shown) and only from the other hidden units below 
it. Excitatory connections going to the output are indicated by a full line whereas inhibitory 
connections are shown by dashed lines. 

where each Hi is a halfspace and ui is a value in [ -1. + I  1. The last halfspace H, is the 
constant function? + I .  This defines a function as follows: for any 2, L(z) is defined to be 
equal to uj where j is the first (least) index for which x E H,. As in [35], we may think 
of a NDL as an extended ‘if -then-elseif -. . .else-’ rule (see figure 2). Compared to 
Rivest’s decision lists, NDLS have the same structure, but the complexity of the decision 
allowed at each node is greater. 

This class of representations is strictly richer than halfspace intersections (unions). 
Indeed, any boolean function on a boolean (or discrete) domain has a NDL representation. 
Moreover, there always exists a NDL consistent with any finite sample of a boolean function 
on a continuous domain (i.e. a subset of 72“). We will present numerical results on ‘real- 
world’ data sets that have an efficient NDL representation. 

N D L ~  have a simple FFN representation (see figure 2): it is a type of FFN known as a 
cascade net [ 13,15,27,30] because hidden units need to be updated one after the other (in 
‘cascade’), starting from the first. Indeed, whenever an input x lies in the positive halfspace 
of the first hidden unit, this unit must decide its target. If it lies in the negative halfspace, 

t We may think of the consmt halfspace (function) as the halfspace covering ule whole input space. A percepmn 
with zero weights and a positive bias will do the trick. 
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the decision must be postponed to the second hidden unit. If x lies in the positive halfspace 
of the second unit, this unit must decide its target. If not, the decision is postponed to the 
third hidden unit and so on until we find a halfspace H such that o E H. 

One way to simulate this hierarchy is to put strong inhibitory connections between the 
hidden units in such a way that, whenever an input vector x is presented to the net, we get 
an internal representation of the type -1, -1, . . . , -1, +I, -1, . . . , -1" i.e. each hidden 
unit outputs -1 except the one hidden unit which will actually decide rhe FFN output for 
x. In appendix A we show how to choose the inter-hidden-unit connections such that the 
equivalent FFN gives the same classification as the NDL. 

3. Learning halfspace intersections 

When given a sample from a halfspace intersection, the goal of the learner is to find a FM 
that best approximates the target function. Here, each positive example must be consistent 
with each and every halfspace whereas each negative example only needs to be consistent 
with one halfspace. The problea, often called the credit assignment problem (CAP) 131, is 
to decide which halfspace must be consistent with a given negative example. One way to 
bypass  the CAP is to adopt the following greedy method: 

1. Let S- be the set of all negative examples. 
2. If S- is empty, Halt. 
3. Find the halfspace H that is consistent with the largest subset of S- and all the positive 

examples. 
4. Add H to the hypothesis net. Remove this subset from S-. Go to 2. 

Obviously. this greedy method will build as a hypothesis a halfspace intersection 
consistent with all the training examples. 

- Let us call the optimization problem encountered in step 3 the densest-hulfpuce- 
covering problem. Suppose for a moment that we have a way to solve this optimization 
problem eiucfly. It is easy to imagine some distributions of examples for which the halfspace 
that covers the largest number of negative examples is quite different from any one .of 
the target halfspaces-thus causing the above greedy method to give a larger number of 
halfspaces than the minimum. This is not a real setback because our goal is not to find 
the minimum number of halfspaces, but to find a good approximation. Under the above 
assumption (that step 3 can be solved exactly), the greedy method is equivalent to the 
standard greedy algorithm for the set covering~[9,23]. Hence, it is guaranteed to find a 
halfspace intersection with a number of halfspaces not greater @an h In(m) + 1 in the worst 
case, where m is the number of examples and h i s  the smallest number of halfspaces 
in any halfspace intersection consistent with all the examples. By the Occam's razor 
principle [7,8], this would be sufficient to PAC-learn this class of concepts. 

Unfortunately, the densest-halfspace-covering problem contains, as a particular case, 
a known NP-complete problem: the densest-hemisphere problem [ 16,241 is finding the 
largest linearly separable subset (positive or negative) from a data set. Hence, for the 
greedy method to PAC-kam the class of halfspace intersections, one needs to find some 
approximation algorithm [I61 for the densest-halfspace-covering problem with a good 
performance guarantee in the worsf case. , Unfortunately, we are not aware- at present 
of any such algorithm that runs in-polynomial time. We present, in the next section, 
an approximation algorithm for the densest-halfspace-covering problem which runs in 
polynomial time and does extremely well experimentally on both real and artificial data, 

,although we~are not yet  able^ to prove its correctness under the uniform distribution. 
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4. Approximation algorithm for the densest-halfspace-covering problem 
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We have seen in the previous section that finding an approximation algorithm for the 
densest-halfspace-covering problem is of fundamental importance to PAC-leaming halfspace 
intersections (and probably for other leaming problems). Moreover, all constructive (or 
growth) neural net algorithms need such an approximation algorithm for training at the 
single-neuron level. Here we present our approach to this problem. 

4.1. Description of the algorithm 

We are, of course, concemed with the case where the data is not linearly separable because 
the linearly separable case is directly solvable by linear programming (LP). One way to 
approach this problem [I21 is to by to minimize the perceptron criterion function 1121 which 
can be converted to a linear cost function and, hence, solvable by LP. This, however, has 
nothing to do with minimizing the number of misclassifications, which is a truly nonlinear 
cost function of the weights. As a consequence, a set of weights that minimize the perceptron 
criterion function will, in general, contain too many misclassified examples, each being close 
to the separating hyperplane. 

Another way to approach this problem is to use, incrementally, a LP procedure to try 
to incorporate one example at a time into a linearly separated data set. Hence, we will try 
the following greedy heuristic, which are call the incremental linear programming (IncLP) 
algorithm: 

IncLP(S+, S-, L, H) 
Parameters: 
S+: the set of positive examples. 
S-: the set of negative examples. 
L: an initial set of negative examples separable from Sc (may be empty). 
H :  an initial halfspace consistent with S+ and L. 
Output (L, H )  where L is subset of negative examples separable from S+ and H is a 
halfspace consistent with S+ and L. 
Description: The algorithm builds on the set L by adding to it negative examples from S-. 
1. 
2. 
3. 
4. 

5. 
6. 

Set R = S-. 
If R is empty, Retum (L, H). 
Choose (possibly at random) an example x from R .  Set R = R - (2). 
By using your favorite LP procedure, try to find a halfspace H a  consistent with L U [zc) 
and S+. 
If such halfspace exists Then set L = L U (x] and H = H'. 
Go to step 2. 

This procedure will retum a halfspace H that covers a subset L of negative examples 
without covering any positive examples. It may happen, however, that a bad sequence of 
negative examples will be chosen such that the resulting subset L is small. Since the number 
of linearly separable dichotomies [IO] increases exponentially with n, it is not feasible to 
find all of them. So we must instead look for ways to find, with high probability, large 
linearly separable subsets. 

The first procedure that we might try (call it mult-IncLP), simply consists of running 
IncLP a certain number of times on the same training set. After each pass we record the 
halfspace found along with the size of the subset covered and we change randomly the 
order of the examples in the training set for the next pass. Then mult-IncLP retums the 
halfspace that covers the largest subset found from these multiple. attempts. However, it 
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may happen that, with high probability, only small a subset will be found by IncLP at each 
attempt, causing multlncLP to return only a small subset. This means that each time a 
small subset is returned by IncLP, we must avoid loading this group of examples. Hence, 
a good ‘rule of thumb’ would be to remove these negative examples from a working set W 
and use IncLP to find another subset from the remaining examples in W .  This is repeated 
until no negative example is left in W. At the end, we just retain the largest subset found. 
Hence, instead of multlncLP, we propose the following heuristic for our approximation 
algorithm: 

Finhlargenegsubset(S+,  S-) 
Parameters: 
S+: the set of positive examples. 
S-: the set of negative examples. 
Output: (L,,  H,) where Lm is a (hopefully large) subset of negative examples linearly 
separable from S+ and H, is a halfspace consistent with L, and S+. 
Description: 
1. Set W = S- (W will hold the remaining negative examples). 

Set U = 0 (U will hold the m o v e d  negative examples). 
Set L, = 0 (L, will hold the largest subset found). 

2. If W is empty, Retum L,. 
3. Set L = 0 and H = +I (i.e. H is the constant halfspace). 
4. (L, If) = Incw(S+, W, L, H ) .  
5. Set W = W-L. 
6. (L, H) = IncLP(S+, U, L, H). 
7. If ( L (  lLml Then (Lm, H,) = (L, H). 
8. Set U = U U L. Go to step 2. 

Note that, in addition to what has been said above, the algorithm tries (in step 6) to build 
a larger linearly separable set by trying to include the negative examples belonging to the 
subsets already found. More generally, it is clear that we can use IncLP in a similar way to 
find a large linearly separable subset of S+ US- with the constraint that a certain subset (not 
necessarily S+) must be present in the solution. We will present, in section 6, numerical 
results that indicate the superiority of Find-largesegsubset over mult-IncLP and the 
pocket algorithm. 

Baum [3] has suggested that no ‘good‘ incremental approximation algorithm exists for 
the densest-halfspace-covering problem. His arguments can be summarized as follows: for 
n large, with very high probability, any random set of n negative examples (on n inputs) 
will be. separable from the positive examples. Because of that, it provides little information 
that one is getting a ‘good’ halfspace. So essentially, no further negative examples can be 
added to this set. Indeed. it is easy to imagine different scenarios where this approximation 
algorithm would give only a very small linearly separable subset. For example, suppose. that 
the target function is the intersection of two halfspaces. Suppose also that the distribution 
of m- negative examples is correlated to the distribution of positive examples as follows. 
Let ll be the polytope formed by the positive examples. For each face of lT, we have two 
(and only two) negative examples such that any hyperplane that separates both of them 
from n. cannot separate any other negative example. Hence, if IncLP always starts with 
two such examples, the approximation algorithm will retum subsets containing only two 
examples. This will cause the greedy heuristic to give m-/2 halfspaces. However, all such 
catastrophic scenarios that we can think of have one thiig in common that makes them very 
unlikely to occur in practice: the distribution of positive examples is correlated with the 
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distribution of negative examples which is also correlated with our (random) strategy for 
choosing the examples in the IncLP algorithm. That is, we have a malicious distribution [41 
of examples controlled by adversaries. Hence, we think that our approximation algorithm 
will do well for simple function classes like halfspace intersections under the uniform 
distribution of examples and probably also under other reasonable 121 distributions. Our 
numerical simulations in section 6 suggest that this is indeed the case for both real and 
artificial data 

In the worst case, our approximation algorithm runs in polynomial time if we use 
K a ” s  [26] polynomial time algorithm for LP. We have, however, used the Simplex 
algorithm [ l l ]  since, although its running time can increase exponentially with n in the 
worst case, it is reputed to be very efficient in practice. In fact, Smale [42] showed that the 
number of pivot operations needed to solve a LP problem is almost always no larger than 
the number of variables or the number of constraints, whichever is the larger. We have 
implemented the algorithm described in chapter 2 of 1311, which uses Bland’s rule to avoid 
cycling, and have encountered no problems. 

Finally, there exists another approximation algorithm, known as the pocket algo- 
rithm [lS], to find the largest separable subset of examples. One feature that might make 
this algorithm attractive is its ‘convergence’ theorem: given a set of examples and a prob- 
ability p c 1, there exists an N such that ajier 1 2 N iterations of the pocket algorithm, 
the probability offinding the largest separable subset of euunples exceeds p .  This theo- 
rem, however, is not a strong statement since it gives no upper bound on the number N 
of iterations needed. Indeed, as Gallant himself emphasizes [lS], the proof relies on the 
fact that there is a finite. (but very small) probability that the examples from the largest 
(or a largest) linearly separable subset will be picked repeatedly by the perceptron which, 
following the perceptron convergence theorem, will find the corresponding optimal set of 
weights. Of course, we also have a similar ‘convergence’ theorem if we use our approx- 
imation algorithm repeatedly, each time changing (at random) the order of the examples. 
But in practice, we find it sufficient to use‘our approximation algorithm only once. An 
experimental comparison of the two approaches is given in section 6.1. 
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5. Learning neural decision lists 

5.1. Binary classifrcation problems 

Here we extend the greedy method given in section 3 to the case of neural decision lists. 
The additional problem that arises now is that the set of positive examples is not necessarily 
convex (see figure 2). Hence, the greedy method will need to alternate between covering 
(cutting) positive subsets and negative subsets. 

Consider the example of figure 2(a). Each time a halfspace covers a subset of examples, 
these are removed from the training set For the first three halfspaces, only negative 
examples can be covered. Then, the positive examples will be covered by the next three 
halfspaces. Finally, the last halfspace will cover the remaining examples which are all of 
the same target: negative in thii case. 

We therefore propose the following greedy method for learning NDLS: 

B U ~ ~ ~ M I L ( S + ,  S-) 
1. Let S+ be the set of positive examples and S- be the set of negative examples. 
2. If S+ = 0, append the pair (H, = 1, -1) to the decision list and stop. 
3. If S- = 0, append the pair (H, = 1, +1) to the decision list and stop. 
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4. Find the halfspace H +  that covers the largest number of examples in S+ and none of 
the examples in S-. Let f+ be thefraction of examples from S+ covered by H+. 

5. Similarly, find the halfspace H -  that covers the largest number of examples in S- and 
none of the examples in S+. Let f- be thefraction of examples from S- covered by 
H - .  

6.  If f+ z f- Then append the pair ( H + ,  +I) to the decision list and remove fTom S' 
the examples that are covered by H + .  
Else append the pair (H-, -1) to the decision list and remove from S- the examples 
that are covered by H - .  

7. Go to step 2. 

Note that, at each step, we have decided to retain the halfspace that covers the largest 
fraction of the remaining positive (negative) examples. The rwon is that the fraction of 
examples reflects more closely the probability measure we a s  covering than the actual 
number of examples. 

5.2. Multi-class problems 

There are several ways one can extend this approach to multipleclass functions. Say that 
we have Q classes so that the function to learn r(z)  can take any value from 1. . . . Q. One 
way to build the multiple class NDL is to find, at each step, the halfspace that covers (cuts) 
the largest fraction of examplesfrom one class only. The following heuristic builds a NDL 
for multiclass problems: 

1. For T = 1, . . . Q, let Sr be the set of examples of the class r. 
2. If all but one of the Sr are empty, append the pair (Hr = 1, TO) to the decision list and 

stop (ro is the class of the non-empty set). 
3. F o r t = l ,  . . . e  : 

If S' # fl, find the halfspace Hr that covers the largest fraction f' of S' and none of 
the examples in U,+,S". 

4. Choose the H" that covers the largest fraction f" and remove these examples from So. 
Append to the decision list the pair (H", U).  

We can think of other, and probably better, ways to use these halfspacecovering 
heuristics in multi-class situations by incorporating some knowledge about the dispersion of 
the data. We could, for example, perfom [70gz(Q)l different dichotomies of the Q classes 
and then use, in parallel, the BuildNDL algorithm of the last section to create flog2(Q)l 
different binary classification NDLE. These dichotomies could be done by performing a 
principal component analysis on the data or by using any other criteria like those presented 
in [41]. The point we want to make is that our approach is flexible enough to be applied 
in a rich variety of ways to multiclass problems. 

5. Gotostepz. 

6. Experimental results 

6.1. The approximation algorithm versus the pocket algorithm 

Because most of the constructive algorithms use the pocket algorithm at the single- 
neuron level to find the 'optimal' halfspace, we include here a numerical comparison of 
our approximation algorithm with the pocket algorithm on both linearly and nonlinearly 
separable functions. 
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The linearly separable case. In this case, the approximation algorithm requires only 
one pass of IncLP. We took great care in implementing the pocket as explained in the 
references cited above. 

For each test, we generate at random a hyperplane in the [-I, +1]” region. The training 
examples were drawn randomly in [-I, +1]” and classified according to this target function. 
Because both algorithms are guaranteed to converge to a solution, the perEomance criteria 
will be the time needed to find it. The average CPU time taken on a 1.4 MFLOPS computer 
(YARCs Nusuper accelerator board for the Macintosh) is reported in figure. 3. Although 
the CPU time depends on both the machine and the code written, it is a good measure 
of the relative efficiency of the algorithms. One can see that the approximation algorithm 
outperEoms the pocket by many orden of magnitude. Whereas the approximation algorithm 
scales linearly with the number of examples in the training set, the pocket clearly scales 
super-linearly with the number of examples. This can be explained by the fact that because 
the pocket chooses examples at random, it will spend most of the time checking examples 
already well classified. 
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F i r e  3. Comparison of the appmximaiion algorithm with the algorifhm on k a r l y  
separable functions for n = 10. Each point on the graph is the average over 100 testr. Also 
show are fRe standard deviations. 

The nonlinearly separable care. One of the simplest nonlinearly separable functions is 
the intersection of two parallel halfspaces. So, we tested both algorithms on this pmhlem. 
The task here is to ‘classify the largest possible fraction of the negative examples, keeping 
all the positive examples well classified. Each point on the graph of figure 4 is the average 
number of negative examples in the largest linearly separable subset found by the algorithm. 
The average is done over five different w e t  networks; each being tested ten times (a total 
of 50 tests for each point of the graph). The input (instance) space is the 16-dimensional 
Euclidean region [-1, +1IL6. Each example of the trainiig set is generated uniformly in 
this input space and classified according to the target function. Each target network consists 
of an intersection of two parallel halfspaces, a distance of 0.5 apart, randomly oriented and 
centred at the origin of the input space. Hence the optimal plane for thii target function 
covers half of the total negative measure. 

We have compared three algorithms: (i) our approximation algorithm Findlargeneg 
-subset; (U) the pocket algorithm with rules (each positive example is taken as a rule that 
must not be violated); and (iii) multlncLF’ described in section 4.1. Here the relevant 
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Figure 4. Comparison of the aPp”at i0n  algorithm Findlargesepubset  with the pocket 
algorithm and with m u l t l n c l P  (see text) on nonlinearly %ginable functions for n = 16. The 
average‘clustersize’istheaveragenumberofnegativeexamplesinthelargestlinmrlyseparable 
subset found. Each p in t  on the graph is the average over 50 tests. me error bars indicate the 
SInndard devialions. 

violated); and (iii) multlncLP described in section 4.1. Here the relevant question is: given 
the same amount of time and the same training set, which algorithm retums the largest clus- 
ter (subset) of negative examples? To answer this, we first run F indlargenegsubse t  
on a training set to find a subset (cluster) of negative examples and note both the time 
spent by the algorithm and the size of the cluster returned. Then, we run the pocket with 
rules for the same amount of time and on the same training set and we note the size 
of the cluster returned Finally we run mul thcLP for the same amount of time taken 
by Findlargenegsubse t  and record the size of the largest cluster found (among the 
multiple passes of IncLp). 

The results are plotted in figure 4 for the three algorithms. Clearly, 
F indlargenegsubse t  outperforms the pocket algorithm. The fact that it also out- 
performs multlncLP provides strong numerical evidence for the importance of moving 
bad sequences of negative examples when they are found This is the basic difference 
between Findlargeneg-subset and mult-IncLP. Note also the large enur bars (stan- 
dard deviation of the cluster size returned) of mult-IncLP and the very small ones for 
Findlargenegsubset .  This shows that multlncLP is much less reliable and consis- 
tent than Findlargeneg-subset. Also, we must mention that, for a training set of 300 or 
more negative examples, F indlargenegsubse t  returned, on average, an optimal cluster 
containing half of the total number of negative examples in the training set. 

Hence, from these results, we conclude that F indlargenegsubse t  is superior, on 
average (and almost always), to multlncLP. 

6.2. Learning halfspace intersections 

In this section, we describe the results of the extensive experimental tests performed on 
random halfspace intersections. 

Our class of functions to learn will be the class of h halfspace intersections or 
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equivalently, the FM containing one layer of h hidden units and one output unit 
implementing an 'AND' of the hidden layer. We want to find out how the performance 
of the algorithm scales with the number of examples in the training set, the dimension of 
the input space and the number of halfspaces in the target net function. 

For each test, the target net function is generated as follows: the value of each connection 
going from an input unit to a hidden unit is chosen uniformly and randomly in the interval 
[-I, +I]. The bias of the hidden units are also chosen randomly in the interval [-I, +I]. 
The output unit is hardwired to compute an AND of its inputs. We make sure that the 
region defined by the halfspace intersection is not void. This gives our target net function. 
The training examples were drawn randomly in [-I, +I]" and classified according to the 
target function. The average number of examples in the training set varies approximately 
between 100 and 2000 points. Another sepamte set of approximately 2000 examples is 
drawn according to the same distribution, classified according to the target function, and 
used as a test set for the generalization ability of our algorithm. 
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Figure 5. (a) The average number of halfspaces and (b) Ihe average gene&tion of 
the hypothesis net when learning intersections of two halfspaces. For clarity, only standard 
deviations for n = 12 are shown. 

We tried target nets with n = 6.8, IO; 12 and h = 2.4.6. For each pair of values (n. h), 
the number of examples in the training set was varied between approximately 100 and 2000. 
The number of examples in the test set was kept constant at around 2000 examples. Typical 



On learning simple neural concepts 79 

results are shown in figures 5 and 6. Each point on these figures represents the average over 
100 tests. We present both the average number of halfspaces in the hypothesis net retumed 
by the algorithm and its generalization ability for different values of (n. h). From figure 5 
and figure 6, one can see. that, on average, the algorithm is doing well. Not only is the 
number of halfspaces retumed by the algorithm small enough to allow good generalization, 
but it also does scale very nicely with the size of the problem. 
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Fwre 6. (U) The average number of halfspaces and (6) the avenge generalilarion of the 
hypoIhesis net when learning intersections of k = 2,4,6 halfspace for n = IO. For clarity. 
only standard deviations for k = 4 are shown. 

We have also investigated the worst case behaviour of the algorithm over the set of tests 
performed. For each pair (n. h),  we looked at the m i m u m  number of halfspaces returned 
by the algorithm at any test. This number was 4 for (8,2), 5 for (IO, 2) and 10 for (10.4). 
This indicates that cases where the algorithm will perform poorly will be encountered very 
rarely. It would be interesting to investigate this question theoretically. 

To avoid the objection that these are moderate-sized problems, we run tests on (20,2), 
(30,2), (35.2). (40,2), and (50,2). The results are presented in table 1. These tests were 
done as follows. We first generate at random a halfspace. intersection function made of 
two n-dimensional halfspaces, orthogonal to each other and passing through the origint of 

t Of cnurse. this information is not coded in the leaming algorithm. 
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Table 1. The number of examples (m) and the number of halfsps (k) d e d  by the greedy 
heuristic to get a generalization rate (Gen) as a function of the dimension (n) of the input space 
for an infersection of two halfspaces. M is the size of the M set These resulis am averages 
over N runs. The best generalization rate (opt-gen) was obtained by executing the hypothesis 
HI on r (( k )  nodes. The approximate CPU time is that obtained from an IBM RS/K€4 machine. 

n m k Gen r Out-Ken M N mutime 

10 3w0 4.3 99.4% +0.1% 3.6 99.5 f 0.2% IOW 10 - 0 3  h 
20 4000 5.0 98.1% f 1.0% 3.3 98.8 f 0.3 20000 6 - 0.7h 
30 6000 4.3 98.6% * 0.1% 3.6 98.9 f 0.1% 2OwO 5 - 1.6 h 
40 1oooo 5 982% 4 98.6% 40ooo 1 - 1 2 h  
50 14000 5 98.8% 4 99.0% 40000 I - 3 6 h  

the continuous input space [-1, +I]". Then a training sample consisting of m/2 positive 
examples and m/2 negative examples is generated uniformly at random (note that the 
positive measure is + of the total measure for these target functions). When the greedy 
algorithm retums a hypothesis function with k halfspaces, the generalization is tested 
separately on M / 2  positive and M / 2  negative new examples generated uniformly. The 
average (Gen) of these two scores was reported Since the last halfspace of the hypothesis 
often cuts only a few points, we have also rep- the number of nodes r for which the 
hypothesis exhibits the best generalization (Opt-gen). 

Table 2. The mirmr symmetry problem in 30 dimensions. The training set consisled of m 
examples (half of them were positive) generated uniformly on the hypercube. lk genedimion 
rate (Gen) was tesfed on 4000 examples (half of them positive) generated uniformly. Each 
vdue represents an average over 20 d i h t  instances and U is the standard deviation of the 
genemlimion rate. 

m 100 200 400 MKI 

( e n )  69.7% 80.1% 90.8% 94.4% 
f7 7.5% 35% 1.7% 0.9% 

The number of examples and halfspaces needed to get a generalization rate of 98-99% 
is consistent with a polynomial increase with respect to the dimension of the input space 
(for n Q 50). These results do not show any evidence of an exponential increase in the 
number of examples needed to leam halfspace intersections (as conjectured by Baum [31). 
Hence we think that these experimental results strongly suggest that the greedy method 
learns halfspace intersections under the uniform distribution. 

Table 3. The generalidon rate ( e n )  of our greedy method standard deviation (*) and lhe 
number of nodes found (k) for various data sets. n is the number of inputs (dimension) and m. 
the number of examples. Each result is averaged over 20 trials. The training set wnsisu ofthe 
$ of the m examples and the M set uanslsis of the f remaining. We also include the results 
of C4. n is the number of input variables. 

httaset m n M-acc c4 (Gen) (k)  

CH 3196 36 52.2% 99.2% rtO.3 952% i 0.5% 4.0 
G2 163 9 53.4% 743% f6.6 76.4% f6.1% 4.7 
IR 150 4 333% 93.8% i3 .0  95.1% f6.39. 3.4 
vo 435 16 61.4% 95.6% & 1.3 920% f 28% 2.0 
v1 435 15 61.4% 89.4% & 2 5  87.3% i 23% 3.4 
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An interesting function that has been the subject of controversy L19.391 is the mirror 
symmetry detector. Here the target output is +1 if and only if the second half of the input 
bits is a minor reflection of the k t  half [19]. This function is known to have at least two 
different neural net representations: an intersection of two parallel halfspaces and a majority 
function of n order-twodisjuncts. Since the latter is not a NDL, the greedy always found 
a halfspace intersection. Again the training was done on m/2  positive and m / 2  negative 
examples obtained from the uniform distribution on {-1, +1)”. Testing was done on both 
M/2 positive and M/2 negative examples obtained from the same distribution. As the 
results show (see table 2). the greedy method was able to find a good approximation of 
this function after seeing very few examples. The function retumed consisted always of 
two, almost parallel, halfspaces. For the sceptic, we have done five runs in 50 dimensions 
and have obtained an average generalization rate of 97.5% &r training on only m = 1600 
examples! Testing was done on M = 20000 examples obtained from the same distribution. 
Note that it is important here to test separately on both the positive and the negative 
measure. Otherwise, a trivial net giving -1 to all examples would achieve almost perfect 
genedization on the uniform distribution since the positive region has only a fraction of 
2-”/* of the total measure. But here this trivial net gets only 50% generalization on the 
testing se t  These results show how easy learning can be for a reasonable distribution: here 
the retumed net only needs to be c o m t  on inputs having roughly an equal amount of f l  
and -1 entries. For this reason, the retumed weight values do not increase exponentially. 

To summarize, our numerical results strongly suggest that the algorithm is behaving as 
‘Occam’s algorithm’ and does leam halfspace intersections under the uniform distribution. 

6.3. Real data sets 

We have tested our greedy heuristic of section 5 to build NDLS on data sets taken from 
a collection distributed by the machine learning group of the University of California at 
Irvinet. These sets were kindly provided to us by Robert Holte who studied recently [221 
the performance of certain machine learning algorithms on these data sets. The results of our 
algorithm are summarized in table 3. We have included, for comparison, the performance 
of C4 on these data sets as reported recently by Holte [22]. C4 is a ‘state of the art’ tree- 
induction algorithm [34] capable of producing very complex decision rules. Also indicated 
is the ‘default accuracy’ one has when classifying all the testing examples according to the 
class containing the largest number of examples. We now comment on our results: 

CH: Chess end-game. This data set was originally generated and described by Shapiro [NI. 
The goal is to determine whether or not a given chess board configuration is a winning 
position for the white player. The white player has a king and rook whereas the black 
player has a king and pawn where the pawn is located on ‘a7’ (just ready to be promoted 
to a Queen). The input consists of 35 binary features and one temary feature describing a 
board position of a chess end-game. The output is whether or not the position is a winning 
one for the white player. These features, as described in Shapiro’s book [NI, have been 
explicitly engineered for C4 by a chess expert working with a version of C4 built specially 
for this purpose. In view of the importance of representations, it is surprising to see that 
our algorithm achieves a 95% generalization score on ‘Whand-crafted data’. 

G2 Glass ident@cation. Here the goal is to determine~if a given piece of glass is ‘float- 
processed‘ or ‘non-float-processed’. The study of classification of types of glass was 
motivated by criminological investigation. At the scene of the crime, the glass left can be 

t Contact person: Wt Murphy @muphy@ics.uci.edu). 
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used as evidence., .if it is correctly identified! The input vector consists of 9 continuous- 
valued adributes where each attribute indicates the concentration of a given element (Mg, 
Na, AI . . .) and one attribute indicates the refractive index. The performance of our greedy 
method was only slightly (but not significantly) better than C4. Although we think that this 
kind of problem is well suited for our approach (all attributes are continuous), the number 
of examples is not enough to achieve a higher accuracy. 

lR Iris data set. This is perhaps the best known database to be found in the pattern 
recognition literature [12]. The data set contains 3 classes of 50 instances each, where 
each class refers to a type of iris plant: virginica, versicolor or setosa. One class (setosa) 
is linearly separable from the other two; the latter are not linearly separable from each 
other. The four inputs are continuous-valued and correspond to the length and width of the 
sepal and petal. Our algorithm achieved good accuracy on this set and slightly (but not 
significantly) better than C4. 

VO-VI: United States congressional voting records database. The VO data set includes 
votes for eacb of the US House of Representatives Congressmen on 16 key votes (Salvador 
aid, aid to Nicaraguan Contras, education spending, MX-missiles, . . .). The result of each 
vote is expressed as a ternary amibute: yea, nay or ‘?’ where this last value is taken when a 
congressmen did not vote, voted present or voted present to avoid conflict of interest. Thii 
is a twoclass problem since a Congressman is either Democrat or Republican. The V1 
data set is identical to VO except that the most informative attribute (physician fee freeze) 
has been deleted, which makes the problem harder. The performance of our algorithm for 
these sets is slightly less than that of C4, but not significantly. 

Hence, the greedy method for constructing NDLS can handle with success these real 
data sets with roughly the same level of performance as C4. We must mention, however, 
that the version of C4 used in these tests incorporates pruning. We could probably also 
improve our results by pruning the NDLs and by using a cross-validation data set to test each 
new halfspace found during the building process. Moreover, once a halfspace is found, we 
could ‘fine-tune’ it with a quadratic programming algorithm so as to find a hyperplane with 
maximal stability. In short this approach is flexible enough to incorporate many engineering 
tricks that have proven useful in the past. We are investigating these possibilities. 
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I .  summary 

By formulating the problem of halfspace intersections as a setcovering problem, we were 
able to bring it down to the much simpler, yet very difficult, sub-problem: given a set 
of nonlinearly separable examples, find the largest linearly separable subset of it. Short 
of solving the CAP, the only hope for leaming halfspace intersections is to find a good 
approximation algorithm for this NP-hard subproblem. 

The approximation algorithm given in this paper seems to work well in practice. At 
the single-neumn level, it outperforms the pocket algorithm used by many constructive 
algorithms on both linearly and nonlinearly separable functions. 

The greedy method which incorporates this approximation algorithm seems able to 
leam halfspace intersections under the uniform distribution of examples. Whereas one can 
always think of malicious situations where the approximation algorithm will do poorly, 
the numerical results are very encouraging and indicate that this will occur very rarely in 
practice. The problem of whether or not there exists an approximation algorithm, with 
a performance guarantee in the worst case, is still open. We think that this question is 
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of fundamental importance because any algorithm that can give a number of halfspaces 
bounded by hbna,  for ci < 1 and p 2 1, will satisfy the Occam’s razor criteria 

We extended the approach to a larger and richer class of concepts, namely the class 
of neural decision lists. Again the approach seems to work well. Our results on realdata 
problems suggest that concepts like halfspace intersections (unions) and NDIS are not only 
important from the theoretical point of view, but also useful in practice. 
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Appendix 

In this section we show how to construct the equivalent FFN of figure 2 from the NDL 
obtained from our algorithm described in section 5. 

For such a m, if we denote by uj,k the value of the weight-connecting hidden unit k to 
hidden unit j, the output Sf of hidden unit j, upon presentation of pattern xp (p = 1, . . . m), 
is given by 

 where sgn(x) = +I  if x > 0, and -1 otherwise. The cascade architecture is reflected,  in^ 
this equation, by the fact that hidden unit j is updated only after all hidden units k c j 
have been updated 

The wj,is are readily obtained from the halfspaces of the NDL. What remain to be found 
are the connections between the hidden units. Recall from section 2 that OUT goal is to try 
to get a set of intemal representations of the type - 1, - 1, . . . , -1, +I, - 1, . . . , - 1. 

To assure that hidden unit j inhibits all hidden units i > j when S,? =+I ,  we choose 
to connect unit j to all units i > j in the following way: 

n 

u i . j = - ~ \ w i , ~ \ - l  for j = 1 ,  ... h and i = j + l ,  ... h (m 
k d  

where~h denotes the number of hidden unik or, ~uivdently, the number of nodes of the 
NDL. However, the drawback of the above choice is that unit j will force all the other units 
i > j to output + I  whenever Si” = -1 whereas we want each unit i to output +I  only 
when all other unit j e i output -1 and when d‘ is in its positive halfspace. This can be 
corrected by renormalizing the biases of each hidden unit according to 

i--l 

t ~ i , o + w i . o + ~ ~ ~ i , j  for i = l ,  ... h 
j= l  
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without affecting the inhibitory action that unit j has on all the units above it when S,!’ = +l. 
Hence, we have achieved the desired set of intemal representations. 

Finally, we have to set the value of each weight uj connecting hidden unit j to the 
output unit such that its output always gives the desired value. If we denote by 9 the target 
of the pattems covered by the positive halfspace of hidden unit j ,  we can achieve this goal 
by the following choice: 
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u j = r j  for j = l ,  ... h (A4) 

for the connections and setting the bias according to 

h 

uo = E r j .  
j=l  

Because of the shllcture of the set of intemal representations, the output will be sgn(2 x ri) 
whenever a pattem with target ri is presented to the net Hence, all the examples in the 
training set will always be correctly classified by this cascade FFN (equivalent to the NDL). 

For multiple-class problems, we will again choose the inter-hidden units connections 
and bias according to (Al) and (AZ) so as to have the same set of internal representations 
as previously. But now each hidden unit is being associated with a class value. Moreover, 
since the output units are perceptrons, we need to represent each class r by a b q  vector 
7. We have, of course, complete freedom to choose any binary representation we want. If 
we now denote by U the class index (U = 1, . . . , Q) and by 7” its binary representation, 
the weight U: connecting any hidden unit that covers pattems of the class U to output unit 
i is given by 

(A6) U. - 
E.” - Ti 

and the bias for output unit i now generalizes to 

where ~j denotes the vector representation of the examples covered by hidden unit j. 
Again, we have the guarantee that each example in the data set will be correctly classified. 
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