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Abstract. Tn this paper, we take a close ook at the problem of leaming simple newural concepis
under the uniform distribution of examples. By simple neural concepis we mean concepts
that can be represented as simple combinations of perceptrons (halfspaces). One such class of
concepts is the class of halfspace intersections. By formalizing the prablem of leaming halfspace
intersections as a ser-covering problem, we are led to consider the following sub-problem: given
a set of nonlinearly separable examples, find the largest linearly separable subset of it. We
give an approximation algorithm for this np-hard sub-problem. Simulations, on both linearly
and nonlinearly separable functions, show that this approximation algorithin works well under
the uniform distribution, outperforming the pocket algorithm used by many constructive neural
algorithms. Based on this approximation algorithm, we present a greedy method for learning

- halfspace intersections. We also present extensive nimerical results that strongly suggest that
this greedy method learns halfspace intersections under the uniform distribution of examples.
Finally, we introduce a new class of simple, yet very rich, neural concepts that we call neural
decision lists. We show how the greedy method can be generalized w0 handle this class of
concepts. Both greedy methods for halfspace intersections and ‘neural decision lists were tried
on real-world data with very encouraging results. This shows that these concepis are not enly
fmportant from the theoretical point of view, but also in practice.

1. Introduction

Learning in feedforward layered neural networks has attracted much attention recently [39].
Unfortunately, training these systems has certainly proven to be a very difficult task. It is
now recognized that the most popular “leaming rule’, backpropagation [38], generally needs
prohibitive training times because of the local minimum problem. This has culminated in
the important work of Judd [25] who showed the NP-hardness of the problem of training in
Jixed network architectures. To circumvent this problem, several constructive (or growth)
algorithms have been proposed recently [13-15, 18,28-30,37,41,43]. These algorithms
share the feature that the network architecture is not fixed (and guessed) before training.
Instead, units are added, one by one, by using an algorithm that minimizes some error
criterion at the single-neuron level. As a consequence, these algorithms generally run
much faster than backpropagation. The upshot is that one can (and generally does) assist a
spectacular explosion in the number of neurons needed to load the data. In these situations,
the network simply acts as a table lookup and exhibits no generalization. As a result, very
few good generalization results have been reported for these constructive algorithms.

A meaningful question to ask here is"whether or not one can leamn concepts (functions)
representable as relatively simple feedforward nets (FFNs). To be able to answer this
question, we need to define more precisely what we mean by learning. For that, we appeal to
the PAC leaming model [7, 21,32, 44]. Loosely speaking, the learning algorithm has access
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to a set of examples generated according to 2 fixed but otherwise arbitrary distribution
P{x). The examples are labelled according to an unknown target function which may be
any one from some known class of functions. The algorithm is said to be efficient if, given
a ‘reasonable’ number of examples, it is ‘likely’ to produce, in polynomial time, a ‘good’
approximation of the unknown function. For precnse definitions, the reader is referred to
the literature cited.

If we adopt the PAC’s point of view, the list of neural networks that are Ieamable
is deceptively small [6,27]. Even simple neural concepts like halfspace intersections
are known to be not properly learnable under an arbitrary distribution of examples. To
our knowledge, only single halfspaces [7] and border-augmented symmetric differences of
halfspaces [45] have proven to be learnable.

In view of the scarcity of positive PAC learning results, researchers have looked for
positive results by providing the learning algorithm with additional information in the
form of queries [1,20] or by restricting the distribution of examples [5,17]. Taking the
second approach, Bartlett and Williamson [2] have proposed to permit only reasonable
distributions (i.e. bounded dlstnbutlons which are non-zero everywhere in the domain).
One such distribution is the uniform one.

In this paper, we first investigate the learnability of halfspace intersections under the
uniform distribution of examples. Our task is to find, in polynomial time, a halfspace
intersection_hypothesis net that approximates the most to the halfspace intersection target
net. Furthermore, we allow for a possibly larger number of halfspaces in the hypothesis net.
By the Occam’s razor principle [7 8], if the hypothesis function is not toc iarge compared
with the target function, we are guaranteed to learn. We stress here the fact that algorithms
such as the backpropagation [38] and the cascade-correlation [13] do not solve our problem
because there is no guarantee that they do converge to a solution in polynomial time. We
present a greedy method for this problem which, although we are not yet able to prove its
PAC correctness, does very well experimentally under the uniform distribution of examples
up to 50 dimensions. To our knowledge, the tests reported here go beyond any in the
literature in terms of testing generalization by a greedy method in high dimensions.

The greedy method, like all the other constructive algorithms, is built around a single-
perceptron training procedure. This procedure tries to find a halfspace consistent with
all the positive examples and a large number of negative examples. Because finding the
halfspace consistent with the largesr subset of negative examples is NP-hard, we give
an approximation algorithm for it. In view of the fact that it is a linear programming
(LP) problem to find whether or not a data set is linearly separable—and for which there
exist very efficient algorithms—our approximation algorithm incorporates an ‘incremental’
LP algorithm (IncLP). We present numerical evidence for the superiority of this single-
perceptron training procedure over the pocket algorithm, used by many constructive neural
algorithms.

The greedy method for halfspace intersections is extended to a class of functions we
call neural decision lists. These are a generalization of the decision lists of Rivest [35] by
allowing each node to be a halfspace (perceptron). This class of functions is strictly richer
than halfspace intersections (unions).

Both greedy methods for halfspace intersections and neural decision lists are tried on
real-world data with very encouraging results. Their performance is comparable to C4, a
‘state of the art’ tree-induction algorithm [34]. This shows that these simple neural concepts
are not only important from the theoretical point of view, but also in practice.

This paper is organized as follows. In section 2 we present some definitions. Our greedy
method for halfspace intersections is presented in section 3. In secton 4, we present our
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approximation algorithm for training single neurons. Our approach is generalized to neural
decision lists in section 5. In section 6, we present the numerical results of our extensive

simulation on both random nets and real-world data. The conclusions are summarized in
section 7.

2. Definitions

Let X = {x1,x2,...,x,} be the set of n-input variables and [" the n-dimensional input
(or instance) space which can either be {—1, +1}", [—1, +1]" or a subset of R".

An example of a boolean function f : I" — {—1, 41}, is an an ordered pair {z, f(x)),
where & € I". Point z is said to be a positive example if f(x) = +1, otherwise it is said
to be a negative example. A sample is a set of examples. We assume that the distribution
D generating the examples is uniform on I”,

A linear threshold function on a set X of n variables is specified by a vector of »
real-valued weights w; and a single real-valued bias wy. The output of the function is +1
or —1 depending on whether the following inequality holds:

Zw;xi+w0>0.

xiex

Such functions are also referred to as perceptrons or halfspaces. We denote by H the
positive halfspace {z : w - + wo > 0} and by H its complement. Halfspace H is said
to cover example x if © € H. Halfspace H is said to be consistent with sample S if all
positive examples of § are covered by H and and all negative examples of § are covered
by H.

A function f : I" — {—1, +1} is said to be a halfspace intersection if it can be
written as a conjunction (AND) of halfspaces. These functions have an obvious neural net
representation: a FFN made of one layer of hidden units connected to a single output unit
that performs the ‘AND’ operation (see figure 1).

(@) (b)

n

A = Connections from inputs

Figure 1. (a) The function represented by the intersection of four halfspaces. The shaded region
represents the set of positive examples. (&) The equivalent FFN. The input units are not shown.,

We generalize the notion of decision lists, introduced by Rivest {35), to neural decision
lists (NDL). A NDL (figure 2) is a list £ of pairs

(le Ul)i (HZ’ UZ)- LS ] (Hrv vr)
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(a) (b)
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A = Connections from inputs

» = Connections from hidden units

Figure 2. (a) A function to leamn; the shaded region represents the set of positive examples.
(h) A NDL performing this function. (¢) The equivalent cascade FFN. Each hidden unit receives
conneclions from the input units (not shown) and only from the other hidden units below
it. Excitatory connections going to the output are indicated by a full line whereas inhibitory
conmections are shown by dashed lines.

where each H; is a halfspace and v; is a value in {—1, +1}. The last halfspace H, is the
constant functionf 4 1. This defines a function as follows: for any &, L(x) is defined to be
equal to v; where j is the first (least) index for which € H;. As in [35], we may think
of a NDL as an extended ‘if-then-elseif-...else-’ rle (see figure 2). Compared to
Rivest’s decision lists, NDLs have the same structure, but the complexity of the decision
allowed at each node is greater.

This class of representations is strictly richer than halfspace intersections (unions).
Indeed, any boolean function on a boolean (or discrete) domain has a NDU representation.
Moreover, there always exists a NDL consistent with any finite sample of a boolean function
on a continuous domain (i.e. a subset of R"). We will present numericai results on ‘real-
world’ data sets that have an efficient NDL representation,

NDLs have a simple FFN representation (see figure 2): it is a type of FFN known as a
cascade net [13,15,27,30] because hidden units need to be updated one after the other (in
‘cascade’), starting from the first. Indeed, whenever an input x lies in the positive halfspace
of the first hidden unit, this unit must decide its target. If it lies in the negative halfspace,

1 We may think of the constant halfspace (function) as the halfspace covering the whole input space. A perceptron
with zero weights and a positive bias will do the trick.
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the decision must be postponed to the second hidden unit. If = lies in the positive halfspace
of the second unit, this unit must decide its target. If not, the decision is postponed to the
third hidden unit and so on'until we find a halfspace H such that & € H.

One way to simulate this hierarchy is to put strong inhibitory connections between the
hidden umits in such a way that, whenever an input vector x is presented to the net, we get
an internal representation of the type —1,-1,...,—-1,41,—1,...,—1, ie. each hidden
unit outputs —1 except thé one hidden- unit which will actually decide the FFN output for
z. In appendix A we show how to choose the inter-hidden-unit connections such that the
equivalent FFN gives the same classification as the NDL.

3. Learning halfspace intersections

When given a sample from a halfspace intersection, the goal of the leamer is to find a FFN
that best approximates the target function. Here, each positive example must be consistent
with each and every halfspace whereas each negative example only needs to be consistent
with one halfspace. The problem, often called the credit assignment problem (CAP) [3], is
to decide which halfspace must be consistent with a given negative example. One way to
bypass the CAP is to adopt the following greedy method:

1. Let 5~ be the set of all negative examples.

2. If 8§ is empty, Halt.

3. Find the halfspace H that is consistent w1th the largest subset of 5~ and all the positive
- examples.

4, Add H to the hypothesis net. Remove this subset from $S~. Go to 2.

Obviously, this greedy method will build as a hypothesis a halfspace intersection
consistent with all the training examples.

- Let us call the optimization problem encountered in step 3 the denmsest-halfspace-
covering problem. Suppose for a moment that we have a way to solve this optimization
problem exactly. Tt is easy to imagine some distributions of examples for which the halfspace
that covers the largest number of negative examples is quite different from any one of
the target halfspaces—thus causing the above greedy method to give a larger number of
halfspaces than the minimum. This is not a real setback because our goal is not to find
the minimum number of halfspaces, but to find a good approximation. Under the above
assumption (that step 3 can be solved exactly), the greedy method is equivalent to the
standard greedy algorithm for the set covering_[9,23]. Hence, it is guaranteed to find a
haifspace intersection with a number of halfspaces not greater than £ In(r) + 1 in the worst
case, where m is the number of examples and 4 is the smallest number of halfspaces
in any halfspace intersection consistent with all the examples. By the Occam’s razor
principle {7, 8], this would be sufficient to pPaC-learn this class of concepts.

Unfortunately, the densest-halfspace-covering problem contains, as a particular case,
a known NP-complete problem: the densest-hemisphere problem [16,24] is finding the
largest linearly separable subset (positive or negative) from a data set. Hence, for the
_ greedy method to PAC-learn' the class of halfspace intersections, one needs to find some
approximation algorithm {16] for the densest-halfspace-covering problem with a good
performance guarantee in the worst case.  Unfortunately, we are not aware- at present
of any such algorithm that runs in-polynomial time. We present, in the next section,
an approximation algorithm for the densest-halfspace-covering problem which runs in
polynomial time and does extremely well experimentally on both real and artificial data,
‘although we are not yet able to prove its correctness under the uniform distribution.
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4. Approximation algorithm for the densest-halfspace-covering problem

We have seen in the previous section that finding an approximation algorithm for the
densest-halfspace-covering problem is of fundamental importance to PAC-learning halfspace
intersections (and probably for other leaming problems). Moreover, all constructive (or
growth) neural net algorithms need such an approximation algorithm for training at the
single-neuron level. Here we present our approach to this problem.

4.1, Description of the algorithm

We are, of course, concerned with the case where the data is not linearly separable because
the linearly separable case is directly solvable by linear programming (LP). One way to
approach this problem {12] is to try to minimize the perceptron criterion function [12] which
can be converted to a linear cost function and, hence, solvable by LP. This, however, has
nothing to do with mirimizing the number of misclassifications, which is a truly nonlinear
cost function of the weights. As a consequence, a set of weights that minimize the perceptron
criterion function will, in general, contain too many misclassified examples, each being close
to the separating hyperplane.

Another way to approach this problem is to use, 1ncrementa.lly, a LP procedure to try
to incorporate one example af a time into a linearly separated data set. Hence, we will try

the following greedy heuristic, which are call the incremental linear programming (IncLP)
algorithm:

IncLP(S*, S™, L, H)

Parameters:

S+ the set of positive examples.

8§71 the set of negative examples.

L: an initial set of negative examples separable from S* (may be empty).

H: an initial halfspace consistent with S* and L.

Output: (L, H) where L is subset of negative examples separable from S* and H is a

halfspace consistent with S* and L.

Description: The aIgonthm builds on the set £ by adding to it negative examples from 5.

1. SetR=S§".

2. If R is empty, Return (L, H).

3. Choose (possibly at random) an example & from R, Set R=R—{z}

4. By using your favorite LP procedure, try to find a halfspace H® consistent with L U {a}
and S¥.

5. If such halfspace exists Then set L = L U {a} and H = H.

6. Go to step 2.

This procedure will return a haifspace H that covers a subset L of negative examples
without covering any positive examples. It may happen, however, that a bad sequence of
negative examples will be chosen such that the resulting subset L is small, Since the number
of linearly separable dichotomies [10] increases exponentially with r, it is not feasible to
find all of them. So we must instead look for ways to find, with high probability, large
linearly separable subsets,

The first procedure that we might try (call it mult_IncLP), simply consists of running
IncLP a certain number of times on the same training set. After each pass we record the
halfspace found along with the size of the subset covered and we change randomly the
order of the examples in the training set for the next pass. Then mult_IncLP returns the
haifspace that covers the largest subset found from these multiple attempts. However, it
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may happen that, with high probability, only small a subset will be found by IncLP af each
attempt, causing mult. IncLP to return only a small subset. This means that each time a
small subset is returned by IncLP, we must avoid loading this group of examples. Hence,
a good ‘rule of thumb’ would be to remove these negative examples from a working set W
and use IncLP to find another subset from the remaining examples in W. This is repeated
until no negative example is left in W. At the end, we just retain the largest subset found.
Hence, instead of mult.IncLP, we propose the following heuristic for our approximation
algorithm:

Find large neg_subset(S¥,§7)"

Parameters. ’

87*: the set of positive examples.

S the set of negative examples.

Output: (L, H,) where Ly, is a (hopefully large) subset of negative examples linearly
separable from S* and H,, is a halfspace consistent with L, and 5+,
Description:

1. Set W =S5~ (W will hold the remaining ncgatwc examples).

Set U = @ (U will hold the removed negative examples).

Set L,, =@ (L,, will hold the largest subset found).

If W is empty, Return L,,.

Set L =0 and H = +1 (i.e. H is the constant halfspace)

(L, H) = IncLP(S+, W, L, H).

Set W=W—L.

(L, HY = InclP(S*, U, L, H).

If |L| > |L,| Then (L, Hy) = (L, H).

Set U = U U L. Go to step 2.

" Note that, in addition to what has been said above, the algorithm tries (in step 6) to build
a larger linearly separable set by trying to include the negative examples belonging to the
subsets already found. More generally, it is clear that we can use IncLP in a similar way to
find a large linearly separable subset of S\ S~ with the constraint that a certain subset (not
" necessarily S) must be present in the solution. We will present, in section 6, numerical
results that indicate the superiority of Find_large.neg.subset over mult.IncLP and the
pocket algorithm.

Baum [3] has suggested that no ‘good’ incremental approximation algorithm exists for
the densest-halfspace-covering problem. His arguments can be summarized as follows: for
n large, with very high probability, any random set of n negative examples (on » inputs)
will be separable from the positive examples. Because of that, it provides little information
that one is getting a ‘good” halfspace. So essentially, no further negative examples can be
added to this set. Indeed, it is easy to imagine different scenarios where this approximation
algorithm would give only a very small linearly separable subset. For example, suppose that
the target function is the intersection of two halfspaces. Suppose also that the distribution
of m~ negative examples is correlated to the distribution of positive examples as follows.
Let IT be the polytope formed by the positive examples. For each face of [T, we have two
(and only two) negative examples such that any hyperpiane that separates botk -of them
from I1, cannot separate any other negative example. Hence, if IncLP always starts with
two such examples, the approximation algorithm will return subsets containing only two
examples. This will canse the greedy heuristic to give m™ /2 halfspices. However, all such
catastrophic scenarios that we can think of have one thing in common that makes them very

unlikely to occur in practice: the distribution of positive examples is correlated with the

ML RN
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distribution of negative examples which is also correlated with our (random) strategy for
choosing the examples in the IncLP algorithm. That is, we have a malicious distribution [4]
of examples controlled by adversaries. Hence, we think that our approximation algorithm
will do well for simple function classes like halfspace intersections under the uniform
distribution of examples and probably also under other reasonable [2] distributions. Our
numerical simulations in section 6 suggest that this is indeed the case for both real and
artificial data. :

In the worst case, our approximation algorithm runs in polynomial time if we use
Karmarkar’s [26] polynomial time algorithm for LP. We have, however, used the Simplex
algorithm [11] since, although its running time can increase exponentially with # in the
worst ¢ase, it is reputed to be very efficient in practice. In fact, Smale [42] showed that the
number of pivot operations needed to solve a LP problem is aimost always no larger than
the number of variables or the number of constraints, whichever is the larger. We have
impiemented the algorithm described in chapter 2 of [31], which uses Bland’s rule to avoid
cycling, and have encountered no problems,

Finally, there exists another approximation algorithm, known as the pocket algo-
rithm [15], to find the Jargest separable subset of examples. One feature that might make
this algorithm attractive is its ‘convergence’ theorem: given a set of examples and a prob-
ability p < 1, there exists an N such that after 1 > N iterations of the pocket algorithm,
the probability of finding the largest separable subset of examples exceeds p. This theo-
rem, however, is not a strong statement since it gives no upper bound on the number N
of iterations needed. Indeed, as Gallant himself emphasizes [15], the proof relies on the
fact that there is a finite (but very small) probability that the examples from the largest
(or a largest) linearly separable subset will be picked repeatedly by the perceptron which,
following the perceptron convergence theorem, will find the corresponding optimal set of
weights. Of course, we also have a similar “‘convergence” theorem if we use our approx-
imation algorithm repeatedly, each time changing (at random) the order of the examples.
But in practice, we find it sufficient to use our approximation algorithm only once. An
experimental comparison of the two approaches is given in section 6.1.

5. Learning neural decision lists

5.1. Binary classification problems

Here we extend the greedy method given in section 3 to the case of neural decision lists.
The additional problem that arises now is that the set of positive examples is not necessarily
convex {see figure 2). Hence, the greedy method will need to alternate between covermg
(cutting) positive subsets and negative subsets.

Consider the example of figure 2(z). Each time a halfspace covers a subset of examples,
these are removed from the training set. For the first three halfspaces, only negative
examples can be covered. Then, the positive examples will be covered by the next three
halfspaces. Finally, the last halfspace will cover the remaining examples whlch are all of
the same target: negative in this case.

We therefore propose the following greedy method for learning NDLs:

Build NDL(S*, §7)

1. Let S* be the set of positive examples and S~ be the set of negative examples.
2. If 5* =, append the pair {(H, = 1, —1) to the decision list and stop.

3. If 8~ =8, append the pair (H, = 1, 41) to the decision list and stop.
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4., Find the halfspace H* that covers the largest number of examples in $* and none of
_ the examples in S~. Let f* be the fraction of examples from S covered by H™.

5. Similarly, find the halfspace H~ that covers the largest number of examples in §~ and

" none of the examples in ST. Let f~ be the fraction of examples from 5™ covered by
H-.

6. If f* > f~ Then append the pair (H*,+1) to the decision list and remove from s+
the examples that are covered by H+.
Else append the pair.(H~, —1) to the decision list and remove from S~ the examples
that are covered by 5.

7. Go to step 2.

Note that, at each step, we have decided to retain the halfspace that covers the largest
fraction of the remaining positive (negative) examples. The reason is that the fraction of
examples reflects more closely the probability measure we are covering than the actual
number of examples

52, Multi-class prablems

There are several ways one can extend this approach to multiple-class functions. Say that
we have Q classes so that the function to learn 7(x) can take any value from 1,... Q. One
way to build the muitiple class NDL is to find, at each step, the halfspace that covers (cuts)
the largest fraction of examples from one class only. The following heuristic builds a NDL
for multi-class problems: -

1. Fort=1,. .. 0, let 87 be the set of examples of the class 7.

2. If all but one of the ST are empty, append the pair (H, = 1, 7y} to the decision list and
stop (o is the class of the non-empty set).

3. Forr=1,...0:
If S* £ 0, ﬁnd the halfspace HT that covers the largest fractxon F* of §* and none of
the examples in Uy, S7.

4. Choose the H” that covers the largest fraction f“ and remove these examples from S°.
Append to the decision list the pair (H?, 7).

5. Go to step 2.

We can think of other, and probably better, ways to use these halfspace-covering
heuristics in multi-class situations by incorporating some knowledge about the dispersion of
the data, We could, for example, perform [log,(Q)] different dichotomies of the Q classes
and then use, in parallel, the Build NDL algorithm of the last section to create [log,(Q)]
different binary classification NDLs. These dichotomies could be done by performing a
principal component analysis on the data or by using any other criteria like those presented
in [41]. The point we want to make is that our approach is fiexible enough to be applied
in a rich variety of ways to multi-class problems.

6. Experimental results

6.1. The approximation algorithm versus the pocket algorithm

Because most of the constructive algorithms use the pocket algorithm at the single-
neuron level to find the ‘optimal’ halfspace, we include here a2 numerical comparison of
our approximation algorithm with the pocket algorithm on both linearly and nonlinearly
separable functions.
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The linearly separable case. In this case, the approximation algorithm requires only
one pass of IncLP. We took great care in implementing the pocket as explained in the
references cited above.

For each test, we generate at random a hyperplane in the [—1, +1]" region. The training
examples were drawn randomly in [-1, +1}* and classified according to this target function.
Because both algorithms are guaranteed to converge to a solution, the performance criteria
will be the time needed to find it. The average CPU time taken on a 1.4 MFLOPS computer
(YARC’s NuSuper accelerator board for the Macintosh) is reported in figure 3. Although
the CPU time depends on both the machine and the code written, it is a good measure
of the relative efficiency of the algorithms. One can see that the approximation algorithm
outperforms the pocket by many orders of magnitude. Whereas the approximation algorithm
scales linearly with the number of examples in the training set, the pocket clearly scales
super-linearly with the number of examples. This can be explained by the fact that because
the pocket chooses ‘examples at random, it will spend most of the time checking examples
already well classified.
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Figure 3. Comparison of the approximation algorithm with the pocket algorithm on linearly
separable functions for » = 10. Each point on the graph is the average over 100 tests. Also
shown are the standard deviations.

The nonlinearly separable case. One of the simpiest nonlinearly separable functions is
the intersection of two parallel halfspaces. So, we tested both algorithms on this problem.
The task here is to ‘classify the largest possible fraction of the negative examples, keeping
all the positive examples well classified. Each point on the graph of figure 4 is the average
number of negative examples in the largest linearly separable subset found by the algorithm.
The average is done over five different target networks; each being tested ten times (a total
of 50 tests for each point of the graph). The input (instance) space is the 16-dimensional
Euclidean region [—1, +1]'S, Each example of the training set is generated uniformly in
this input space and classified according to the target function. Each target network consists
of an intersection of two parallel haifspaces, a distance of 0.5 apart, randomly oriented and
centred at the origin of the input space. Hence the optimal plane for this target function
covers half of the total negative measure.

We have compared three algorithms: (i) our approximation algorithm Find large neg
-subset; (ii) the pocket algorithm with rules (each positive example is taken as a rule that
must not be violated); and (iii) mult_IncLP described in section 4.1. Here the relevant
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Figure 4. Comparison of the approximation algorithm Find_large. neg subset with the pocket
algorithm and with mult. IncLP (see text) on nonlinearly separable functions for n = 16. The
average ‘cluster size’ is the average number of negative examples in the largest Iinearly separable
subset found. Each point on the graph is the average over 50 tests. The error bars indicate the
standard deviations.

violated); and (iii} mult_IncLP described in section 4.1. Here the relevant question is: given
the same amount of time and the same training set, which algorithm returns the largest clus-
ter (subset) of negative examples? To answer this, we first run Find large neg subset
on a training set to find a subset (cluster) of negative examples and note both the time
spent by the algorithm and the size of the cluster returned. Then, we run the pocket with
rules for the same amount of time and on the same training set and we note the size
of the cluster returned. Finally we run mult_TncLP for the same amount of time taken
by Find large neg subset and record the size of the largest cluster found (among the
multiple passes of IncLP).

The results are plotted in figure 4 for the three algorithms. Clearly,
Find_large neg subset outperforms the pocket algorithm. The fact that it also out-
performs mult_TnclP provides strong numerical evidence for the importance of removing
bad sequences of negative examples when they are found. This is the basic difference
between Find large.neg subset and mult.IncLP. Note also the large error bars (stan-
dard deviation of the cluster size returned) of mult_IncLP and the very small ones for
Find large.neg.subset. This shows that mult.TncLP is much less reliable and consis-
tent than Find large neg_subset. Also, we must mention that, for a training set of 300 or
more negative exampies, Find_large_neg_subset returned, on average, an optimal cluster
containing half of the total number of negative examples in the training set.

Hence, from these results, we conclude that F:Lnd_large_neg.subset is superior, on
average (and almost always), to mult_IncLP.

6.2. Learning halfspace intersections

In this section, we describe the results of the extensive experimental tests performed on
random halfspace intersections.

Our class of functions to learn will be the class of 4 halfspace intersections or
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equivalently, the FFN containing one layer of % hidden units and one output unit
implementing an ‘AND’ of the hidden layer. We want to find out how the performance
of the algorithm scales with the number of examples in the training set, the dimension of
the input space and the number of halfspaces in the target net function.

For each test, the target net function is generated as follows: the value of each connection
going from an input unit to a hidden unit is chosen uniformly and randomiy in the interval
[—1,+1]. The bias of the hidden units are also chosen randomly in the interval [—1, +1].
The output unit is hardwired to compute an AND of its inputs. We make sure that the
region defined by the halfspace intersection is not void. This gives our target net function.
The training examples were drawn randomly in [—1, +1]* and classified according to the
target function. The average number of examples in the training set varies approximately
between 100 and 2000 points. Another separate set of approximately 2000 examples is
drawn according to the same distribution, classified according to the target function, and
used as a test set for the generalization ability of our algorithm.
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Figure 5. (a) The average number of halfspaces and (b) the average generalization of
the hypothesis net when learning intersections of two halfspaces. For clarity, only standard
deviations for n = 12 are shown.

We tried target nets with n = 6, 8, 10, 12 and /2 = 2, 4, 6. For each pair of values (n, &),
the number of examples in the training set was varied between approximately 100 and 2000.
The number of examples in the test set was kept constant at around 2000 examples. Typical




On learning simple neural concepts ’ ‘ ) 79

results are shown in figures 5 and 6. Each point on these figures represents the average over
100 tests. We present both the average number of halfspaces in the hypothesis net returned
by the algorithm and its generalization ability for different values of {(r, #). From figure 5
and figure 6, one can see that, on average, the algorithm is doing well. Not only is the
number of haifspaces retomed by the algorithm small enough to allow good generalization,
but it also does scale very nicely with the size of the problem.
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Figure 6. (a) The average number of halfspaces and () the average generalization of the
hypothesis net when learning intersections of & = 2, 4, 6 halfspaces for # = 10. For clarity,
only standard deviations for 2 = 4 are shown.

We have also investigated the worst case behaviour of the algorithm over the set of tests
performed. For each pair (n, &), we looked at the maximum number of halfspaces returned
by the algorithm at any test. This number was 4 for (8, 2), 5 for (10, 2) and 10 for (10, 4).
This indicates that cases where the algorithm will perform poorly will be encountered very
rarely. It would be interesting to investigate this question theoretically. )

To avoid the objection that these are moderate-sized problems, we run tests on (20, 2),
(30,2), (35,2), (40,2), and (50, 2). The results are presented in table 1. These tests were
done as follows. We first generate at random a halfspace intersection function made of
two n-dimensional halfspaces, orthogonal to each other and passing through the origint of

1 Of course, this information is not coded in the learning algorithm.
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Table 1. The number of examples (m) and the number of halfspaces (£) needed by the greedy
heuristic to get a generalization rate (Gen)} as a function of the dimension (n) of the input space
for an intersection of two halfspaces. M is the size of the test set. These results are averages
over N runs. The best generalization rate (Opt-gen) was obtained by executing the hypothesis
ut on r (< k) nodes. The approximate CPU time is that obtained from an IBM RS5/6000 machine,

n m k Gen r Opt-gen M N CPY time
10 3000 43 99.4% = 0.1% 3.6 99.5 £ 0.2% 10000 10 ~03h
20 4000 5.0 98.1% = 1.0% 33 988 £+ 0.3 20000 6 ~07h
30 6000 4.3 98.6% + 0.1% 36 - 989+01% 20000 5 ~16h
40 10000 3 98.2% 4 98.6% 40000 1 ~12h
50 14000 5 98.8% 4 99.0% 40000 i ~36h

the continuous input space [—1,+1]". Then a training sample consisting of m/2 positive
examples and m/2 negative examples is generated uniformly at random (note that the
positive measure is % of the total measure for these target functions). When the greedy
algorithin returns a hypothesis function with k halfspaces, the gemeralization is tested
separately on M/2 positive and M/2 negative new examples generated uniformly. The
average (Gen) of these two scores was reporied. Since the last halfspace of the hypothesis
often cuts only a few points, we have also reported the number of nodes r for which the
hypothesis exhibits the best generalization (Opt-gen).

Table 2. The mimor symmetry problem in 30 dimensions. The training set consisted of m
examples (half of them were positive) generated uniformly on the hypercabe. The generalization
rate {Gen) was tested on 4000 examples (half of them positive) generated uniformly. Each
value represents an average over 20 different instances and o s the standard deviation of the

generalization rate.

m 100 200 400 600
(Gen) 69.7% 80.1% 90.8%  %M44%
& 7.5% 35% 1.7% 0.9%

The number of examples and halfspaces needed to get a generalization rate of 98-99%
is consistent with a polynomial increase with respect to the dimension of the input space
{for n £ 50). These results do not show any evidence of an exponential increase in the
number of examples needed to learn halfspace intersections (as conjectured by Baum [3]).
Hence we think that these experimental results strongly suggest that the greedy method
learns halfspace intersections under the uniform distribution.

Table 3. The generalization rate (Gen) of our greedy method, standard deviation (%) and the
number of nodes found (k) for various data sets. n is the number of inputs (dimension) and m,
the number of examples. Each result is averaged over 20 trials, The training set consists of the
% of the m examples and the test set consists of the § remaining. We also include the results
of C4. n i5 the number of input variables,

Dataset m " 'n . Defacc c4 {Gen) 1{3)
CH 3196 36 522% K2 +03  952%L05% 4.0
G2 163 9 53.4% 74.3% £ 6.6 76.4% =+ 6.7% 4.7
R 150 4 33.3% 93.8% £ 3.0 95.1% X 6.3% 34
Vo 435 16 61.4% 95.6% £ 1.3 92.0% =+ 2.83% 2.0

Vi 435 15 61.4% 89.4% £ 2.5 87.3% £ 2.3% 34
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An interesting function that has been the subject of controversy [19,39] is the mirror
symmetry detector. Here the target output is -+1 if and only if the second half of the input
bits is a mirror reflection of the first half [19]. This function is known to have at least two
different neural net representations: an intersection of two parallel halfspaces and a majority
function of n order-two-disjuncts. Since the latter is not a NDL, the greedy always found
a halfspace intersection. Again the training was done on m/2 positive and m/2 negative
examples obtained from the uniform distribution on {—1, +1}". Testing was done on both
M /2 positive and M/2 negative examples obtained from the same distribution. As the
results show (see table 2), the greedy method was able to find a good approximation of
this function -after seeing very few examples. The function returned consisted always of
two, almost parallel, haifspaces. For the sceptic, we have done five runs in 50 dimensions
and have obtained an average generalization rate of 97.5% after training on only m = 1600
examples! Testing was done on M = 20000 examples obtained from the same distribution.
Note that it is important here to test separately on both the positive and the negative
measure. Otherwise, a trivial net giving —1 to all examples would achieve almost perfect
generalization on the uniform distribution since the positive region has only a fraction of
2772 of the total measure. But here this trivial net gets only 50% generalization on the
testing set. These results show how easy learning can be for a reasonable distribution: here
the returned net only needs to be correct on inputs having roughly an equal amount of +1
and —1 entries. For this reason, the retumed weight values do not increase exponentially.

To summarize, our numerical results strongly suggest that the algorithm is behaving as
‘Occam’s algorithm’ and does learn halfspace intersections under the uniform distribution.

6.3. Real data sets

_ We have tested our greedy heuristic of section 5 to build NDLs on data sets taken from
a collection distributed by the machine learning group of the University of California at
Irvinef. These sets were kindly provided to us by Robert Holte who studied recently [22]
the performance of certain machine learning algorithms on these data sets. The resuits of our’
algorithm are summarized in table 3. We have included, for comparison, the performance
of C4 on these data sets as reporied recently by Holte [22]. C4 is a ‘state of the art’ tree-
induction algorithm [34] capable of producing very complex decision rules. Also indicated
is the ‘default accuracy’ one has when classifying all the testing examples according to the
class containing the largest number of examples. We now comment on our results:

CH: Chess end-game. This data set was originally generated and described by Shapiro [40].
The goal is to determine whether or not a given chess board configuration is a winning
position for the white player. The white player has a king and rook whereas the black
player has a king and pawn where the pawn is located on ‘a7’ (just ready to be promoted
to a Queen). The input consists of 35 binary features and one ternary feature descn‘bing a
board position of a chess end-game. The output is whether or not the position is a winning
one for the white player. These features, as described in Shapiro’s book [40], have been
explicitly engineered for C4 by a chess expert working with a version of C4 built specially
for this purpose. In view of the importance of representations, it is surprising to see that
our algorithm achieves a 95% generalization score on ‘C4-hand-crafted data’.

G2: Glass identification. Here the goal is to determine if a given piece of glass is “Hoat-
processed’ or ‘non-float-processed’. The study of classification of types of glass was
motivated by criminological investigation. At the scene of the crime, the glass left can be

1 Contact person: Pat Murphy (pmurphy@ics.nci.edu).
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used as evidence. . .if it is correctly identified! The input vector consists of 9 continuous-
valued attributes where each attribute indicates the concentration of a given element (Mg,
Na, Al ...) and one atiribute indicates the refractive index. The performance of our greedy
method was only slightly (but not significantly) better than C4. Although we think that this
kind of problem is well suited for our approach (all attributes are continuous), the number
of examples is not enough to achieve a higher accuracy. '

IR Iris data set. This is perhaps the best known database to be found in the pattern
recognition literature [12]. The data set contains 3 classes of 50 instances each, where
each class refers to a type of iris plant: virginica, versicolor or setosa. One class (setosa)
is linearly separable from the other two; the latter are not linearly separable from each
other. The four inputs are continuous-valued and correspond to the length and width of the
sepal and petal. Our algorithm achieved good accuracy on this set and slightly (but not
significantly) better than C4.

VO0-V1: United States congressional voting records database. The VO data set includes
votes for each of the US House of Representatives Congressmen on 16 key votes (Salvador
aid, aid to Nicaraguan Contras, education spending, MX-missiles, ...). The result of each
vole is expressed as a ternary ativibute: yea, nay or *?* where this last value is taken when a
congressmen did not vote, voted present or voted present to avoid conflict of interest. This
is a two-class problem since a Congressman is either Democrat or Republican. The V1
data set is identical to V0 except that the most informative attribute (physician fee freeze)
has been deleted, which makes the problem harder. The performance of our algorithm for
these sets is slightly less than that of C4, but not significantly.

Hence, the greedy method for constructing NDLs can handle with success these real
data sets with roughly the same level of performance as C4. We must mention, however,
that the version of C4 used in these tests incorporates pruning. We could probably also
improve our results by pruning the NDLs and by using a cross-validation data set to test each
new halfspace found during the building process. Moreover, once a halfspace is found, we
could *fine-tune’ it with a quadratic programming algorithm so as to find a hyperplane with
maximal stability. In short, this approach is flexible enough to incorporate many engineering
tricks that have proven useful in the past. We are investigating these possibilities.

7. Summary

By formulating the problem of halfspace intersections as a set-covering problem, we were
able to bring it down to the much simpler, yet very difficult, sub-problem: given a set
of nonlinearly separable examples, find the largest linearly separable subset of it. Short
of solving the CAP, the only hope for learning halfspace intersections is to find a good
approximation algorithm for this Np-hard subproblem.

The approximation algorithm given in this paper seems to work well in practice. At
the single-neuron level, it outperforms the pocket algorithm used by many constructive
algorithms on both linearly and nonlinearly separable functions.

The greedy method which incorporates this approximation algorithm seems able to
learn halfspace intersections under the uniform distribution of examples. Whereas one can
always think of malicious situations where the approximation algorithm will do poorly,
the numerical results are very encouraging and indicate that this will occur very rarely in
practice. The problem of whether or not there exists an approximation algorithm, with
a performance guarantee in the worst case, is still open. We think that this question is
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of fundamental importance because any algorithm that can give a number of halfspaces
bounded by ##m?, for @ < 1 and 8 > 1, will satisfy the Occam’s razor criteria.

We extended the approach to a larger and richer class of concepts, namely the class
of neural decision lists. Again the approach seems to work well. Our results on real-data
problems suggest that concepts like halfspace intersections (unionsy and NDLs are not only
important from the theoretical point of view, but also useful in practice. '
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Appendix

In this section we show how to construct the equwalent FFN of figure 2 from the NDL
obtained from our algorithm described in section 5.

For such a FFN, if we denote by v; 4 the value of the wmght—connectmg hidden unit £ to
hidden unit 7, the output S“ of hidden unit j, upon presentation of pattern x*. (,.z =1,...m),
is given by

il ’
._sgn(Zw,,x +Zu,,csk) ' (Al)

i=0

‘where sgn(x) = +1 if x > 0, and —1 otherwise. The cascade architecture is reflected, in-
this equation, by the fact that hidden unit j is updated only after all hidden units ¥ < j
have been updated.

The w; ;s are readily obtained from the halfspaces of the NDL. What remain to be found
are the connections between the hidden units. Recall from section 2 that our goal is to try
" to get a set of internal representations of the type —1, —-1,...,~1,+1,—-1,...,~1.

To assure that hidden unit j inhibits all hidden units { > j when Sf = 41, we choose
to connect wnit § to all units { > j in the following way:

vj=—9 fwgd—1 for j=1,..h and i=j+1..h (A2)
. k=0 -

where k denotes the number of hidden urits or, equivalently, the number of nodes of the
NDL. However, the drawback of the above choice is that unit j will force all the other units
i > j to output +1 whenever S¥ = —1 whereas we want each unit / to output +1 oaly
when all other unit j < i output ~1 and when @ is in its positive halfspace. This can be
corrected by renormalizing the biases of each hidden unit according to

i1 _
Wio —> Wig+ Y v, for i=1,...h , (A3)
i=l _
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without affecting the inhibitory action that unit j has on all the units above it when S}” =<1
Hence, we have achieved the desired set of internal representations.

Finally, we have to set the value of each weight #; connecting hidden unit j to the
output unit such that its output always gives the desired value, If we denote by 7; the target
of the patterns covered by the positive halfspace of hidden unit j, we can achieve this goal
by the following choice:

up=71; for j=1,...h (A4

for the connections and setting the bias according to

h

=y 7. (A5)

=1

Because of the structure of the set of internal representations, the output will be sgn(2 x ;)
whenever a pattern with target z; is presented to the net. Hence, all the examples in the
training set will always be correctly classified by this cascade FFN (equivalent to the NDL).

For multiple-class problems, we will again choose the inter-hidden units connections
and bias according to (Al) and (A2) so as to have the same set of internal representations
as previously. But now each hidden unit is being associated with a class value. Moreover,
since the oufput units are perceptrons, we need to represent each class 7 by a binary vector
T. We have, of course, complete freedom to choose any binary representation we want. If
we now denote by v the class index (v = 1,..., @) and by ¥ its binary representation,
the weight #; connecting any hidden unit that covers patterns of the class v to output unit
[ is given by

Uiy =T’ ’ (A6)

and the bias for output unit / now generalizes to
b
o= .7 (AT
=1

where 7/ denotes the vector mpmenﬁﬁm of the examples covered by hidden unit j.
Again, we have the guarantee that each example in the data set will be correctly classified.
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