
J. Phys. A Math. Gen. 26 (1993) 5751-5766. Printed in the UK

Learning curves of the clipped Hebb rule for networks with
binary weights

Mostefa Goleat and Mario Marchand$
Ottawa-Carleton hstiNte for Physics, University of Ottawa, Ottawa, Ontario,
Canada KIN 6N5

Received 30 November 1992, in final form 6 July 1993

Absbsct Networks with binary weights are very impmr from both thc theoretical a d .
practical points of view. this paper, we investigate the clipped Hebb rule for learning different
netwoks of non-overlapping binary perceptmus under uniform distribution. We calculate exactly
its leaming curves in the limit of a large number of inputs, where the avenge behaviour becomes
the typical behaviour. This calculation is performed using only very simple counting arguments
and the cenval limit theorem. The resub indicate that the clipped Hebb rule does indeed leam
this class of networks. In particular, the generalization rates converge extremely rapidly, oflen
exponentially, to perfect genedimion. These results are very encouraging given the simplicity
of the learning rule, The analytic expression of the leaming curves are in excellent agreement
with the numerical simulations

1. Introduction

Neural networks with binary weights have attracted much attention recently [l-71. This was
motivated by both theoretical and practical reasons. First, because the number of possible
states in the weight space of a binary network is finite. its properties may differ drastically
from those of a network with continuous weights [2,8]. Second, the hardware realization
of binary networks may prove to be simpler.

One interesting property of neural networks is their generalization ability. This is
defined as the probability that a trained network will predict the correct classification of
new examples. The generalization properties of neural networks with binary weights have
been studied extensively using the statistical mechanics approach [Z, 5.8.91. Although this
approach has yielded some impressive results, it has its shortcomings. In particular, it
neglects the computational aspect of the learning process. It assumes a stochastic training
algorithm, similar to a finite Monte Carlo process, that at long times leads to a Gibbs
distribution [SI. Unfortunately, stochastic training algorithms generally require prohibitively
long convergence times. So, despite intensive study, the fundamental question of whether
or not there exist efficient algorithms for learning this class of networks remains largely
unanswered. The reason for this state of affairs perhaps lies in the apparent strength of the
following distribution independent result [IO]: learning percepkons with binary weights are.
equivalent to 0-1 integer programming and hence the problem becomes an NFcompIete
one. However, this result does not rule out the existence of efficient learning algorithms
that'work well under some reasonable distributions of examples.

t e-mail: golea@physics.uomwa.oz
$ e-mail: mmj@acadvml.uonawaca

0305-4470/93/215751+16$07.50 @ 1993 IOP Publishing Ltd 5751

5752 M Golea and M Marchand

Perhaps the simplest algorithm that one may think of for learning binary networks is the
clipped Hebb rule [3] (also called the majority rule in [7]). This rule is local, homogeneous
and simple enough to be biologically plausible and casy to implement. Moreover, it observes
each training example only once and hence its running t i e increases only linearly with the
number of training examples.

Recently, we decided to take a close look at the clipped Hebb rule. We investigated its
behaviour when learning single binary perceptrons under a uniform distribution [ll]. We
showed that within the ‘probably approximately correct’ (PAC) learning framework [12.13],
the clipped Hebb rule does indeed learn this class of perceptrons. Also, we calculated its
learning curve, i.e. the average generalization rate as a function of the size of the training set.
We found that the generalization rate converges exponentially to perfect generalization as a
function of the number of training examples. These findings were c o n h e d by extensive
simulations.

In this paper, we take this investigation one step further. We look at the average
behaviour of the clipped Hebb rule when learning networks of non-overlapping binary’
perceptrons. A network is non-overlapping if each node, including the inputs, has one
and only one outgoing connection (figure 1). This is referred to, within the computational
learning community, as the p or the read-once restriction [14, IS]. Such networks have
been recently investigated within the PAC learning framework [16, 171.

Figure L A multilayer network of non-overlapping binary
pcrceptmns. Note that each node has one and only one outgoing
COMeCliOn. All weights in the network are binary valued (&I). The
hidden nodes md the output node a binary-valued percepmns.

We show that, under the uniform distribution of examples, the clipped Hebb rule does
indeed learn this class of networks. We derive expressions for the average generalization
rate of this rule, in the limit of large number of inputs, when learning (i) a union of
non-overlapping binary perceptrons; (ii) a two-layer network of non-overlapping binary
perceptrons; and (iii) a multilayer network of non-overlapping binary perceptrons. This is
done using only very simple counting arguments and the central limit theorem. We find
that the generalization rates still converge extremely rapidly, often exponentially, to perfect
generalization. The results of extensive simulations are in very good agreement with the
theoretical predictions.

We note here that the clipped Hebb rule produces hypotheses that are not necessarily
consistent with all the training examples but that, nonetheless. have very good generalization
ability. These types of algorithm are called ‘inconsistent algorithms’ [18] . Such algorithms
are very important because, in many situations, there is no hypothesis consistent with all
the training examples. This may be due to the intrinsic difficulty of the problem or to the
examples being noisy. The clipped Hebb rule, in particular, is known to be very robust
with respect to random classificatiodinput noise [l l] .

Finally, we should mention that the analysis presented in this paper can be easily
extended to handle the case of learning networks of non-overlapping perceptrons with real
weights using the Hebb rule [191.

For the sake of completeness and because we will make use of the technique, a short
derivation of the single binary perceptron’s learning curve is included in this paper.

Leaming curves of the clipped Hebb rule 5753

2. Delkitions

Let X denote the set {-I, +1y. We are interested in learning a target function f" that
maps from the set X (the input space) into (-l,+l}. We assume f' is either a single
binary perceptron or a network of non-overlapping binary perceptrons (figure 1). For an
input vector x E X, we take xi to be the state of the input node i of the network.

One interesting property of non-overlapping networks is that one can assume, without
loss of generality (WOG), that all the weights, except those coming directly from the input
nodes, are positive [17lt. From now on, we assume this is the case and concentrate only
on learning the input level weights.

For non-overlapping networks, each input node i has one and only one input level
weight Ji . We define J to be the weight vector obtained from the collection of all these
input level weights. Then, each possible setting of the weight vector J defines a mapping
function f. We denote by J' the weight vector associated with f'. We call J' the target
weight veCtor and the corresponding network the target network. Each perceptron (hidden'
unit) in the target network is referred to as a target perceptron.

The training examples are input vectors {zitt=,,,,.,m, generated according to the uniform
distribution D on X, and labelled according to the target function (network) f*. An example
is said to be positive (negative) if p(z) = +l(-I).

Knowing the target network architecture and using the training examples, the goal of the
learning algorithm is to find a setting of J that most approximates the target function. The
network corresponding to the J found by the algorithm is called the hypothesis network.
Each perceptron in the hypothesis network is referred to as an hypothesis perceptron.

f"(z'). The clipped Hebb rule for the network can be simply written as Let ui

where sgn(a) = +I if a z 0 and -1 otherwise. Note that the learning rule (equation (1))
does not require that the target values for the internal nodes be provided: only the target
values for the output node need to be specified.

Because the results of this paper are independent of J*, we assume from now on that
J r = 1 fo r i = 1,. .. , n .

Before we leave this section, we define several probabilistic quantities that will be useful
later. We denote by P (A) the probability that the event A occurs. We denote by P(A&B)
the probability that events A and B do bccur simultaneously. We denote by P(AlB) the
conditional probability that event A occurs given the fact that event B has been observed.
All probabilities are taken with respect to the uniform distribution D on X.

3. Learning single binary perceptrons

First, we look at the case where the target function (network) f' is a single perceptron g*
with binary weight vector J*,

+1 if J / x i > 0

-1 if J / x i < 0.
f'(x) = g"(r) =

t Any other u s e reduces to this one by an analogue to De Morgan's laws that allows us to push negation of
weights down to the input level.

5154 M Golea and M Marchnnd

As usual, we let the number of training examples depend on the number of inputs, and

Let g, with weight vector J , be the perceptron returned by the clipped Hebb learning
we write m = an. We are interested in the limit where n -+ w and a is finite.

rule. Let R denote the overlap between J' and J , i.e.

n

R = JTJi /n .
i = l

The generalization rate, G(a), is defined as the probability that the hypothesis perceptron
g agrees with the target perceptron g* on a new random example 2, drawn according to
D . It is well known that, under uniform distribution, G(a) depends only on R and is given
by POI

G(a) = 1 - (1/7t)cOS-'(~) (3)

where the overbar denotes the average with respect to all training sets of size an.
when learning a binary perceptron using the clipped

Hebb rule. For this, let yi = u'xf and let Yi = Cy:1 y(. Then, equation (1) can be written
as

We derive an expression for

Now, Yi is simply the sum of an independent and identically distributed, &I random
variables. Let us define q such that

where, as we shall see, q is independent of i and 1 .
Note here that q / f i reflects the correlation between the state of each input node and

the output node (for a random function, P(yi = +1) = 112 and q = 0). This correlation
is positive if J: = +1 and negative if J: = -1. The clipped Hebb rule exploits this
correlation to determine the sign (value) of Jj.

According to the central limit theorem, as n -+ CO, Yj will be distributed according to
a normal distribution with mean p = k n q / f i and variance U = &. Hence,

-
Jj = P(Yj > 0) - P(Yi < 0)

where erf denotes the error function. This yields

We need to specify the value of q. The reason we did not do this earlier is that we will
make use of equation (3, in its general form, later. From the deficition of y! , it is easy to

Leaming cwves of the clipped Hebb rule 5755

see that P(yf = +1) is simply the probability that an input variable is set to +1 when each
negative training example x' is replaced by -z'. Note that, once the negative examples
are inverted, each example has at least (n + 1)/2 of its inputs set to +I. Under the uniform
distribution, P(yf = +1) is given by

asn-tm.
1 1 - -+-
2 &

It follows that

i.e. n of the number (: Eeneration rate tends to 1 exoonentiallv as a func I kaining
examples. Compared to this, the generalization rates of algorithms that leam binary
perceptrons using perceptrons with real weights improve only algebraically as a function
of the number of training examples [19-211. We will see that the exponential convergence
remains for more complicated binary networks. This is another reason why we should stick
with binary network solutions whenever they exist.

Finally, as repomd in [I l l , the agreement between this section's results and the
numerical simulations is excellent, even for moderate values of n.

4. Learning a union of non-overlapping binary percept"

Let us now assume that the target function (network) f' is a union of k non-overlapping
binary perceptrons:

f * = g; vg; v . .. vg;.

In other words, the target network is a two-layer network of non-overlapping binary
perceptrons where the output node computes an OR function. In this case, a negative
example is classified negative by each and every target perceptron. A positive example is
classified positive by one or more target perceptrons.

We denote by Ir (z) the vector @I(*), . . . , gX(z)). This is called the intemal
representatton of a. Clearly, I T (%) depends on the setting of J . We denote by IT*(=) the
target internal representation, i.e. the one corresponding to J*.

Let Gj@) denote the generalization rate of the hypothesis perceptron gj. i.e. the
probability that gj agrees with the corresponding target perceptron g; on a new random
example 5. Let Rj denotes the overlap between the weight vectors associated with g;

5756

and g,. Assume, for now, that each perceptron is connected to the same number of input
variables, n j k . Then

M Golea and M Marchand

where S, denotes the set of indices of variables connected to g; (j = 1,. . . , k). It is easy
to see that, under our assumptions, Rj and Gj are the same for all perceptrons. So, let us
Put

Rj R and Gj E G.

Let yf be defined as in the pievious section and let us write again

as n j k + 00
1 9 u Po(=+1) = - + -
2 m

for some q.. The
n j k inputs. Then, for n and n/k + 00,

for q.&. In other words,

factor comes from the fact that each perceptron is connected only to
is still given by equation (5), with q substituted

-
R = erf (qS &&) . (11)

Also, G (a) is still given by equation (3),

G(E) = 1 - (iinjCos-'(X). (12)

To specify the value of qa, we first remind the reader that qu/m reflects simply the
correlation between the state of each input node and the state of the output node. We use
the following intuitive argument to calculate qu. Let z' be a positive example with a target
internal representation Iv*(z') . If Ir*(z') has at least one of its components set to -1,
then --2' is also a positive example. Under the uniform dishibution D , Y' and -z' are
equally probable to occur in the training set and so their combined contribution to q. is
null. We are left with the positive examples for which Ir*(z') has all its components set to
+1, and with the negative examples for which, obviously, Ir*(&) has all its components
set to -1. It is easy to see that the contribution of these examples to qu is exactly q. This
is true because, for these examples, f*(z') = gT(z ') , f'(-e') = gT(-z') (j = 1, . . . , k).
So, q. is given by

2 2 1
4" = x q = x -

Jz;i

where 2/2k is the probability of drawing an example d for which Iv*(d) has all its
components set to +1 or all set to -1.

Substituting this value of qu in equation (11). we get

Learning curves of the clipped Hebb rule

With this, equation (12) reads

1
G(a) = 1 - -cos-'

lr

5757

(15)

Comparing this to the case of single binary perceptrons (9). we see that only about a fraction
of 1/Zk-l of the training examples in fact contribute to the learning process. This is not due
to the inefficiency of the clipped Hebb rule but simply due to the fact that, for most of the
positive examples, there is no correlation whatsoever between the state of the output node
and the state of the input nodes. In fact, we could use only the negative examples in the
learning process without any significant loss! It is very likely that any learning algorithm
for the union will experience the same difficulty.

We now turn our attention to the the overall generalization rate of the network, GT(oI).
This is defined as the probability that the hypothesis network agrees with the target network,
on a new random example e drawn according to D.

Let G;(a) and GT(a) denote the generalization rates for the positive and negative
examples, respectively. The hypothesis network will classify correctly a random negative
example if and only if each of its perceptrons does so, i.e. for a negative example,

The probability that the hypothesis network will classify correctly a positive example
depends on its target internal representation, i.e. on how many target perceptrons classify this
example as positivdnegative. Let us consider a positive example e that is classified positive
by r target perceptrons, say g ; (e) = I , . . . , g:(z) = I , and negative by the remaining k - r
target perceptrons, = -1,. . . , & (e) = -1. The hypothesis network can fail to
classify this example correctly only if

gj (e) # $ (e) for j = 1 , . . . , r

and

g j (e) = g y (e) for j = r + l , ..., k ,

This can happen with a probability (1 - G)'Gk-'. Taking into account the probability that
a positive example is classified positive by r target perceptrons, G$(a) can be written as

The overall generalization rate is thus given by

where 1/2k is the probability that a random drawn example is a negative example and
1 - 1/2k is the probability that a random drawn example is a positive example.

5758 M Golea and M Marchand

After few manipulations, equation (16) reduces to

The generalization rate G(a) (equation (15)) and the overall generalization rate GI@)
(equation (17)) are plotted in figure 2, for different values of k. The results of the numerical
simulations are also shown. Again, we see that the agreement with the theory is excellent,
even for moderate values of n. For small values of k, C(a) converges exponentially to
1 as a function of the number of training examples. But as k increases, G(a) drops very
rapidly. On the other hand, the overall generalization, GI@), increases very rapidly with
k. The latter is due to the fact that the default generalization, G T (~ = 0), increases very
rapidly with k.

Finally, it is easy to extend the results of this section to the case where the perceptrons
are not connected to the same number of inputs. Assume that perceptron g; is connected
to n / k j inputs, Then equations (14). (15) and (17) will become

I O ,

io

0.9 "-J=-----

0 5 . , . , . , . , . , . , .
C 5 10 I S 20 2s 30

a
Figure 2. Laming a union of k non-overlapping binary prcepeons connected to the same
number of inputs: (a) k = 2 md @) k = 4. The average generalization rate of one perceptmn
in the net. G. and lhe o v d l generalization rate, CT are shown. The points are lhe results of
the simulations for n = 1W. Each point denotes M average over 25 different training samples.
The MOI ban, shown only for one curve for clarity, denote the standard deviations.

Learning curves of the clipped Hebb rule

Gj(w) = 1 - -COS-' z 1
(erf (FA)) z 2k-'

k

This situation is reproduced in figure 3, fork = 3.

a

Figure 3. Learning a union of lhree non-overlapping binary percepuom connected respenively
to n l k l , nlkz, and n/$. where kt = 4.45098, kz = 3.02666, and k3 = 2.2435. The
generalization of each pereepvon Gi (i = 1.2,3), and the overall generalimtion CT a~ shown.
The points are fhe results of the simulations for n = 227. Each point denotes an average over
25 different training samples. The m r bars, shown only for one curve for clarity, denote the
standard deviations.

5. Learning a two-layer network of non-overlapping binary perceptrons

Let us assume that the target function (network) f* is a two-layer network of k non-
overlapping binary perceptrons:

In other words, the output node of the target network computes a majority function. This is
the so-called non-overlapping committee machine. We assume, W O , that k is odd. Then,
a negative (positive) example is classified negative (positive) by at least (k + 1)/2 target
perceptrons. Assume again, for simplicity, that each perceptron is connected to the same
number of inputs, nlk .

Let Gj(0r) G and Rj R be defined as in the previous section. Let us again write

as n/k + 00.
1 4 m P(y,' = +1) = - + -
2 m

for some qm.

5760 M Golea and M Marchand

Then, for n and n/k + CO, 'il is still given by equation (5), with q substituted for
q,,,&. That is

-
R = ed(qm&z/2;;). (21)

Also, G(a) is still given by equation (3),
G(u) = 1 - (l/r)cos-'(T). (22)

We need to determine the value of q,,,. Assume that xi is connected to perceptron g;.
First, we note that if g?(z') = -1, then P(xf = f l) < P(xf = -1) (since we have
assumed, wLoG, that .I;* = 1). Likewise, if g;(s') = +1, then P(x: = -1) < P(xf =+I).
Based on this observation, it is easy to see that the contributions to qm from the following
two sources will be negative:

(i) positive examples x' for which g?(z') = -1, and
(ii) negative examples 2' for which gJ(z') = +l.

(i) positive examples d for which g;(d) = +I, and
(ii) negative examples 2' for which gJ(z') = -1.
Moreover, the contribution, in absolute value, of each of these four possibilities to q,,, is

exactly q . Taking into account the probability that each of the four possibilities mentioned
above does occur, we get

S i l a r l y , the contributions to qm from the following two sources will be positive:

qm = (P(f ' (z ') = I&$(&) = 1) + P (f'cd, = -l&g;(z') = -1)) x q

- (P(f'(a') = I&gJ(z') = -1) + P (f'(z') = -I&&?+?) = 1)) x q .

(23)
Now,
P (f*(d) = I&gJ(z') = I) = P (f*(Z') = 1) x P (gpz') = llP(f'(z') = 1)

Similarly,

P (f*(d) = -l&gj*(d) = -1) = - y1 - +)p)
P (f*(d) = I&g?(z') = -1) = - ; (; - - (; r l)) /2x)

2 2 I (k - 1)

P (f'(z') = -l&g;(z

After few manipulations, this yields

Finally, we look at the overall generalization rate of the network, G T (~) . Deriving an
expression for G&Y) for an arbitrary k is a difficult task. In the following, we concentrate
on the two limiting cases: R = 3 and large k . Note that the learning curves for an arbitrary
k will lie in between these two limiting cases.

Learning cutves of the clipped Hebb rule 5761

5.1. The case of k = 3
Fork = 3, equation (24) reduces to

1 1
9 “ - 2 4 % .

Putting this value back into equations (21) and (22). we get

((X)) 1
G(U) = 1 C COS-^ erf - - .

R

Comparing this to the case of single binary perceptrons (9). we see that three quarters
of the training examples contribute to the learning process, and that G(a) st i l l converges,
exponentially to 1.

The probability that the hypothesis network will classify correctly a new positive
(negative) example depends on its target internal representation, more precisely on how
many target percepeons classify this example as positivdnegative. For a positive example
%, we have two possibilities:

(i) x is classified positive by two target perceptrons, say by &, &, and negative by the
remaining target perceptron, g;. The hypothesis network can fail to classify th is example
correctly only if

81(2) # d(d # g ; (4 83(2) = z;(=)

81 (%) # g;w 8 m = g m 83@) = S,*C%)

Sl(Z) = g; (z) gz(z) # g;w 83(0) = &a.)

or

or

or

g j (z) # g ; (z) for j = 1,2,3.
This can happen with a probability

G(a)[l - G(a)I2+ 2G(01)’[1 - G(a)l+ 11 - G(a)13.
(ii) x is classified positive by all three target perceptrons. The hypothesis network can

fail to classify this example correctly only if at least two of its percept” fail to do so.
This can happen with a probability

3G(a)[l - G(cY)I’ + [l - G(a)I3.
The same argument holds for negative examples. Taking into account the probability

that an example is classified positive (negative) by r target perceptrons, we get
G,(a) = 1 - fG(a)’[l - G@)] - $G(a)[l - G(a)12 - [I - G(a)I3. (27)

The analytical expressions for E, G(a), and GT@) are plotted in figure 4 along with
the simulation results. Again, the agreement is excellent. One can also see that G T (~) tends
exponentially to perfect generalization.

The arguments of this section may be used, in principle, to derive an expression for
G T (~) for any value of k. However, it becomes too complicated to follow for k 2 7. Thus,
we will look simply at the other end of the spectrum, i.e. large k.

5162 M Golea and M Marchand
I .o

0.9

I I

as ' . I
0 I O 20 10 93

0

Figure 4. Laming a two-layer network of three non-overlapping binary percept" connected
to the same number of inputs. The average overlap R, the generaliLation rate of each percepwn
G and the o v e d l generalization rate GT are shown. The points a~ the results of the simulations
for n = 303. Each point denotes an average over 25 different M n g samples. The error bars:
shown only for one c u e for clarity, denote the standard deviations.

5.2. The case of large k

Here w e are interested in the case where k + 00 (but n is still larger than k such that
n/k -+ CO). In this case, equation (24) reduces to

Putting this value back into equations (21) and (2.2). we get

Again, comparing this to the case of single binary perceptrons (9), we see that a fraction
of 2/a (zz 0.63) of the training examples contribute to the learning process, and that G(a)
still converges exponentially to 1.

To determine the overall generalization, let 2 be a random input and let

For different inputs 5, a and b are correlated Gaussian variables with
- - - - - a = b = O a Z = b 2 = k a b = k x i j

where p. the overlap between Ir*(z) and Ir (x) , is given by

Leaming cuwes of the clipped Hebb rule 5763

By definition,

GT(u) P(ab > 0)

which, as for a single perceptron, depends only on the average overlap 7. So, GT(CY) is
again given by equation (3)

GT(o.) = 1 - (l/Z)cos-l@).

We now evaluate 7 (remember, the overbar denotes the average with respect to the
training set). For that, let

h j (z) = &(o)gj(z) j = 1, . , . , k .

Then,
-

P(h,(z) = + I) = G(a) h j (z) = 2G(a) - 1.

This yields

p = ~ G (L Y) - 1 = 2(1 - (l/j?)cOS-’(X)) - 1 = 1 - (~/z)cos-’(X). (31)

The overall generalization is then given by

It is interesting to see that, for large k , the generalization rate of a majority of non-
overlapping perceptrons behaves l i e that of a single perceptron, with a modified overlap
1 - IT COS-^(^). Equation (33) has also been derived in [lo], using a different method.

The analytical expressions for G(a) and GT(a) are plotted in figure 5 along with the
simulation results. There is a noticeable deviation from the theoretical predictions; the
reason for this is that, in the simulations, k and n / k are not sufficiently large. On the
other band, one can see that as k and n / k become larger. the simulations results tend
towards the theoretical curves. One can also see that G&Y) tends exponentially to perfect
generalization.

6. Extension to multilayer networks of non-overlapping binary perceptrons

Let f’ be a layered network of non-overlapping binary perceptrons (figure 1). Let H denote
the number of hidden layers and kh the number of perceptrons in layer h (h = 1,. . . , H).
Assume that the number of nodes in layer h - 1 is much greater than the number of nodes
in layer h. That is

n-t 00 n l k t --f CO kh-llkh -t 03 h = 2 ,..., H.

Assume, for simplicity, that perceptrons in the same layer are connected to the same number
of nodes in the previous layer. Let G&) denotes the generalization rate of a perceptmn
(hidden unit) in layer h.

5764

a

0 5
0 m 4 60

a

Figure 5. haming a two-layer network of k nondverlapping binary percepkons connected to
the same number of inputs: the case of large k. The generalization rate of each percepmn
G (a) and the overall generalization rate CT (b) are shown. The points are the results of the
simulations for tbe indicated values of (n. k). Each p&t denotes an average over 25 different
tmining samples. The ermr bars. shown only for one curve for clarity, denote the standard
deviations,

Using the arguments in the previous section that led to equation (28), one can show that
each hidden layer will contribute a factor 2/& to qm. Thus,

4-&l=(&) Jz;;. (34)

With this, equation (29) now reads

Also, Gl(cu) is still given by

Applying the arguments that led to equation (32) recursively, that is from one layer to the
next, we get

G ~ (u) = 1 - (I/x) ~0~-'(2Gh-i(cu) - 1)

GT(LY) = 1 - (l/n)coS-'(2GH(U) - 1).

h = 2.. . . , H (37)

(38)

Learning curves of the clipped Hebb rule' 5765

Finally, we note that equation (35) cah be written as
-
R = e r f (G) (39)

where

Compared to the single binary perceptron case (S), apff reflects the effective number of
examples contributing to the learning process. This effective number decreases as (2 / ~) ~ .
This may explain the observation made in [5] that the critical value of a at which the phase
transition occurs scales as (~ / 2) ~ .

7. Conclusion

We have investigated the clipped Hebb rule for learning different networks of non-
overlapping binary perceptrons under uniform distribution. We have calculated exactly
the learning curves of this rule in the limit It + 03, where the average behaviour becomes
the typical one. Our results indicate that the clipped Hebb rule does indeed learn this
class of network. Specifically, the generalization rates converge extremely rapidly, often
exponentially, to perfect generalization as a function of the number of training examples.
The analytical expressions for the learning curves are in excellent agreement with the
numerical simulations.

The generalization abilities of networks of non-overlapping perceptrons with binary
weights has been investigated using the statistical mechanics approach [5,6]. Assuming a
stochastic training algorithm that leads, at long times, to a Gibbs distribution of weights,
it is found that a phase transition to perfect generalization does occur at a critical value
of 01 [5,6]. Thus, stochastic training algorithms have a slightly better sample complexity
than the clipped Hebb rule. However, the time complexity of the clipped Hebb rule is
only O(n x m), whereas stochastic training algorithms generally require prohibitively long
convergence times.

It is interesting to note thar for networks of non-overlapping binary perceptrons, the
expression for the generalization ability of ,one perceptron in the network is exactly the
same as that for the single perceptron except that 01 is replaced by an &f that reflects the
effective number of examples contributing to the learning process (compare equations (1.5).
(26) and (30) to equation (9)). This effective number will obviously depend on the network
architecture, i.e. the number of hidden units and hidden layers, and the function computed
at the output node. As long as c u , ~ is not too small compared to at, we expect the clipped
Hebb rule to produce exponentially converging generalization curves.

One serious drawback for the clipped Hebb rule (and the Hebb rule) is the fact that
it does not work for networks in which each input may have more than one outgoing
connection. The obvious,problem in such a situation is that the clipped Hebb rule will
assign the same value to all connections coming from the same input, even if they have
different values in the target network.

Finally, throughout this paper, we have, assumed that the architecture is known in
advance. Whereas this is in line with most neural network research, it is hardly justifiable in

t a'& should be of an order greater lhan In@).

5766

practice. Is there an algorithm that can learn networks of non-overlapping binary perceptrons
in terms of finding both the weight values and the network architecture? Note that such
an algorithm can still use the clipped Hebb rule to determine the weight values. For some
progress in this direction, see [16,22].

M Golea and M Marchand

Acknowledgments

This work was supported by NSERC -an t OGW122405. We thank the anonymous referees
for their helpful comments. MG would like to thank Sara Solla for helpful suggestions.

References

[I] B& E and Kanter I 1991 Eumphys, Left 14 107-112
[Z] Gyorgyi G 1990 Phys. Rev. A 41 7097-100
[3] KMer U, Diederich S, Kim1 W and Opper M 1990 2 Phys, B 78 333-42
141 Krauth W and M6zard M 1989 3, Physique 50 3057-66
[g Mam G and Parga N 1992 3. Phys. A: Mnrh. Gen. 25 5047-54
[6J Schwnrze H and Hertz I 1992 Europhys. Lerr, 20 375-80 [n Venhtesh S 1991 Prm, 4rh Workrhop on Compwationnl Learning Theory (San Mateo, CA: Morgan

[SI Seung H S, Sompolinsky H and Tishby N 1992 Phys. Rev, A 45 6056-91
[9] Timothy L H W and Albrecht R 1992 Phys. Rev. A 45 4102-10

[IO] Pin Land Valiant L G 1988 J. ACM 35 9.5-84
[I I] Golea M and Mardwnd M 1993 Neural Compur. in press
[12] Valiant L G 1984 CO- ACM 27 1134-42
[I31 Blumer A, Ehnfeucht A, Haussler D and W m t h K 1989 J. ACM 36 929-65
[I41 Pagallo G and Haussler D 1989 A greedy method fa leaming wDNF functions under the uniform distribution

Technical Repon UCSC-CRL89-12 (Santa Cmz Department of Computer and lnfonnation Science,
University of Wfomia at Santa CNZ)

1151 Schapire R E 1991 Proc. 4 t h h u a l Workshop on CompurarionolLeaming % o q (San Mateo, C A Morgan
Kaufman) pp 18698

[I61 Golea M, Machand M and Hancock T 1992 Adv. Neural Informotion Pmcessing Systems 5 591-98
(171 Hancack T, Golea M and Marchand M 1993 Machine Learning to appear
[I81 Meir R and Fontanari I P 1992 Phys. Rev. A 45 887444
1191 Vallet F 1989 Europhys. Lett. 8 747-51
[20] Opper M, Kinzel W, Kleinz J and Nehl R 1990 3. Phys. A: Mnfh. Gen. 23 L581-6
[211 Opper M and Haussler H 1991 Phys. Rev. Lcn. 66 2677-80
[22] Golea M 1993 Average c z e andysis of an Hebb-type rule that finds the network connectivity submitted

Kaufman) pp 257-66

